Supporting Information

Electrocatalytic Water Oxidation by heteroleptic Ruthenium complexes of 2,6bis(benzimidazolyl) pyridine Scaffold: A mechanistic investigation

Sahanwaj Khan,^a Swaraj Sengupta,^b Md. Adnan Khan,^a Md. Palashuddin Sk,^c Subhendu Naskar^{a*}

Table of contents	Pg. No.
Experimental section: Materials and Solvents, Synthesis of ligands, Synthesis of complexes.	S3-S4
Physical Measurements: Spectroscopic Characterization, Electrochemistry, Oxygen detection, X-ray crystallography, Electron Paramagnetic Resonance(EPR), Electrochemical cells and bulk electrolysis	S5-S6
Computational details	S6
Figure S1 and S2: mass spectra of ligand L^1 and L^2	S7
Figure S3 and S4: mass spectra of ligand L ³ and Complex 1	S8
Figure S5 and S6: mass spectra of Complex 2 and 3	S9
Figure S7 and S8: ¹ H and ¹³ C NMR of ligand L ¹	S10
Figure S9: ¹ H NMR of complex 1	S11
Figure S10 and S11: ¹³ C NMR of complex 1 and ¹ H NMR of ligand L ²	S12
Figure S12: ¹³ C NMR of ligand L ²	S13
Figure S13 and S14: ¹ H and ¹³ C NMR of complex 2	S13-S14
Figure S15: ¹ H NMR of ligand L ³	S15
Figure S16: ¹³ C NMR of ligand L ³	S16
Figure S17 and S18: ¹ H and ¹³ C NMR of complex 3	S17
Table S1: Significant bond distances and bond angles of 1 , 2 , and 3	S18
Table S2-4: Crystal data and structure refinement for 1, 2 and 3	S19-S20
Table S5: TD-DFT electronic transition data of 1, 2 and 3	S21-S22
Figure S19-21: The major electronic transition of 1 , 2 and 3	S22-S25
Figure S22: UV/Vis spectrum of 2 and 3 (50 μ M) in CH ₃ CN and pH 1 SF ₃ SO ₃ H	S25
Figure S23: CV of 2 and 3 (20µM) in CH ₃ CN and at pH 1 SF ₃ SO ₃ H (1:9, v:v)	S25
Figure S24: A consecutive CV and rinse test experiment of 1 , 2 and 3	S26
Figure S25: controlled-potential coulometry plot of 1 , 2 and 3	S26
Figure S26-27: pourbaix diagram of 2 and 3	S26-S27
Table S6: Equation of FOWA methodology	827
Figure S28 FOWA treatment of Complex 2	S28
Figure S29: Normalized LSV and plot of calculated K _{WNA} and K _d vs. [2]	S28

Figure S20: FOWA treatment of Complex 3	\$20
Figure 550. FOWA treatment of Complex 5	529
Figure S31 Normalized LSV and plot of calculated Kwww and Kays. [3]	\$29
	~_>
Figure S32-34: (A) CV of 1 , 2 and 3 at pH 1 with different scan rate and (B) the plot of	S30
i_{cat} and $i_{Ru}{}^{II}{}_{/Ru}{}^{II}$ vs the square root of the scan rate of $1,2$ and 3	
Figure S35: The plot of i_{cat}/i_p as a function of the inverse of the square root of the scan	S31
rate of 1 , 2 , and 3 .	
Figure S36: X-band EPR spectrum of 2 and 3 before and after bulk electrolysis	S31
Figure S37-38: Intermediate mass spectrum of 2 and 3 after bulk electrolysis	S32-S33
Figure S39: Energy profile diagram (I2M path) of 1	S34
Table S7: Calculated energy values (I2M path) of 1 , 2 , and 3	S34
Structure of complex 4-9	S35
References	\$35-37
	200 07
Coordinates and spin density of the optimized structures	S37-S73

1 Experimental section

1.1 Materials and **Solvents:** All chemicals and reagents like 2,6-Pyridinedicarboxylic acid, o-phenylenediamine, 4,5-dimethyl-1,2- phenylenediamine, 4-fluoro-1,2- phenylenediamine, phosphoric acid(85%), were purchased from Aldrich suppliers and RuCl₃.3H₂O was purchased from AroraMatthey (India) and was used without any further purification. For electrochemical and spectroscopic experiments all the solvents used were of HPLC grade. For water oxidation Milli-Q water was used. For the electrochemical studies, tetra butyl ammonium perchlorate (TBAP) was used as a supporting electrolyte which was prepared by a previously reported procedure.^{S1} Ru^{III}(L¹/L²/L³)Cl₃^{S2,S3} precursors were prepared according to the previously reported procedures.

1.2 Synthesis of ligands L¹, L², and L³:

2,6-bis(1H-benzo[d]imidazole-2-yl)pyridine(L¹): A mixture of o-phenylenediamine (4.5 g, 41.5 mmol) and pyridine-2,6-dicarboxylic acid (3.34 g, 20 mmol) and polyphosphoric acid (40 ml) was heated at 200°C for 4 h. The deep blue viscous solution that formed was poured into crushed ice water. A blue precipitate thus obtained was filtered, and washed with water, followed by dilute aqueous ammonia and again water. During this process, the residue changed to light pink. This was dissolved in the minimum volume of ethanol; ¹H NMR (d6-DMSO) (δ /ppm): 12.989 (2H, s), 8.316-8.297(2H,d), 8.118-8.099(H,t), 7.736-7.714(4H,d), 7.287-7.267(4H,d), ¹³C NMR (d6-DMSO, (δ /ppm): 163.793(2C,7-C), 158.426(2C,6-C), 152.283(1C,5-C), 148.010(4C,4-C), 139.768(4C,3-C), 122.012(2C,2-C), 111.854(4C,1-C). ESI MS: 310.57 (M – H⁺), Anal. Calcd. (%) for C₁₉H₁₃N₅: C, 73.30; H, 4.21; N, 22.49; found: C 73.35, H 4.26, N 22.55.

2,6-bis(5,6-dimethyl-1H-benzo[d]imidazole-2-yl)pyridine (L²): Reaction procedure was similar as described for2,6-bis(1H-benzo[d]imidazole-2-yl)pyridine(L¹) except the 4,5-dimethyl-o-phenylenediamine was used in place of o-phenylenediamine;, ¹H NMR (CDCl₃, δ , ppm): 9.940(2H, s), 9.511-8.785(2H,d), 8.372(1H,t), 7.514-7.275(4H,s), 2.299(12H,s).). ¹³C NMR (CDCl₃, δ , ppm): 161.770(2C,8-C), 147.636(2C,7-C), 144.803(1C,6-C), 142.825(4C,5-C), 135.753(4C,4-C), 127.493(2C,3-C), 126.228(4C,2-C), 19.620(4C,1-C). ESI MS: 366.20 (M - H⁺), Anal. Calcd. (%) for C₂₃H₂₁N₅: C, 75.18; H, 5.76; N, 19.06; found: C 75.25, H 5.79, N 19.11.

2,6-bis(6-fluro-1H-benzo[d]imidazole-2-yl)pyridine (L³): The reaction procedure was the same as described above for 2,6-bis(1H-benzo[d]imidazole-2-yl)pyridine(L¹) except the 5-fluoro-o-phenylenediamine was used instead of o-phenylenediamine; ¹H NMR (d6-DMSO, δ , ppm): 13.079 (2H,s), 8.308-8.276(2H,d), 8.162-8.132(1H,t), 7.720-7.538(4H,d), 7.152(2H,s), ¹³C NMR (d6-DMSO, δ , ppm): 98.256(1C,1-C), 111.978(2C,2-C), 122.031(2C,3-C), 129.199(2C,4-C), 132.035(2C,-5-C), 132.227(2C,6-C), 139.788(1C,7-C), 148.000(2C,8-C), 152.130(2C,9-C), 167.472(2C,10-C). ESI MS: 346.62 (M - H⁺), Anal.

Calcd. (%) for $C_{19}H_{11}F_2N_5$: C, 65.70; H, 3.19; F, 10.94; N, 20.16; found: C 65.75, H 3.25, N 20.23.

1.3 Synthesis of complexes:

 $[Ru^{II}(L)(L^1)(dmso)]$ [ClO₄](1): Ru^{III}(L¹)Cl₃ (518 mg, 1 mmol) was added to a dmso solution (30 ml) of deprotonated Pyrazinecarboxylic acid (HL) (124 mg, 1 mmol). The reaction mixture was refluxed under stirring conditions. With the reaction's progress, the reaction mixture's color changed from deep brown to red. The mixture was refluxed for 20 h and filtered. The volume of the solution was reduced to 5 ml and a 2 ml acetonitrile solution of TBAP was added to give a red-colored solid. The solid was filtered and thoroughly washed with water (3 - 5 ml). The red-colored solid was dried under a vacuum. The pure product was obtained from a silica gel column using DCM: MeOH 20:1; yield: 452 mg, 70% ESI MS: 614.19 (M + H⁺), ¹H NMR (d6-DMSO, δ /ppm): 12.937(2H, s), 8.316(H,s), 8.297(2H,d), 8.137-8.099(3H,d,t), 7.736-7.25(4H,d), 7.287-7.274 (4H,d), 2.460(6H,s).). ¹³C NMR (d6-DMSO, δ , ppm): 44.775(2C,1-C), 114.738(4C,2-C), 116.406(2C,3-C), 123.056(4C,4-C), 125.778(2C,5-C), 126.448(2C,6-C), 134.642(2C,7-C), 141.714(1C,8-C), 147.042(1C,9-C), 148.929(1C,10-C), 149.533(1C,11-C), 150.951(1C,12-C), 152.245(2C,13-C), 169.398(1C,14-C). IR (cm-1):3059(v_{N-H}), 1628(vC=O), 1597(vC=N), 1462s(vC-N), 1327m(vC-N). elemental analysis Found C, 50.89; H, 3.61; N, 15.98; found C, 50.97; H, 3.59; N, 15.95.

 $[Ru^{II}(L)(L^2)(dmso)][PF_6](2)$: Reaction procedure was similar as described for $[Ru^{II}(L^1)(L)(dmso)]$ $[ClO_4]$ except the 2,6-bis(5,6-dimethyl-1H-benzo[d]imidazol-2yl)pyridine (H_2L^2) was used in place of 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine(H_2L^1) and here used NH_4PF_6 to get the precipitation. ESI MS: 639 (M – DMSO + EtOH + H⁺), ¹H NMR (CDCl₃, δ , ppm): 10.968(2H,s), 8.602-8.583(1H,s), 8.167-8.144(2H,d), 7.839-7.796(3H,d), 7.399-7.364(4H,s), 2.247(6H,s), 2.109(12H,s). ¹³C NMR (CDCl₃, δ , ppm): 14.493(2C,1-C), 29.797(4C,2-C), 110.033(4C,3-C), 119.012(2C,4-C), 122.491(4C,5-C), 122.692(2C,6-C), 127.129(2C,7-C), 128.902(2C.8-C), 130.013(1C,9-C), 136.079(1C,10-C), 136.481(1C,11-C), 142.538(1C,12-C), 151.632(1C,13-C), 154.114(2C,14-C), 174.343(1C,15-C). IR (KBr; cm⁻¹):3059(vN-H), 1628(vC=O), 1597(vC=N), 1462s(vC-N), 1327m(vC-N). elemental analysis Found: C, 53.80; H, 4.52; N, 14.64; found C, 53.97; H, 4.49; N, 14.68.

[Ru^{II}(L)(L³)(dmso)][PF₆](3): Reaction procedure was same as described above for [Ru^{II}(L¹)(L)(dmso)] [ClO₄] except the 2,6-bis(6-fluoro-1H-benzo[d]imidazol-2-yl)pyridine (L³) was used instead of 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine(L¹) and here NH₄PF₆ used for precipitation. ESI MS: 652 (M + H⁺), ¹H NMR (d6-DMSO, δ , ppm): 10.732(2H,s), 9.313-9.292(3H,d), 8.935-8.908(3H,t), 8.770-8.745(2H,d), 7.337-7.312(2H,d), 2.490(6H,s). ¹³C NMR (d6-DMSO, δ , ppm): 22.974(1C,1-C), 106.689(2C,2-C), 117.115(2C,3-C), 117.450(2C,4-C), 119.089(2C,5-C), 123.669(2C,6-C), 129.524(2C,7-C), 131.173(2C,8-C), 134.201(1C,9-C), 143.726(1C,10-C), 157.736(1C,11-C), 159.739(1C,12-C), 165.393(1C,13-C), 165.632(2C,14-C), 169.005(2C,15-C), 172.915 (1C,16-C). IR (KBr; cm⁻¹): 3059(vN-H),

1628(υC=O), 1597(υC=N), 1462s(υC-N), 1327m(υC-N). elemental analysis Found: C, 48.07; H, 3.10; F, 5.85; N, 15.09; found C, 49.05; H, 5.79; N, 15.12.

2 Physical Measurements:

2.1 Spectroscopic Characterization: FTIR spectra were recorded on a model IR prestige 21, SHIMADZU Corporation (Japan) using samples prepared in flam form. UV-Visible absorption was recorded on a PERKIN-ELMER (LAMBDA-750) UV/VIS/NIR spectrophotometer. ESI-MS measurements were carried out using a JEOL JMS-700 spectrometer and the High-resolution mass spectra were recorded on a Bruker micrOTOFQ II Spectrometer. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER ADVANCE DPX-400 NMR Spectrometer using, Si(CH₃)₄ as the internal standard.

2.2 Electrochemistry: All electrochemical experiments were carried out on CHI-730 potentiostat in a typical three-electrode system where the platinum disk was used as working electrodes (WE), and Pt wire was used as a counter electrode (CE). Ag/AgNO₃(non-aqueous) and Ag/AgCl (KCl sat. aqueous) are used as reference electrodes (RE) in cyclic voltammetry (CV) and linear sweep voltammetry (LSV) experiments.TBAP was used as a supporting electrolyte. The ferrocene/ferrocenium couple was observed at E^0 (Δ Ep) = 0.24 V (50 mV) under pH 1 experimental conditions. The electrolytic solution was prepared by mixing aqueous triflic acid (0.1M pH 1)/MeCN (v: v 9:1) for electrochemical water oxidation. Pourbaix diagrams were drawn from the electrochemical measurements for all complexes (30µM) in 1:9 CH₃CN/H₂O 0.1M aqueous phosphate buffer solution within the range of pH 1 to 10. The required pH solutions of aqueous phosphate buffer were prepared by thermos fisher pH-meter by using 1M H₂SO₄ and 0.2M NaOH.

2.3 Oxygen detection: In the bulk electrolysis experiment, all chambers and the solvent were degassed with N_2 gas and sealed air-tight with septum caps. A Pt dish was used as a working electrode. An Ag/AgCl (KCl sat.) was employed as a reference electrode and a Pt mess cylinder electrode as a counter electrode. The GC monitored the generated amount of oxygen during water oxidation, which was situated in the headspace of the compartment containing the working electrode. The gas chromatograph for O₂ detection using a thermos fisher scientific trace 1110, equipped with a thermal conductivity detector (detector bridge voltage - 5V, detector current - 85 mA, carrier gas - argon) and fitted with an MS-5Å 80/100 2.5m 2.0MMID 1/8INODand calibrated with $H_2/N_2/CH_4/CO/CO_2$ mixtures of known composition. The retention time of O₂ is found to be 1.925 min.

2.4 X-ray crystallographic data collection and refinement of the structure: Single crystals of all complexes were obtained by slow evaporation of methanol. The data were collected with a Rigaku diffractometer and during the data collection of the crystal; the temperature was kept at 298 K. The crystal structure was solved with the Shelxs implemented in the Olex2^{S4} software package using Charge Flipping and refined with the SHELXL^{S5} using Least Squares minimization.^{S6} The glass fiber was used for mounting all Ru single crystals on a Rigaku Oxford Diffraction X-Calibur CCD system, controlled with the user-inspired Crysalis^{Pro} for crystallographic data acquisition. The measurements were made on an Enraf Nonius Kappa CCD diffractometer with Mo-K α (0.71073 Å).

2.5 Electron Paramagnetic Resonance (EPR) Measurements: The EPR spectrum of all complexes was carried out in JEOL JES-FA200 under non-saturating microwave power conditions. Into the EPR cell (3.0mmi.d.) taking 0.20 μ L of complexes **1**, **2**, and **3** (1.0 * 10⁻³ M) of pH 1 0.1M CF₃SO₃H aqueous solution of triflic acid with 1:9, v:v CH₃CN: CF₃SO₃H

after bulk electrolysis. The magnitude of the modulation was chosen to optimize the resolution and the signal-tonoise (S/N) ratio of the observed spectra. The g values were calibrated using the Mn^{2+} marker. The EPR spectrum of the mixture was measured at 298 K. The EPR spectrum of oxidized **2** and **3** was meant similarly to that of **1**.

2.6 Electrochemical cells and bulk electrolysis: A 20 mL glass vial and a Teflon cap with three holes were used for CV and LSV measurements. For CV and LSV experiments, the scan rate was 50 mV/s, amplitude = 50 mV, pulse width = 0.05 s, sampling width = 0.0167 s, and pulse period = 0.2s were used. A three-compartment cell was used with a frit distance for bulk electrolysis experiments. The working electrode was placed in one of the compartments between the reference and counter electrodes.

3 Computational Studies: All density functional theory (DFT) calculations were carried out with the Jaguar 4.0 by Gaussian 16, Revision A.03.^{S7} Molecular geometries were optimized at Becke's three-parameter hybrid functional and the LYP correlation functional (B3LYP)^{S8} with the LAN2DZ^{S9} basis set. And single-point energy corrections were performed with the B3LYP functional using the LAN2DZ basis set augmented with two f functions on the metal. Frequency calculations were performed on the optimized geometries to verify that the geometries correspond to minima on the potential energy surface (PES). The absorption spectra of the ground state were calculated for all Ru complexes. The 50 lowest doublet-doublet transitions were calculated in an acetonitrile solvent using the TDDFT method in combination with the IEFPCM ^{S10} continuum salvation model. The value of pKa calculated is the following standard schemes as described in e.g. [Jang Y. H. et al. Chem. Res. Toxicol. 2002, 15, 1023-1035]. At 298.15 K and 1 atm, thermal adjustments were performed to the free energies, including zero-point energy (ZPE) adjustments for the zeropoint energy (ZPE). The pKa value was calculated using the standard schemes described in e.g. [Jang Y. H. et al. Chem. Res. Toxicol. 2002, 15, 1023-1035]. We computed the free energy according to the following scheme: $G = EE(LAN2DZ \text{ on } Ru) + G_{solv} + ZPE + H_{298} - H_{298}$ Sx298 + 1.9 (concentration correction to the free energy of solvation from 1 M(g) \rightarrow 1 M(aq) to 1 atm(g) \rightarrow 1 M(aq)). For the proton, the experimental number of Tissandier et al. was used, and the value of 270.3 kcal mol⁻¹ was utilized for the proton's free energy in water. We used experimental G_{solv} values for both water and hydroxide. By translating the estimated free energies, which are about the relation to the common hydrogen electrode, the redox potentials (E^0) (SHE). As stated in the literature^{s11-12}, 4.56 V is assumed to be the SHE's absolute potential for this purpose. To determine redox potentials, the following thermodynamic equations were utilized^{S13-14}.

$$O_{(sol)} + ne^- + H^+ \longrightarrow R_{(sol)}$$

$$E_{R/O}^{0} = -\frac{\Delta G_{rxn}}{nF} - E_{ref}$$

Figure S1: Mass spectra of ligand L¹.

Figure S2: Mass spectra of ligand L².

Figure S3: Mass spectra of ligand L³.

Figure S5: Mass spectra of Complex 2.

Figure S6: Mass spectra of Complex 3.

Figure S7: ¹H-NMR of ligand L¹.

Figure S9: ¹H-NMR of complex **1**.

Figure S10: ¹³C-NMR of complex **1**.

Figure S11: ¹H-NMR of ligand L².

Figure S12: 13 C-NMR of ligand L².

Figure S13: ¹H-NMR of complex **2**.

Figure S14: ¹³C-NMR of complex **2**.

Figure S15: ¹H-NMR of ligand L³.

Figure S16: ¹³C-NMR of ligand L³.

Figure S17: ¹H-NMR of complex **3**.

Figure S18: ¹³C-NMR of complex **3**.

Table S1: Significant bond distances and bond angles of **1**, **2**, and **3**.

			Complex 1				
Atom	Atom	Length/Å		Aton	n Aton	n Atom	Angle/°
Ru1	S1	2.2204(8)		01	Ru1	S 1	175.92(6)
Ru1	01	2.102(2)		N4	Ru1	S 1	96.71(7)
Ru1	N4	2.073(2)		N4	Ru1	01	79.29(9)
Ru1	N2	2.005(2)		N4	Ru1	N3	100.06(9)
Ru1	N3	2.081(2)		N4	Ru1	N1	101.83(10)
Ru1	N1	2.087(2)		N2	Ru1	S 1	95.47(7)
				N2	Ru1	01	88.54(9)
				N2	Ru1	N4	167.82(10)
				N2	Ru1	N3	78.57(10)
				N2	Ru1	N1	78.30(10)
				N3	Ru1	S 1	94.90(7)
				N3	Ru1	01	86.62(9)
				N3	Ru1	N1	156.63(10)
				N1	Ru1	S 1	90.60(7)
				N1	Ru1	01	89.47(9)
			Complex 2				
Atom	Atom	Length/Å		Ato	m Atoi	m Atom	Angle/°
Ru1	S1	2.2706(8)		01	Rul	S1	93.53(6)
Ru1	01	2.121(2)		N2	Ru1	S1	94.61(7)
Ru1	N2	1.995(2)		N2	Ru1	01	171.83(9)
Ru1	N1	2.107(3)		N2	Ru1	N1	78.36(10)
Ru1	N3	2.085(3)		N2	Ru1	N3	78.51(10)
Ru1	N4	2.088(3)		N2	Ru1	N4	93.51(10)
		()		N1	Ru1	S1	93.78(8)
				N1	Ru1	01	101.84(9)
				N3	Ru1	S 1	89.11(7)
				N3	Ru1	01	100.90(10)
				N3	Ru1	N1	156.85(10)
				N3	Ru1	N4	91.28(10)
				N4	Ru1	S 1	171.79(7)
				N4	Ru1	01	78.34(9)
				N4	Ru1	N1	89.09(10)
			Complex 3				
Atom	Atom	Length/Å		Aton	n Aton	Atom	Angle/°
Ru1	S1	2.2552(9)		01	Ru1	S 1	93.75(7)
Ru1	01	2.110(2)		N1	Ru1	S 1	94.60(8)
Ru1	N1	1.987(3)		N1	Ru1	O1	171.64(10)
Ru1	N2	2.086(3)		N1	Ru1	N2	78.58(11)
Ru1	N3	2.101(3)		N1	Ru1	N3	78.46(11)
Ru1	N4	2.074(3)		N1	Ru1	N4	93.59(11)
		~ /		N2	Ru1	S 1	88.78(8)

N2	Ru1	01	101.48(11)
N2	Ru1	N3	157.03(11)
N3	Ru1	S 1	93.61(8)
N3	Ru1	01	101.16(10)

Table S2: Crystal data and str	ructure refinement for Complex 1.
Identification code	SN SK RuLl1
Empirical formula	$C_{28}H_{32}ClN_7O_{12}RuS_2$
Formula weight	859.24
Temperature/K	298.15
Crystal system	triclinic
Space group	P-1
a/Å	10.7530(2)
b/Å	12.5652(4)
c/Å	14.8182(5)
α/°	74.414(3)
β/°	72.884(2)
$\gamma/^{\circ}$	74.855(2)
Volume/Å ³	1806.65(10)
Z	2
$\rho_{calc}g/cm^3$	1.580
µ/mm ⁻¹	0.692
F(000)	876.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.86 to 49.99
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -17 \le l \le 17$
Reflections collected	26541
Independent reflections	$6316 [R_{int} = 0.0263, R_{sigma} = 0.0188]$
Data/restraints/parameters	6316/2/506
Goodness-of-fit on F ²	1.068
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0366, wR_2 = 0.1053$
Final R indexes [all data]	$R_1 = 0.0393, wR_2 = 0.1089$
Largest diff. peak/hole / e Å-3	0.75/-0.91

Table S3: Crystal data ar	nd structure refinement for Complex 2.
Identification code	Ru_4_4DMeI
Empirical formula	$C_{32}H_{34}F_6N_7O_4PRuS_2$
Formula weight	890.82
Temperature/K	298.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.0563(8)
b/Å	20.5315(13)

c/Å	15.021(2)
α/°	90
β/°	91.989(8)
γ/°	90
Volume/Å ³	3407.8(6)
Z	4
$\rho_{calc}g/cm^3$	1.736
µ/mm ⁻¹	0.714
F(000)	1808.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	6.724 to 49.992
Index ranges	$\text{-}13 \leq h \leq 11, \text{-}20 \leq k \leq 24, \text{-}16 \leq l \leq 17$
Reflections collected	15683
Independent reflections	5952 [$R_{int} = 0.0293$, $R_{sigma} = 0.0343$]
Data/restraints/parameters	5952/28/530
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0369, wR_2 = 0.0891$
Final R indexes [all data]	$R_1 = 0.0458, wR_2 = 0.0950$
Largest diff. peak/hole / e Å-3	0.58/-0.48

Table S4: Crystal data and structure refinement for Complex 3. Identification code Ru 4F Empirical formula $C_{28}H_{26}F_{6.5}N_7O_4PRuS_2$ Formula weight 844.22 Temperature/K 298.15 monoclinic Crystal system Space group $P2_1/n$ a/Å 11.0467(3) b/Å 20.0220(7) c/Å 14.8502(4) $\alpha/^{\circ}$ 90 β/° 92.084(3) γ/° 90 Volume/Å³ 3282.35(17) Ζ 4 $\rho_{calc}g/cm^3$ 1.708 μ/mm^{-1} 0.738 F(000) 1698.0 Crystal size/mm³ $0.2 \times 0.1 \times 0.1$ Radiation MoKa ($\lambda = 0.71073$) 2Θ range for data collection/° 6.694 to 50 Index ranges $-11 \le h \le 13, -16 \le k \le 23, -17 \le l \le 17$ Reflections collected 15099 Independent reflections 5753 [$R_{int} = 0.0188$, $R_{sigma} = 0.0229$]

Table S5: Vertical excitations with band position, oscillator strength, and orbital contribution.				
$\lambda_{ex}(nm)$	$\lambda_{theo} (nm)$	f	Contributing orbital	Percentage (%)
	1	Complex - 1	1	1
467	465.70	0.097	$H - 2 \rightarrow L$	24
			$H \rightarrow L + 2$	57
340	452.53	0.441	$H-3 \rightarrow L$	89
			$H-1 \rightarrow L+4$	3
334	333.27	0.002	$H-9 \rightarrow L+1$	39
			$H-9 \rightarrow L+2$	21
313	312	0.121	$H-7 \rightarrow L$	32
			$H-6 \rightarrow L+2$	31
			$H-3 \rightarrow L+2$	21
	1	Complex - 2		
402	404.62	0.0274	$H-3 \rightarrow L$	5
			$H-2 \rightarrow L+1$	6
			$H-2 \rightarrow L+2$	84
346	349.13	0.0176	$H-4 \rightarrow L$	80
332	330.36	0.1292	$H-7 \rightarrow L$	58
			$H-5 \rightarrow L$	10
			$H-4 \rightarrow L$	7
			$H-3 \rightarrow L+2$	17
312	314	0.1033	$H-6 \rightarrow L+1$	2
			$H-6 \rightarrow L+2$	88
			$H-5 \rightarrow L$	3
		Complex - 3	•	

410	411.35	0.0380	$H-2 \rightarrow L+1$	62
347	351.30	0.3863	$H-3 \rightarrow L$	93
			$H-1 \rightarrow L+4$	2
333	332.43	0.0020	$H-7 \rightarrow L+2$	38
			$H-9 \rightarrow L+2$	11
			$H - 7 \rightarrow L + 1$	7
			$H - 9 \rightarrow L + 1$	5
316	315.47	0.0265	$H - 6 \rightarrow L$	40
			$H - 5 \rightarrow L + 1$	7
			$H - 8 \rightarrow L$	2

Figure S20: The major electronic transition of complex **2**.

Figure S21: The major electronic transition of complex 3.

Figure S22: UV/Vis spectrum of Complex 2 (left) and 3 (right) with concentration 50 μ M in CH₃CN and pH 1 CF₃SO₃H.

Figure S23: The black line and red line are the CVs of without-complex and with-complex **2** (A) and complex **3** (B) (20μ M) at pH-1 (1:9,v:v, CH₃CN:CF₃SO₃H).

Figure S24: A consecutive CV scan and rinse test experiment of complex 1 (top left), 2 (top right), and 3 (bottom) (20 μ M) in SF₃SO₃H solution at pH 1 (Pt disk working electrode, Pt wire counter electrode and Ag/AgCl in saturated KCl were used as reference electrode, 50 mV/s scan rate).

Figure S25: controlled-potential coulometry plot of complex 1(black line), 2(red line), and 3 (green line) 1 mM in CF₃SO₃H:CH₃CN(1:1, v:v) at pH 1.

Figure S26: (A) Pourbaix diagram (E vs pH) of complex **2** at 30μ M in phosphate buffer solution. (B) the LSV plot at pH 1-10.

Figure S27: (A) Pourbaix diagram (E vs pH) of complex **3** at 30μ M in phosphate buffer solution. (B) the LSV plot of at pH 1-10.

where *R* is the gas constant, *T* is temperature, *F* is the Faraday constant, *v* is the scan rate, and E° is the apparent standard potential for the redox couple which onsets water oxidation $E(\text{Ru}^{V/\text{IV}})$. η is overpotential, and $E_{\text{H2O/O2}}$ is the standard potential of water oxidation at the working pH. i is the current intensity from the CV and i_p is the peak current intensity of the one-electron redox process of the catalyst.

Figure S28: (A) black solid line shows a CV of complex **2** (20 μ M) at pH 1. The black dashed line indicates the data points used for the FOWA. (B) i/i_p vs. $1/\{1+e[(E^{0,ap} - E)(F/RT)]\}$ plot assuming a WNA (equation S1). (C) i/i_p vs. $1/\{1+e[(E^{0,ap} - E)(F/RT)]\}^{3/2}$ plot assuming a I2M (equation S 2).

The two graphs represent the fitting points for the extraction of rate constants at the foot of the wave as a red solid line.

Figure S29: (A) i_p normalized LSV plot of complex 2 at different Ru concentrations at pH 1 and (B) Plot of calculated K_D and K_{WNA} vs. [2].

Figure S30: (A) black solid line shows a CV of complex **3** (20 μ M) at pH 1. The black dashed line indicates the data points used for the FOWA. (B) i/i_p vs. 1/{1+e [($E^{0,ap} - E$)(F/RT)]} Plot assuming a WNA (equation S1). (C) i/i_p vs. 1/{1+e[($E^{0,ap} - E$)(F/RT)]}^{3/2} plot assuming a I2M (equation S2). The two graphs represent the fitting points for the extraction of rate constants at the foot of the wave as a red solid line.

Figure S31: (A) i_p normalized LSV plot of complex **3** at different Ru concentrations at pH 1 and (B) Plot of calculated K_D and K_{WNA} vs. [**3**].

The calculation of K_{cat} values^{S15}:

For all complexes the peak currents (i_p) of the redox couple Ru^{III}/Ru^{II} show constant redox currents^{S16} (Figure S33A,S34A,S35A) and a linear relationship with the square root of scan rates, $v^{1/2}$ (Figure S33B,S34B,S35B) confirmed. Therefore, these redox currents of Ru^{III}/Ru^{II} can be used to calculate the diffusion coefficient.^{S17,18} A diffusion coefficient of 1.085 x 10⁻⁶ cm²s⁻¹, 3.341 x 10⁻⁶ cm²s⁻¹, and 1.975 x 10⁻⁵ cm²s⁻¹ were measured for **1**, **2**, and **3** respectively from the dependence of the i_p on $v^{1/2}$ by using the Randles-Sevcik relation in Equation S7^{S19} given below:

$$i_{p} = 0.446 nFA[Ru] \frac{(\nu nFD_{Ru}}{RT})^{1/2}$$
(S7)

whereas n (=1e⁻) is the number of electron transferred in the corresponding process, F is the Faraday constant (96500 C), A is the surface area of the working electrode (0.07 cm²), [Ru] is the concentration of complexes, R is the universal gas constant (8.314 J/mol.K), T is the absolute temperature (298 k) and v is the scan rate (50 mV/s).

Figure S32: (A) CV of the complex 1 at pH 1 (1:9,v:v, CH₃CN:CF₃SO₃H) with the scan rate 50-125 mV and (B) the plot of i_{cat} and i_{Ru}^{III}/Ru^{II} vs the square root of the scan rate.

FigS33: (A) CV of the complex **2** at pH 1 (1:9,v:v, CH₃CN:CF₃SO₃H) with the scan rate 50-125 mV and (B) the plot of i_{cat} and $i_{Ru}^{III}_{Ru}^{II}$ vs the square root of the scan rate.

FigS34: (A) CV of the complex **2** at pH 1 (1:9,v:v, CH₃CN:CF₃SO₃H) with the scan rate 50-125 mV and (B) the plot of i_{cat} and $i_{Ru}^{III}_{Ru}^{II}$ vs the square root of the scan rate.

The dependence of the catalytic current (i_{cat}) on complex concentration could be illustrated by Equation S8^{S19} where n_{cat} is the number of electrons involved in WOR (= 4) and k_{cat} is the rate constant for water oxidation. Therefore, the catalytic process follows equation S8 given below:

$$\mathbf{i}_{cat} = \mathbf{n}_{cat} \mathbf{F} \mathbf{A} [\mathbf{R}\mathbf{u}] (\mathbf{k}_{cat} \mathbf{D}_{\mathbf{R}\mathbf{u}})^{1/2}$$
(S8)

 k_{cat} can be calculated by comparing the catalytic current to the diffusive current for a reversible process (Eq. S7). Taking the ratio of equations S8 and S7, substituting in the appropriate constants, and setting $n_{cat} = 4$, results in equation S9, which gives a simple i_{cat} i_{cat}

relationship between $\overline{i_p}$ and the TOF. The k_{cat} could be measured by the linear slope of i_p and v^{-1/2} (Figure S36)

Figure S35: The plot of i_{cat} / i_p as a function of the inverse of the square root of the scan rate experiment of complex 1 (top left), 2 (top right), and 3 (bottom).

From the above equations, the slope value (Figure S36) was calculated to be 12.372, 18.49565, and 0.86503 with the R² being 0.98, and k_{cat} was calculated to be 63.384 s⁻¹, 141.66 s⁻¹, and 0.31 s⁻¹ for **1**, **2** and **3** respectively.

Figure S36: (A) and (B) are the X-band EPR spectrum of Ru(II) of complex **2** and **3** before electrolysis (black line) and after bulk electrolysis (red line) of Ru^V=O species at pH 1, 0.10 M CF₃SO₃H solution of triflic acid with 1:9, v:v CH₃CN: CF₃SO₃H measured at 298 K.

Figure S37: High resolution mass spectrum of the corresponding RuV=O of complex 2 bulk electrolysis, simulation (Top) and experimental (bottom).

Figure S38: High-resolution mass spectrum of the corresponding RuV=O of complex **3** bulk electrolysis, simulation (Top) and experimental (bottom).

I2M path

Figure S39: The calculated relative energy profile diagram of O–O bond formation of complex **1** by the I2M pathway. The relative activation energies are given in kcal/mol.

According to the harmonic frequencies analysis of the transition state, the single negative Eigenvalue is ca. 14.51 cm⁻¹.

Table S7: Energy values of reactant(R), transition state(TS), and product(P) for I2M						
	E [water] (hartree)	ΔE^{\ddagger} [water] (kcal/mol)				
	Complex 1					
R	-3253.12492	0				
TS	-3253.081509	27.22954975				
Р	-3253.081916	26.974259				
Complex 2						
R	-3567.600571	0				
TS	-3567.586393	8.8931505				
Р	-3567.586415	8.879351				
Complex 3						
R	-3650.075275	0				
TS	-3649.997162	34.867573				
Р	-3650.021224	33.90348975				

References

S1 D. T. Sawyer, A. Sobkowiak, J. L. Roberts, Electrochemistry for Chemists, Wiley and J. Sons, *New York, 2nd edn*, 1995, 333.

S2 L. Li, Y. Wong, Ti Chen, C. Fan and W. Zheng, Dalton Trans. 2012, 41, 1138.

S3 S. H. Sze, C. Yu, W. K. Chan, *Macromolecules* 1999, 32, 5251.
S4 O.V. Dplomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschma, J. Appl. Cryyst. 2009, 42, 339-341.

S5 G.M. Sheldrick, Cryst. A 2008, 64, 112-122.

S6 O.V. Dplomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschma, Acta Cryst. 2015.

S7 Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,

M. Caricato, A. V.Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.

Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.

Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.

Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.

Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.

Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.

B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

S8 D. Becke, J. Chem. Phys. 1993, 98, 5648.

S9 P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* 1985, **82**, 299-310.

S10 Y. Takano, K. N. Houk, J. Chem. Theory Comput. 2005, 1, 70.

S11 D. G. Truhlar, C. J. Cramer, A. Lewis, J. A. Bumpus, J. Chem. Educ. 2007, 84, 934 (Erratum).

S12 S. J. Konezny, M. D. Doherty, O. R. Luca, R. H. Crabtree, Gr. L. Soloveichik, and V. S. Batista *J. Phys. Chem. C* 2012, **116**, **10**, 6349–6356

S13 A. Lewis, J. A. Bumpus, D. G. Truhlar, C. J. Cramer, J. Chem. Educ. 2004, 81, 596-604.

S14 P. Winget, C. J. Cramer, D. G. Truhlar, Theor. Chem. Acc. 2004, 112, 217–227.

S15 R. S. Nicholson, and I. Shain Anal. Chem. 1964, 36, 706.

S16 F. Yu, D. Poole 3rd, S. Mathew, N. Yan, J. Hessels, N. Orth, I. Ivanović-Burmazović and J. N. H. Reek, *Angew Chem Int Ed Engl.* 2018, 27, 57(35), 11247-11251.

S16 M. Bera, K. Keshari, A. Bhardwaj, G. Gupta, B. Mondal, and S. Paria, *Inorg. Chem.*, 2022, **61**, 3152–3165.

S17 M. T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048–2051.

S18 Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 2001.

Cartesian coordinates of computed structures			
for complex 1 of Fig. Ru (II)-DMSO			
E(UB3LYP) =-1716.6583 Hartree			
ZPE (kcal mol-1) = 286.04795375			
С	-0.0514 0.75385 -0.79818		
С	1.07577 1.08478 -0.02599		
С	0.28127 3.31492 0.2695		
С	-0.8651 3.04075 -0.49632		
С	-1.01605 1.75091 -1.04107		
Η	-0.18716 -0.24681 -1.19265		
Η	-1.62381 3.79806 -0.65902		
Η	-1.89166 1.51773 -1.63707		
С	2.16904 0.21715 0.40522		
С	3.56826 -1.49311 0.78485		
С	4.25285 -2.7197 0.84007		
С	4.03228 -0.33046 1.47316		
С	5.42535 -2.7508 1.60931		
Η	3.89416 -3.5985 0.31418		
С	5.21394 -0.37536 2.24011		
С	5.89893 -1.59607 2.29763		
Η	5.98886 -3.67657 1.68277		
Η	5.57961 0.5018 2.76214		
Η	6.81335 -1.66789 2.87941		
Ν	3.13777 0.71824 1.21604		
Ν	2.39628 -1.10703 0.12621		
С	0.6243 4.54304 0.98125		
С	0.67796 6.60478 1.86061		
С	1.81702 5.86395 2.30226		
С	0.45137 7.93532 2.25451		
С	2.76893 6.45391 3.15781		
С	1.40523 8.50888 3.10809		
Η	-0.41604 8.49227 1.9156		
С	2.54668 7.77955 3.55191		
Η	3.63947 5.90304 3.4955		
Η	1.27354 9.53491 3.43972		
Η	3.2594 8.267 4.21087		
Ν	1.75316 4.58242 1.73676		
Ν	-0.04545 5.73954 1.03283		
Ν	1.23593 2.35383 0.45689		
Ru	2.7751 2.73428 1.73244		
С	5.33067 3.47281 3.39534		
С	3.50275 2.56922 4.5514		

С	6.03422 3.53537 4.61147
Н	5.7497 3.82114 2.45289
С	4.22961 2.64585 5.74825
Ν	5.50045 3.12375 5.7918
Η	7.04623 3.92464 4.63441
Η	3.77611 2.31721 6.67614
Ν	4.06007 2.97894 3.36409
С	2.089 2.05367 4.49061
0	1.55587 2.06959 3.27425
0	1.49417 1.65629 5.53129
Н	1.82221 -1.70392 -0.45694
Н	-0.90902 5.96267 0.55263
0	5.68486 4.38352 0.52207
С	3.53082 4.7286 -1.27105
Н	4.32182 5.01511 -1.96551
Н	3.17728 5.58556 -0.69856
Н	2.71308 4.21341 -1.77652
С	5.02426 2.22662 -1.16656
Н	5.55732 1.52572 -0.52474
Н	5.70447 2.74305 -1.84559
Η	4.20688 1.74052 -1.69964
S	4.31414 3.54931 -0.02068

Cartesian coordinates of computed Structure for complex 2 of Fig. Ru (II)-DMSO E(UB3LYP) = -1873.9052 Hartree ZPE (kcal mol⁻¹) = 355.95496625

C	0.11618 0.88116 -0.87615
С	1.26943 1.19688 -0.13591
С	0.47549 3.41567 0.24835
С	-0.69769 3.15468 -0.48148
С	-0.86167 1.87897 -1.05504
Η	-0.02675 -0.10796 -1.2965
Η	-1.46493 3.91216 -0.59662
Η	-1.75715 1.65704 -1.62544
С	2.38188 0.32611 0.23111
С	3.80264 -1.38337 0.52214
С	4.49977 -2.60247 0.53346
С	4.28925 -0.23568 1.21048
С	5.70684 -2.66838 1.2474
Η	4.11961 -3.47191 0.00616
С	5.50202 -0.30007 1.92421
С	6.21151 -1.50937 1.94614
Η	5.88234 0.57126 2.44656
Ν	3.38234 0.81445 1.01229
Ν	2.60295 -0.99231 -0.08181

С	0.84183 4.62701 0.97467
С	0.92171 6.66408 1.90656
С	2.08338 5.92571 2.27216
С	0.71255 7.9798 2.35112
С	3.06379 6.51139 3.09687
С	1.68834 8.56342 3.17466
Н	-0.17683 8.53391 2.0679
С	2.87185 7.82478 3.54877
Н	3.95348 5.95716 3.37622
Ν	2.00565 4.65872 1.67735
Ν	0.16509 5.81575 1.09091
Ν	1.43993 2.45437 0.37427
Ru	3.03738 2.81774 1.58245
С	5.6881 3.51204 3.10246
С	3.91377 2.63341 4.3573
С	6.4554 3.57098 4.27932
Н	6.06584 3.83754 2.13439
С	4.70416 2.7047 5.51346
N	5.97979 3.17125 5.48859
Н	7.4721 3.94721 4.24696
Н	4.29774 2.38093 6.46461
N	4.41009 3.03794 3.14141
C	2.49745 2.12189 4.37012
0	1.90547 2.12991 3.18189
0	1.95513 1.72984 5.44186
H	2.00547 -1.58198 -0.64827
н	-0.72291 6.04282 0.66001
0	5.98829 4.25219 0.17892
Č	3.70334 5.04296 -1.27334
H	4.42867 5.28951 -2.04999
н	3,55827 5,87593 -0,58588
н	2.75848 4.69689 -1.69408
C	4.84889 2.38032 -1.59497
H	5.3872 1.57224 -1.10044
н	5 47615 2 88773 -2 32927
н	3.91295 2.03069 -2.03161
S	4 46483 3 64988 -0 25047
C C	7 51865 -1 59819 2 71102
н	7 47032 -2 35855 3 50236
н	7 76698 -0 64054 3 17937
н	8 35196 -1 87846 2 05257
n C	6 48407 _3 96994 1 2814
H	5.97577 -4 74997 0 70584
Н	6 60866 -4 33512 2 30083
Н	7 49297 -3 84542 0 86529
C C	3 91704 8 473 / /37
C	J.JI/UT U.T/J 4.4J/

Η	4.3255	9.38368	3.97823
Η	4.75034	7.78955	4.62847
Η	3.49327	8.76899	5.40624
С	1.49383	9.9825	3.67239
Η	0.55482	10.4066	3.30307
Η	2.31286	10.6375	3.34571
Η	1.47496	10.02285	5 4.76992

Cartesian co	oordinates of computed
Structure fo	or complex 3 of Fig. Ru (II)-DMSO
E(UB3LYP)) = -1915.1436 Hartree
ZPE (kcal n	10l ⁻¹) = 275.3791
С	-0.0171 0.71317 -0.79952
С	1.10613 1.0536 -0.02614
С	0.30916 3.28462 0.24189
С	-0.83302 3.00217 -0.52678
С	-0.98114 1.70665 -1.05851
Η	-0.15165 -0.29265 -1.18104
Н	-1.59214 3.75667 -0.70058
Η	-1.85412 1.46629 -1.65529
С	2.19626 0.18952 0.42021
С	3.59467 -1.51436 0.81931
С	4.28099 -2.7394 0.88669
С	4.05211 -0.34487 1.50148
С	5.44915 -2.7732 1.65882
Η	3.92863 -3.62286 0.36618
С	5.22876 -0.37405 2.27557
С	5.88127 -1.60086 2.32082
Н	6.02998 -3.68417 1.75719
Η	5.61059 0.49277 2.80016
Ν	3.15974 0.69907 1.23411
Ν	2.42657 -1.13471 0.15205
С	0.6446 4.51921 0.94673
С	0.67864 6.58131 1.8207
С	1.81995 5.84766 2.27008
С	0.44003 7.91097 2.21018
С	2.76751 6.44002 3.12797
С	1.37806 8.50168 3.06644
Η	-0.42837 8.46197 1.86657
С	2.50074 7.75495 3.49223
Н	3.6482 5.91933 3.48258
Н	1.25911 9.52429 3.40853
Ν	1.76987 4.56686 1.70919
Ν	-0.03254 5.70985 0.99073
Ν	1.26406 2.32753 0.44477
Ru	2.79351 2.7193 1.72782

С	5.3497 3.42875 3.40398
С	3.48096 2.61121 4.56034
С	6.03447 3.5186 4.62957
Η	5.79987 3.71017 2.45295
С	4.19029 2.71245 5.76592
Ν	5.47012 3.16533 5.81432
Н	7.056 3.88181 4.65605
Η	3.71582 2.42386 6.69659
Ν	4.06565 2.97175 3.37041
С	$2.06148 \ \ 2.11181 \ \ 4.49112$
0	1.55324 2.08569 3.26386
0	1.44281 1.75857 5.53304
Η	1.85573 -1.73774 -0.42836
Η	-0.89614 5.92582 0.50707
0	5.89236 3.97497 0.47636
С	3.73196 4.95852 -1.04945
Η	4.50406 5.16857 -1.7908
Н	3.61901 5.7858 -0.34938
Η	2.78287 4.69114 -1.5153
С	4.69869 2.22938 -1.39229
Η	5.17138 1.3797 -0.90073
Η	5.38012 2.71087 -2.09515
Η	3.75705 1.94903 -1.86598
S	4.35141 3.4929 -0.03168
F	7.0635 -1.69195 3.07997
F	3.41264 8.40051 4.34899

Cartesian o	coordinates of computed
Structure f	or complex 1 of Ru (II)-H ₂ O
E(UB3LYI) =-1628.0336 Hartree
ZPE (kcal	mol^{-1}) = 250.445871
Ċ	-0.05025 0.7558 -0.80057
С	1.07557 1.08577 -0.02603
С	0.28137 3.31596 0.26955
С	-0.86361 3.04285 -0.49863
С	-1.0141 1.75338 -1.04439
Η	-0.18535 -0.24436 -1.19646
Η	-1.62138 3.80077 -0.66269
Η	-1.88859 1.52104 -1.64234
С	2.16853 0.21774 0.40533
С	3.56808 -1.49237 0.78339
С	4.25315 -2.71877 0.83702
С	4.03123 -0.3306 1.47381
С	5.42523 -2.75067 1.60689
Η	3.89507 -3.59671 0.3093
С	5.21251 -0.37626 2.24129
С	5.89795 -1.59683 2.29731
Η	5.98912 -3.67632 1.67908

Н	5.57778	0.50028	2.76463
Н	6.81218	-1.66912	2.87934
Ν	3.13646	0.7181	1.21762
Ν	2.39645	-1.10579	0.12461
С	0.6242	4.54387	0.98183
С	0.67857	6.60582	1.86022
С	1.81622	5.86412	2.30409
С	0.45268	7.93683	2.25298
С	2.76729	6.45365	3.16089
С	1.4057	8.50999	3.10778
Н	-0.4136	8.49433	1.91212
С	2.54571	7.77976	3.5539
Н	3.63673	5.90212	3.50034
Н	1.27452	9.53637	3.43849
Н	3.25786	8.26689	4.21373
Ν	1.75201	4.58239	1.73912
Ν	-0.04434	5.74093	1.03181
Ν	1.23498	2.35418	0.45854
Ru	2.77381	2.73401	1.73496
Ru C	2.77381 5.3306	2.73401 3.47339	1.73496 3.39475
Ru C C	2.77381 5.3306 3.50476	2.73401 3.47339 2.56892	1.73496 3.39475 4.55329
Ru C C C	2.77381 5.3306 3.50476 6.03602	2.73401 3.47339 2.56892 3.53581	1.73496 3.39475 4.55329 4.60977
Ru C C C H	2.77381 5.3306 3.50476 6.03602 5.74793	2.73401 3.47339 2.56892 3.53581 3.8225	1.73496 3.39475 4.55329 4.60977 2.45185
Ru C C C H C	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903
Ru C C C H C N	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083
Ru C C C H C N H	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117
Ru C C C H C N H H	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756
Ru C C C H C N H H N	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516
Ru C C C H C N H H N C	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432
Ru C C C H C N H H N C O	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906
Ru C C C H C N H H N C O O	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621 1.49752	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925 1.65577	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906 5.53608
Ru C C C H C N H H N C O O H	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621 1.49752 1.8235	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925 1.65577 -1.70182	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906 5.53608 -0.46059
Ru C C C H C N H H N C O O O H H	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621 1.49752 1.8235 -0.90654	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925 1.65577 -1.70182 5.9649	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906 5.53608 -0.46059 0.54947
Ru C C C H C N H H N C O O O H H H O	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621 1.49752 1.8235 -0.90654 4.31061	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925 1.65577 -1.70182 5.9649 3.54895	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906 5.53608 -0.46059 0.54947 -0.01965
Ru C C C H C N H H N C O O O H H H O H	2.77381 5.3306 3.50476 6.03602 5.74793 4.23338 5.50419 7.04793 3.78143 4.06018 2.09111 1.55621 1.49752 1.8235 -0.90654 4.31061 5.27061	2.73401 3.47339 2.56892 3.53581 3.8225 2.64544 3.12362 3.92538 2.3165 2.979 2.0533 2.06925 1.65577 -1.70182 5.9649 3.54895 3.54895	1.73496 3.39475 4.55329 4.60977 2.45185 5.74903 5.79083 4.63117 6.67756 3.36516 4.49432 3.27906 5.53608 -0.46059 0.54947 -0.01965 -0.01965

Cartesian coordinates of computed Structure for complex 2 of Ru (II)-H₂O E(UB3LYP) -1785.28 Hartree ZPE (kcal mol⁻¹) = 320.1891712 С 0.11618 0.88116 -0.87615 С 1.26943 1.19688 -0.13591 С 0.47549 3.41567 0.24835 С -0.69769 3.15468 -0.48148С -0.86167 1.87897 -1.05504 Η -0.02675 -0.10796 -1.2965 Η -1.46493 3.91216 -0.59662 -1.75715 1.65704 -1.62544 Η

С	2.38188	0.32611	0.23111
С	3.80264	-1.38337	0.52214
С	4.49977	-2.60247	0.53346
С	4.28925	-0.23568	1.21048
С	5.70684	-2.66838	1.2474
Н	4.11961	-3.47191	0.00616
С	5.50202	-0.30007	1.92421
С	6.21151	-1.50937	1.94614
Н	5.88234	0.57126	2.44656
Ν	3.38234	0.81445	1.01229
Ν	2.60295	-0.99231	-0.08181
С	0.84183	4.62701	0.97467
С	0.92171	6.66408	1.90656
С	2.08338	5.92571	2.27216
С	0.71255	7.9798	2.35112
С	3.06379	6.51139	3.09687
С	1.68834	8.56342	3.17466
Н	-0.17683	8.53391	2.0679
С	2.87185	7.82478	3.54877
Н	3.95348	5.95716	3.37622
Ν	2.00565	4.65872	1.67735
Ν	0.16509	5.81575	1.09091
Ν	1.43993	2.45437	0.37427
Ru	3.03738	2.81774	1.58245
Ru C	3.03738 5.6881	2.81774 3.51204	1.58245 3.10246
Ru C C	3.03738 5.6881 3.91377	2.81774 3.51204 2.63341	1.58245 3.10246 4.3573
Ru C C C	3.03738 5.6881 3.91377 6.4554	2.81774 3.51204 2.63341 3.57098	1.58245 3.10246 4.3573 4.27932
Ru C C C H	3.03738 5.6881 3.91377 6.4554 6.06584	2.81774 3.51204 2.63341 3.57098 3.83754	1.58245 3.10246 4.3573 4.27932 2.13439
Ru C C C H C	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346
Ru C C C H C N	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859
Ru C C C H C N H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696
Ru C C C H C N H H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461
Ru C C C H C N H H N	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141
Ru C C C H C N H H H N C	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012
Ru C C C H C N H H N C O	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189
Ru C C C H C N H H N C O O	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186
Ru C C C H C N H H N C O O H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513 2.00547	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827
Ru C C C H C N H H N C O O O H H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.90547 1.95513 2.00547 -0.72291	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001
Ru C C C H C N H H H C O O O H H H C	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513 2.00547 -0.72291 7.51865	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102
Ru C C C H C N H H N C O O O H H H C H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236
Ru C C C H C N H H H C O O O H H H C H H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032 7.76698	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855 -0.64054	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236 3.17937
Ru C C C H C N H H H C O O O H H H H H H H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032 7.76698 8.35196	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855 -0.64054 -1.87846	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236 3.17937 2.05257
Ru C C C H C N H H N C O O O H H H C H H H C	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032 7.76698 8.35196 6.48407	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855 -0.64054 -1.87846 -3.96994	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236 3.17937 2.05257 1.2814
Ru C C C H C N H H H C H H H C H H H C H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032 7.76698 8.35196 6.48407 5.97577	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855 -0.64054 -1.87846 -3.96994 -4.74992	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236 3.17937 2.05257 1.2814 0.70584
Ru C C C H C N H H H C H H H C H H H H C H H H	3.03738 5.6881 3.91377 6.4554 6.06584 4.70416 5.97979 7.4721 4.29774 4.41009 2.49745 1.90547 1.90547 1.90547 1.95513 2.00547 -0.72291 7.51865 7.47032 7.76698 8.35196 6.48407 5.97577 6.60866	2.81774 3.51204 2.63341 3.57098 3.83754 2.7047 3.17125 3.94721 2.38093 3.03794 2.12189 2.12991 1.72984 -1.58198 6.04282 -1.59819 -2.35855 -0.64054 -1.87846 -3.96994 -4.74992 -4.33512	1.58245 3.10246 4.3573 4.27932 2.13439 5.51346 5.48859 4.24696 6.46461 3.14141 4.37012 3.18189 5.44186 -0.64827 0.66001 2.71102 3.50236 3.17937 2.05257 1.2814 0.70584 2.30983

С	3.91704	8.473	4.437
Н	4.3255	9.38368	3.97823
Н	4.75034	7.78955	4.62847
Н	3.49327	8.76899	5.40624
С	1.49383	9.9825	3.67239
Н	0.55482	10.4066	3.30307
Н	2.31286	10.6375	3.34571
Н	1.47496	10.0228	5 4.76992
0	4.13643	3.45844	0.17122
Н	3.65519	3.40799	-0.65792
Η	5.73887	3.393	0.05882

Cartesian co	ordinates of computed	
Structure for complex 3 of Fig. Ru (II)-H ₂ O		
E(UB3LYP)	=-1826.5193 Hartree	
ZPE (kcal m	ol ⁻¹) = 239.5229395	
С	-0.0171 0.71317 -0.79952	
С	1.10613 1.0536 -0.02614	
С	0.30916 3.28462 0.24189	
С	-0.83302 3.00217 -0.52678	
С	-0.98114 1.70665 -1.05851	
Н	-0.15165 -0.29265 -1.18104	
Н	-1.59214 3.75667 -0.70058	
Н	-1.85412 1.46629 -1.65529	
С	2.19626 0.18952 0.42021	
С	3.59467 -1.51436 0.81931	
С	4.28099 -2.7394 0.88669	
С	4.05211 -0.34487 1.50148	
С	5.44915 -2.7732 1.65882	
Н	3.92863 -3.62286 0.36618	
С	5.22876 -0.37405 2.27557	
С	5.88127 -1.60086 2.32082	
Н	6.02998 -3.68417 1.75719	
Н	5.61059 0.49277 2.80016	
Ν	3.15974 0.69907 1.23411	
Ν	2.42657 -1.13471 0.15205	
С	0.6446 4.51921 0.94673	
С	0.67864 6.58131 1.8207	
С	1.81995 5.84766 2.27008	
С	0.44003 7.91097 2.21018	
С	2.76751 6.44002 3.12797	
С	1.37806 8.50168 3.06644	
Н	-0.42837 8.46197 1.86657	
С	2.50074 7.75495 3.49223	
Н	3.6482 5.91933 3.48258	
Н	1.25911 9.52429 3.40853	

Ν	1.76987 4.56686 1.70919
Ν	-0.03254 5.70985 0.99073
Ν	1.26406 2.32753 0.44477
Ru	2.79351 2.7193 1.72782
С	5.3497 3.42875 3.40398
С	3.48096 2.61121 4.56034
С	6.03447 3.5186 4.62957
Η	5.79987 3.71017 2.45295
С	4.19029 2.71245 5.76592
Ν	5.47012 3.16533 5.81432
Η	7.056 3.88181 4.65605
Η	3.71582 2.42386 6.69659
Ν	4.06565 2.97175 3.37041
С	2.06148 2.11181 4.49112
0	1.55324 2.08569 3.26386
0	1.44281 1.75857 5.53304
Η	1.85573 -1.73774 -0.42836
Η	-0.89614 5.92582 0.50707
F	7.0635 -1.69195 3.07997
F	3.41264 8.40051 4.34899
0	4.35141 3.4929 -0.03168
Η	5.31141 3.4929 -0.03168
Η	4.03096 4.39783 -0.03168

Cartesian coordinates of computed structure for complex 1 of Ru (III)-H₂O E(UB3LYP) = -1627.8418 Hartree ZPE (kcal mol⁻¹) = 251.547322

LPE (KCal I	101^{-1}) = 251.54/522
С	0.04738 0.81743 -0.93087
С	1.1012 1.10749 -0.04724
С	0.29936 3.3342 0.25729
С	-0.77418 3.09926 -0.61926
С	-0.89216 1.828 -1.21424
Η	-0.04797 -0.1624 -1.38533
Η	-1.50086 3.87514 -0.83398
Н	-1.71354 1.62488 -1.89275
С	2.17822 0.23222 0.40143
С	3.59247 -1.47113 0.75759
С	4.29844 -2.68655 0.78087
С	3.99382 -0.3417 1.53519
С	5.42717 -2.74314 1.61236
Η	3.98723 -3.5393 0.1862
С	5.1303 -0.41318 2.36547
С	5.83655 -1.6233 2.39254
Η	6.00468 -3.66184 1.66391
Η	5.44722 0.4362 2.95992

1.28975 0.06021 0.9936 1.86957 2.38635 2.24561 3.30514 3.16146 1.84815
0.06021 0.9936 1.86957 2.38635 2.24561 3.30514 3.16146 1.84815
0.9936 1.86957 2.38635 2.24561 3.30514 3.16146 1.84815
1.86957 2.38635 2.24561 3.30514 3.16146 1.84815
2.38635 2.24561 3.30514 3.16146 1.84815
2.24561 3.30514 3.16146 1.84815
3.30514 3.16146 1.84815
3.16146 1.84815
1.84815
3.68266
3.70374
3.48209
4.38924
1.81975
0.99836
0.52528
1.85179
3.27583
4.61956
4.42363
2.28913
5.74874
5.66516
4.34631
6.72724
3.37274
4.67625
4.67625 3.49754
4.67625 3.49754 5.77675
4.67625 3.49754 5.77675 0.58794
4.67625 3.49754 5.77675 0.58794 0.46148
4.67625 3.49754 5.77675 0.58794 0.46148 0.3229
4.67625 3.49754 5.77675 0.58794 0.46148 0.3229 0.30837

Cartesian coordinates of computed structure for complex 2 of Ru (III)-H₂O E(UB3LYP) = -1785.091 Hartree ZPE (kcal mol⁻¹) = 321.281 0.17238 0.89737 -0.96086 С С 1.26969 1.17902 -0.12803 С 0.47724 3.40006 0.24736 С -0.63972 3.17217 -0.57557 С -0.78341 1.90849 -1.18107 Η 0.05825 -0.07567 -1.42572

Н	-1.3784 3.94846 -0.7425
Н	-1.63761 1.71151 -1.81994
С	2.37095 0.30327 0.25307
С	3.80545 -1.39875 0.52415
С	4.51897 -2.6083 0.51055
С	4.24996 -0.27451 1.27643
С	5.70007 -2.69016 1.26588
Н	4.1705 -3.45951 -0.0663
С	5.43487 -0.35638 2.03365
С	6.16084 -1.55661 2.03184
Н	5.78268 0.49495 2.60889
Ν	3.33582 0.7736 1.08873
Ν	2.62155 -0.99926 -0.10547
С	0.8338 4.60771 0.98139
С	0.92447 6.65502 1.89119
С	2.04476 5.88964 2.32337
С	0.72857 7.98079 2.31115
С	2.99527 6.45921 3.19301
С	1.67502 8.548 3.17988
Н	-0.12989 8.55505 1.97679
С	2.816 7.78244 3.62262
Н	3.85397 5.88532 3.52485
Ν	1.9626 4.61588 1.74017
Ν	0.18546 5.81717 1.04871
Ν	1.4041 2.41251 0.45246
Ru	2.968 2.76196 1.6911
С	5.68324 3.52596 2.95107
С	4.03778 2.68352 4.39534
С	6.55163 3.65097 4.04668
Н	5.97386 3.8035 1.94613
С	4.92734 2.81904 5.47115
Ν	6.18793 3.30149 5.31142
Н	7.55542 4.03744 3.90841
Н	4.61515 2.5343 6.4693
Ν	4.42129 3.04032 3.12394
С	2.63358 2.15404 4.5377
0	1.95295 2.10606 3.39984
0	2.18479 1.79813 5.66662
Н	2.05366 -1.57127 -0.71821
Н	-0.67295 6.06227 0.57098
С	7.43927 -1.66111 2.8425
Н	7.37519 -2.45996 3.5938
Н	7.65161 -0.72345 3.36596
Н	
	8.30259 -1.89458 2.20457
С	8.30259 -1.89458 2.20457 6.49367 -3.98259 1.27418

Н	6.58046	-4.39299	2.28948
Н	7.51728	-3.82749	0.90706
С	3.82986	8.41079	4.56055
Н	4.28895	9.30476	4.11688
Н	4.63157	7.70616	4.8036
Н	3.36305	8.72879	5.50272
С	1.49183	9.97689	3.65416
Н	0.58539	10.42136	3.23106
Н	2.34394	10.60761	3.36655
Н	1.41488	10.02901	4.74872
0	4.22047	3.48177	0.08014
Н	4.02183	4.34364	-0.33343
Н	4.56192	2.84414	-0.57567

Cartesian coordinates of computed structure for complex 3 of Ru (III)-H₂O E(UB3LYP) =-1826.3248 Hartree ZPE (kcal mol⁻¹) = 240.65888925С 0.07503 0.77164 -0.92443 С 1.1274 1.07344 -0.04348 С 0.32191 3.3007 0.23572 С -0.74951 3.05506 -0.64008 С -0.86534 1.77738 -1.22123 Η -0.01956 -0.21393 -1.36637 Η -1.47725 3.82725 -0.86434 -1.68564 1.56542 -1.89814 Η С 2.20347 0.20293 0.41693 С 3.61674 -1.49418 0.79388 С 4.32391 -2.70842 0.83075 С 4.01099 -0.35661 1.56436 С 5.44795 -2.76729 1.66547 Η 4.01916 -3.56654 0.24212 С 5.14083 -0.41264 2.40395 С 5.81569 -1.62851 2.41735 Η 6.04114 -3.67217 1.74464 Η 5.47269 0.42624 3.00242 Ν 3.11249 0.68613 1.30681 Ν 2.47668 -1.10019 0.08757 С 0.6378 4.5258 0.96151 С 0.68039 6.59538 1.81843 С 1.76686 5.83116 2.34646 С 0.4572 7.93492 2.18131 С 2.6695 6.4034 3.26439 С 1.35315 8.50645 3.09465 Η -0.36956 8.50782 1.77626 С 2.41964 7.72946 3.60076

Н	3.50569	5.8601	3.686
Н	1.24249	9.53541	3.42015
Ν	1.71468	4.54569	1.79317
Ν	-0.00358	5.73796	0.95212
Ν	1.23505	2.31901	0.5161
Ru	2.71325	2.68678	1.84725
С	5.33509	3.46143	3.29391
С	3.58195	2.64923	4.62507
С	6.12004	3.60174	4.44984
Η	5.7013	3.7208	2.30903
С	4.38927	2.79906	5.7623
Ν	5.66043	3.27435	5.68851
Η	7.13303	3.98245	4.38097
Η	4.00183	2.53228	6.73877
Ν	4.06198	2.9836	3.38127
С	2.16729	2.12891	4.6704
0	1.57265	2.06518	3.48527
0	1.63363	1.79472	5.76741
Η	1.95251	-1.67772	-0.55888
Η	-0.8256	5.97587	0.41023
F	6.95405	-1.74222	3.24042
F	3.29157	8.35363	4.51532
0	4.08899	3.37235	0.32623
Η	4.4785	2.72892	-0.29603
Н	3.94833	4.23894	-0.10056

Cartesian coordinates of computed structure for complex 1 of Ru (III)-OH E(UB3LYP) = -1627.4127 Hartree ZPE (kcal mol⁻¹) = 243.30337525 С 0.04738 0.81743 -0.93087 С 1.1012 1.10749 -0.04724 С 0.29936 3.3342 0.25729 С -0.77418 3.09926 -0.61926 С -0.89216 1.828 -1.21424 Η -0.04797 -0.1624 -1.38533 Η -1.50086 3.87514 -0.83398 Η -1.71354 1.62488 -1.89275 С 2.17822 0.23222 0.40143 С 3.59247 -1.47113 0.75759 С 4.29844 -2.68655 0.78087 С 3.99382 -0.3417 1.53519 С 5.42717 -2.74314 1.61236 Η 3.98723 -3.5393 0.1862 С 5.1303 -0.41318 2.36547 С 5.83655 -1.6233 2.39254

Н	6.00468 -3.66184 1.66391
Η	5.44722 0.4362 2.95992
Η	6.71723 -1.71313 3.02207
Ν	3.09198 0.7056 1.28975
Ν	2.4482 -1.07019 0.06021
С	0.62168 4.55119 0.9936
С	0.67464 6.61473 1.86957
С	1.76134 5.84439 2.38635
С	0.45754 7.95181 2.24561
С	2.66644 6.41249 3.30514
С	1.36605 8.50355 3.16146
Η	-0.3704 8.52989 1.84815
С	2.45397 7.74525 3.68266
Η	3.49679 5.84069 3.70374
Η	1.23913 9.53374 3.48209
Η	3.13272 8.21431 4.38924
Ν	1.70126 4.56147 1.81975
Ν	-0.01686 5.76675 0.99836
Ν	1.21028 2.34701 0.52528
Ru	2.69773 2.70121 1.85179
С	5.33206 3.46348 3.27583
С	3.59389 2.64085 4.61956
С	6.1297 3.59446 4.42363
Η	5.68736 3.73086 2.28913
С	4.41385 2.78146 5.74874
Ν	5.68429 3.2572 5.66516
Н	7 14105 3 07565 4 34631
	1.14175 5.77505 4.54051
Η	4.03718 2.50667 6.72724
H N	4.03718 2.50667 6.72724 4.05966 2.98502 3.37274
H N C	4.037182.506676.727244.059662.985023.372742.180242.120194.67625
H N C O	4.037182.506676.727244.059662.985023.372742.180242.120194.676251.572712.065923.49754
H N C O O	4.037183.373034.340314.037182.506676.727244.059662.985023.372742.180242.120194.676251.572712.065923.497541.658291.776835.77675
H N C O O H	1.14195 3.37303 4.34031 4.03718 2.50667 6.72724 4.05966 2.98502 3.37274 2.18024 2.12019 4.67625 1.57271 2.06592 3.49754 1.65829 1.77683 5.77675 1.9193 -1.64109 -0.58794
H N C O O H H	4.037183.575034.340314.037182.506676.727244.059662.985023.372742.180242.120194.676251.572712.065923.497541.658291.776835.776751.9193-1.64109-0.58794-0.839916.011540.46148
H N C O O H H O	4.037183.373034.340314.037182.506676.727244.059662.985023.372742.180242.120194.676251.572712.065923.497541.658291.776835.776751.9193-1.64109-0.58794-0.839916.011540.461484.058823.398280.3229

Cartesian coordinates of computed structure for complex 2 of Ru (III)-OH E(UB3LYP) = -1784.6605 Hartree ZPE (kcal mol⁻¹) = 313.226069 C 0.17238 0.89737 -0.96086 C 1.2697 1.17902 -0.12803 C 0.47724 3.40006 0.24736 C -0.63972 3.17217 -0.57557 C -0.78341 1.90849 -1.18107

Н	0.05825 -0.07567 -1.42572
Н	-1.3784 3.94846 -0.7425
Н	-1.63761 1.71151 -1.81994
С	2.37095 0.30327 0.25307
С	3.80545 -1.39875 0.52415
С	4.51897 -2.6083 0.51055
С	4.24996 -0.27451 1.27643
С	5.70007 -2.69016 1.26589
Н	4.17049 -3.45951 -0.0663
С	5.43487 -0.35638 2.03365
С	6.16084 -1.55661 2.03184
Н	5.78268 0.49495 2.60889
Ν	3.33582 0.7736 1.08873
Ν	2.62155 -0.99926 -0.10547
С	0.8338 4.60771 0.98139
С	0.92447 6.65502 1.89119
С	2.04476 5.88964 2.32337
С	0.72857 7.98079 2.31115
С	2.99527 6.4592 3.19301
С	1.67503 8.54799 3.17988
Н	-0.12989 8.55505 1.97679
С	2.816 7.78244 3.62262
Н	3.85397 5.88532 3.52485
Ν	1.9626 4.61588 1.74017
Ν	0.18546 5.81717 1.04871
Ν	1.4041 2.41251 0.45246
Ru	2.968 2.76196 1.6911
С	5.68324 3.52596 2.95107
С	4.03778 2.68352 4.39534
С	6.55163 3.65097 4.04668
Н	5.97386 3.8035 1.94613
С	4.92734 2.81904 5.47115
Ν	6.18793 3.30149 5.31142
Н	7.55542 4.03744 3.90841
Н	4.61515 2.5343 6.4693
Ν	4.42129 3.04032 3.12394
С	2.63358 2.15404 4.5377
0	1.95295 2.10606 3.39984
0	2.18479 1.79813 5.66662
Н	2.05366 -1.57127 -0.71821
Н	-0.67295 6.06227 0.57098
С	7.43927 -1.66111 2.8425
Н	7.37519 -2.45996 3.5938
Н	
	7.65161 -0.72345 3.36596
Н	7.65161 -0.72345 3.36596 8.30259 -1.89458 2.20457

Н	6.02064	-4.74175	0.64322
Н	6.58046	-4.39299	2.28948
Н	7.51728	-3.82749	0.90706
С	3.82986	8.41079	4.56055
Н	4.28895	9.30476	4.11688
Н	4.63157	7.70616	4.8036
Н	3.36305	8.72879	5.50272
С	1.49183	9.97689	3.65416
Н	0.58539	10.42136	3.23106
Н	2.34394	10.60761	3.36655
Н	1.41488	10.02901	4.74872
0	4.22047	3.48177	0.08014
Н	4.56192	2.84414	-0.57567

Cartesian coordinates of computed structures for complex 3 of Ru (III)-OH E(UB3LYP) = -1825.8972 Hartree ZPE (kcal mol⁻¹) = 232.4651225 C 0.07504 0.77164 -0.92443

C	0.07304 0.77104 -0.72443
С	1.1274 1.07344 -0.04348
С	0.32191 3.3007 0.23572
С	-0.74951 3.05506 -0.64008
С	-0.86534 1.77738 -1.22123
Н	-0.01957 -0.21393 -1.36638
Н	-1.47725 3.82725 -0.86434
Н	-1.68564 1.56542 -1.89814
С	2.20347 0.20293 0.41694
С	3.61674 -1.49418 0.79388
С	4.32391 -2.70842 0.83075
С	4.01099 -0.35661 1.56436
С	5.44795 -2.76729 1.66547
Н	4.01916 -3.56654 0.24212
С	5.14083 -0.41264 2.40395
С	5.81569 -1.62851 2.41735
Н	6.04114 -3.67217 1.74464
Н	5.47269 0.42624 3.00242
Ν	3.11249 0.68613 1.30681
Ν	2.47668 -1.10019 0.08757
С	0.6378 4.5258 0.96151
С	0.68039 6.59538 1.81843
С	1.76686 5.83116 2.34646
С	0.4572 7.93492 2.18131
С	2.6695 6.4034 3.26439
С	1.35315 8.50645 3.09465
Η	-0.36956 8.50782 1.77626
С	2.41964 7.72946 3.60076

Н	3.50569	5.8601	3.686
Н	1.24249	9.53541	3.42015
Ν	1.71468	4.54569	1.79317
Ν	-0.00358	5.73796	0.95212
Ν	1.23505	2.31901	0.5161
Ru	2.71325	2.68678	1.84725
С	5.33509	3.46143	3.29391
С	3.58195	2.64923	4.62507
С	6.12004	3.60174	4.44984
Η	5.7013	3.7208	2.30904
С	4.38927	2.79906	5.76229
Ν	5.66043	3.27435	5.68851
Η	7.13303	3.98245	4.38097
Н	4.00183	2.53228	6.73877
Ν	4.06198	2.9836	3.38127
С	2.16729	2.12891	4.6704
0	1.57265	2.06518	3.48527
0	1.63364	1.79472	5.76741
Η	1.95251	-1.67772	-0.55888
Н	-0.8256	5.97587	0.41023
F	6.95405	-1.74222	3.24042
F	3.29157	8.35363	4.51532
0	4.08899	3.37235	0.32623
Η	4.4785	2.72892	-0.29603

Cartesian coordinates of computed structures for complex 1 of Ru (IV) =O E(UB3LYP) = -1626.7468 Hartree ZPE (kcal mol⁻¹) = 236.49520375 С 0.1934 0.87672 -1.14966 С 1.20319 1.14742 -0.21064 С 0.39828 3.37306 0.09201 С -0.63588 3.15795 -0.8342 С -0.719 1.90188 -1.46662 Η 0.10841 -0.09691 -1.61829 Η -1.36107 3.93184 -1.05741 Η -1.50448 1.7168 -2.19066 С 2.21029 0.24656 0.33958 С 3.50081 -1.49605 0.90521 С 4.13402 -2.743 1.03402 С 3.89172 -0.35696 1.67108 С 5.1851 -2.82022 1.9594 Η 3.82742 -3.60155 0.44596 С 4.9531 -0.44673 2.59145 С 5.58848 -1.68873 2.72385 Η 5.70663 -3.76296 2.09562

Н	5.27249	0.40757	3.1754
Η	6.41041	-1.79267	3.42588
Ν	3.06502	0.71328	1.29474
Ν	2.44574	-1.07098	0.08586
С	0.66 4	1.5454 0	.91994
С	0.62163	6.51911	1.98109
С	1.69568	5.73277	2.49565
С	0.34766	7.81517	2.44759
С	2.53678	6.2439	3.50203
С	1.18926	8.30996	3.45473
Н	-0.47043	8.40501	2.04795
С	2.26707	7.53637	3.97168
Н	3.36268	5.66731	3.89959
Н	1.01856	9.30734	3.84892
Н	2.89587	7.96121	4.74844
Ν	1.69126	4.5071	1.81201
Ν	0.0019	5.73541	0.99738
Ν	1.29812	2.38314	0.35858
Ru	2.79329	2.74501	1.67516
С	5.48801	3.55281	2.97692
С	3.83495	2.7417	4.43672
С	6.35262	3.7118	4.07693
Η	5.76808	3.79882	1.96042
С	4.7178	2.90972	5.51642
Ν	5.97552	3.39301	5.34199
Η	7.35559	4.09831	3.93741
Η	4.40489	2.65255	6.52125
Ν	4.23891	3.06743	3.17195
С	2.42426	2.20758	4.58615
0	1.74536	2.11854	3.44685
0	1.98551	1.89049	5.7238
Η	1.94294	-1.65203	-0.57566
Η	-0.79836	6.01469	0.44108
0	3.90393	3.32234	0.37632

Cartesian coordinates of computed structure for complex 2 of Ru (IV) =O E(UB3LYP) = -1783.9952 Hartree ZPE (kcal mol⁻¹) = 306.54146575 C 0.2428 0.92912 -1.11576 C 1.34451 1.21704 -0.29276

C	0.55997	3.44228	0.06796
С	-0.56159	3.21149	-0.74707
С	-0.70296	1.94656	-1.35021
Η	0.11122	-0.0533	-1.55422

Н	-1.30946 3.98052 -0.90297
Н	-1.55894 1.74726 -1.98528
С	2.40722 0.32848 0.15916
С	3.76936 -1.39617 0.59513
С	4.43638 -2.62849 0.66403
С	4.21007 -0.25938 1.32863
С	5.56936 -2.72193 1.48789
Н	4.09011 -3.4862 0.09641
С	5.34983 -0.34952 2.1482
С	6.02885 -1.57446 2.23291
Н	5.70484 0.50881 2.70561
Ν	3.34023 0.80258 1.03582
Ν	2.63814 -0.98427 -0.12343
С	0.8885 4.61837 0.86295
С	0.92801 6.59211 1.9226
С	2.04096 5.81442 2.34806
С	0.69189 7.88372 2.4169
С	2.94732 6.3389 3.28768
С	1.59249 8.40597 3.35861
Η	-0.16127 8.4648 2.08184
С	2.72744 7.62849 3.79494
Η	3.80302 5.76297 3.61909
Ν	1.99089 4.58797 1.66758
Ν	0.23369 5.80641 0.99226
Ν	1.48806 2.4595 0.25203
Ru	3.08763 2.83137 1.43723
С	5.87491 3.64922 2.52466
С	4.34155 2.83763 4.10877
С	6.81873 3.81993 3.55566
Η	6.07616 3.89186 1.48888
С	5.30155 3.01832 5.11832
Ν	6.53946 3.50822 4.84758
Н	7.80615 4.21089 3.33866
Н	5.06611 2.76606 6.1453
Ν	4.64637 3.15914 2.81553
С	2.95068 2.29396 4.36906
0	2.18257 2.20294 3.28909
0	2.60779 1.97163 5.53838
Н	2.08991 -1.56692 -0.74611
Н	-0.61053 6.0792 0.50196
С	7.2567 -1.68873 3.11533
Η	7.12167 -2.45345 3.892
Η	7.47627 -0.73882 3.61252
Η	8.14233 -1.97924 2.53439
С	6.31314 -4.03862 1.58991
Η	5.84558 -4.80746 0.96714

Н	6.33325	-4.40683	2.62446
Н	7.35867	-3.93332	1.27053
С	3.69362	8.20719	4.81023
Н	4.15442	9.13364	4.44193
Н	4.49623	7.49971	5.04039
Н	3.18402	8.45814	5.75019
С	1.36731	9.79686	3.91705
Н	0.47148	10.256	3.48784
Н	2.22024	10.45572	3.70595
Н	1.24666	9.77433	5.00849
0	4.08406	3.42604	0.05569

Cartesian co	ordinates of computed			
structure for complex 3 of $R_{\rm H}$ (IV) =0				
F(IIB3I VP) = -1825 2305 Hartree				
ZPE (kcal m	$hol^{-1}) = 225.64503325$			
	$\begin{array}{c} 0 & 11809 \\ 0 & 77208 \\ -0 & 97613 \\ \end{array}$			
C	1 16296 1 07188 -0 08634			
C	0 36262 3 30209 0 18438			
C				
C	-0.81081 1 78442 -1 28553			
е н				
H				
н	-1 62478 1 5754 -1 97061			
n C	2 21846 0 1925 0 41109			
C	3 61175 -1 50797 0 83447			
C	4 31039 -2 72629 0.88393			
C	3 98714 -0 37726 1 62263			
C	5 40915 -2 79448 1 74966			
е н	4 01865 -3 57865 0 28098			
n C	5 09368 -0 44112 2 4908			
C	5.76158 -1.66072 2.5165			
H	5.99609 -3.70215 1.84087			
Н	5.41873 0.39201 3.09997			
N	3.09885 0.66532 1.33658			
N	2.49706 -1.10457 0.09051			
C	0.66304 4.51563 0.94087			
C	0.6927 6.5675 1.83576			
C	1.76085 5.79361 2.38391			
C	0.46096 7.90267 2.20763			
C	2.64218 6.35272 3.3288			
C	1.33312 8.46032 3.15087			
Ĥ	-0.35329 8.48137 1.78643			
C	2.38542 7.67522 3.67423			
H	3.46975 5.80748 3.76313			
Н	1.21642 9.48543 3.48588			

Ν	1.71371 4.5192 1.80767
Ν	0.03145 5.72513 0.93512
Ν	1.26829 2.31859 0.45873
Ru	2.74179 2.68433 1.80429
С	5.37969 3.46554 3.21485
С	3.64219 2.67505 4.58521
С	6.184 3.61703 4.36018
Η	5.7171 3.70711 2.21457
С	4.46531 2.8366 5.71069
Ν	5.73603 3.30636 5.6048
Η	7.19747 3.99199 4.27486
Η	4.0953 2.58539 6.6977
Ν	4.11476 2.99431 3.3411
С	2.22357 2.15505 4.64972
0	1.61371 2.07528 3.46642
0	1.70463 1.83669 5.75134
Н	1.99368 -1.67936 -0.57589
Η	-0.77445 5.9779 0.37463
F	6.87546 -1.78263 3.36737
F	3.23471 8.28583 4.61513
0	4.03684 3.30802 0.4715

Cartesian coordinates of computed

structure for complex 1 of Ru (V) =O E(UB3LYP) = -1626.5429 Hartree ZPE (kcal mol⁻¹) = 237.1393895

C	0.0446 0.79486 -0.94712
С	1.13555 1.10419 -0.11391
С	0.33511 3.3407 0.1817
С	-0.7702 3.08909 -0.64535
С	-0.89705 1.80507 -1.21715
Н	-0.08217 -0.19754 -1.36273
Η	-1.51682 3.85093 -0.83618
Η	-1.74372 1.5885 -1.85855
С	2.20176 0.23417 0.36415
С	3.5893 -1.45953 0.8228
С	4.27296 -2.68221 0.88815
С	4.00155 -0.30838 1.56492
С	5.39371 -2.7273 1.73209
Н	3.95522 -3.54606 0.31473
С	5.13285 -0.36822 2.40563
С	5.81502 -1.58825 2.47693
Η	5.95652 -3.65157 1.81894
Η	5.4675 0.48903 2.97592
Н	6.68918 -1.67085 3.11511
Ν	3.1204 0.73043 1.254

Ν	2.46176 -1.06837 0.08926
С	0.66464 4.54171 0.94274
С	0.72483 6.55311 1.9245
С	1.83942 5.7884 2.38317
С	0.48538 7.86774 2.34481
С	2.76625 6.35055 3.28241
С	1.41008 8.41125 3.25433
Н	-0.36325 8.4389 1.98487
С	2.53123 7.66597 3.70961
H	3.63175 5.80331 3.63185
Н	1.26877 9.42605 3.61266
н	3.22505 8.12815 4.40457
N	1 7792 4 53529 1 75641
N	0.02656 5.72838 1.02791
N	1 25567 2 36002 0 39535
Ru	2 70136 2 75054 1 66080
Ku C	2.79130 2.73034 1.00909
C C	3.50212 5.55020 5.20704
C C	5.50070 2.04550 4.52010 6.10747 3.66 A.45020
	0.10/4/ 3.00 4.45929
H	5./5/ 3.83528 2.3049/
C	4.35057 2.77542 5.6903
Ν	5.61001 3.28235 5.66253
Н	7.11212 4.06508 4.43541
Н	3.94197 2.47002 6.64626
Ν	4.10766 3.0311 3.31792
С	2.18348 2.0944 4.49148
0	1.66558 2.0504 3.25096
0	1.59035 1.72608 5.52543
Н	1.93836 -1.66413 -0.54431
Н	-0.81795 5.99046 0.52815
0	4.02794 3.22988 0.50707
~	

Cartesian coordinates of computed structure for complex 2 of Ru (V) =O E(UB3LYP) = -1783.7955 Hartree ZPE (kcal mol⁻¹) = 306.28805675 С 0.24282 0.92945 -1.11614 С 1.34462 1.21718 -0.29297 С 0.55999 3.44237 0.06791 С -0.56137 3.21185 -0.74721 С -0.70277 1.94688 -1.35055 Η 0.11122 -0.05292 -1.55469 Η -1.30914 3.98096 -0.90321 Η -1.55871 1.74775 -1.98574 С 2.40705 0.32849 0.15897 С 3.76875 -1.3964 0.59528

С	4.43564 -2.6288 0.66458
С	4.20975 -0.25943 1.3284
С	5.5687 -2.72211 1.48831
Н	4.08915 -3.48667 0.09735
С	5.34967 -0.34946 2.14783
С	6.02851 -1.57443 2.23287
Н	5.70491 0.50904 2.70487
Ν	3.3401 0.80249 1.03542
Ν	2.63764 -0.98454 -0.12335
С	0.88875 4.61849 0.86298
С	0.92848 6.5923 1.92253
С	2.04108 5.81443 2.34845
С	0.69234 7.88396 2.41663
С	2.947 6.33867 3.28853
С	1.5926 8.40607 3.35876
Η	-0.16054 8.46519 2.08112
С	2.72712 7.62834 3.79569
Н	3.80232 5.76251 3.62048
Ν	1.99109 4.58787 1.66791
Ν	0.23429 5.8066 0.99201
N	1.48809 2.45952 0.25199
Ru	3.08762 2.83149 1.43716
C	5.87407 3.65237 2.52428
Ċ	4.34248 2.83726 4.1083
Č	6.81808 3.82345 3.55504
H	6.07464 3.89597 1.48859
С	5.30258 3.01856 5.11764
N	6.53973 3.51033 4.84682
Н	7.8049 4.21589 3.33797
Н	5.06785 2.76522 6.14453
Ν	4.64636 3.16023 2.81521
С	2.95247 2.2914 4.36863
0	2.18507 2.1976 3.28842
0	2.6097 1.96974 5.53817
Н	2.08922 -1.56724 -0.74581
Н	-0.60973 6.07955 0.50142
С	7.2565 -1.68861 3.11512
H	7.12143 -2.45294 3.89217
Н	7.47637 -0.73852 3.61184
Н	8.14197 -1.97959 2.53417
С	6.31228 -4.03888 1.59072
Η	5.84444 -4.80791 0.96837
H	6.33256 -4.40667 2.62541
н	7.35775 -3.9339 1.27105
С	3.69287 8.20679 4.81152
Η	4.15406 9.13315 4.44349
	· · · · · · · · · · · · · · · · · · ·

Н	4.49519 7.49913 5.04212
Н	3.18279 8.45784 5.7512
С	1.36745 9.79703 3.91704
Н	0.47195 10.25636 3.48736
Н	2.22065 10.45568 3.70632
Н	1.24627 9.77457 5.00841
0	4.08693 3.41762 0.05388

Cartesian coordinates of computed structure for complex 3 of Ru (V) =O E(UB3LYP) = -1825.0237 Hartree ZPE (kcal mol⁻¹) = 226.4924480.21869 0.82847 -1.13722 С С 1.22367 1.11002 -0.19566 С 0.40927 3.33326 0.08702 С -0.62046 3.10773 -0.84056 С -0.69683 1.84656 -1.46451 Η 0.1405 -0.14846 -1.60011 Η -1.34761 3.877 -1.07305 Η -1.4789 1.65353 -2.19003 С 2.23182 0.2154 0.3619 С 3.52812 -1.51797 0.93394 С 4.16837 -2.76121 1.06729 С 3.91232 -0.37262 1.69492 С 5.22063 -2.83966 1.98786 Η 3.86673 -3.62403 0.48439 С 4.97333 -0.44592 2.61611 С 5.58612 -1.69026 2.72366 Η 5.76172 -3.76665 2.1441 Η 5.30678 0.39616 3.20759 Ν 3.08291 0.69036 1.31668 Ν 2.47245 -1.10164 0.11359 С 0.66715 4.51749 0.90045 С 0.62887 6.50913 1.92337 С 1.70265 5.73119 2.45184 С 0.35512 7.8143 2.36444 С 2.54861 6.25527 3.44592 С 1.19034 8.33714 3.35972 Η -0.4623 8.3969 1.95509 2.24995 7.54916 3.86168 С Η 3.38138 5.70916 3.86761 Н 1.03998 9.33798 3.74984 Ν 1.69896 4.49406 1.7946 N 0.00983 5.70719 0.95552 Ν 1.31208 2.34928 0.36598 Ru 2.79915 2.726 1.68835

С	5.47834	3.55623	3.01344
С	3.81689	2.73508	4.4589
С	6.33217	3.71977	4.12143
Н	5.767	3.80312	1.99957
С	4.68934	2.9073	5.54632
Ν	5.94579	3.3978	5.38275
Н	7.33404	4.1122	3.99102
Н	4.36932	2.64786	6.54832
Ν	4.2304	3.06331	3.19749
С	2.40735	2.19419	4.59445
0	1.74572	2.08916	3.44489
0	1.95337	1.88536	5.72734
Н	1.97309	-1.68837	-0.54573
Н	-0.79019	5.9776	0.39397
F	6.65232	-1.82013	3.63043
F	3.06238	8.12247	4.85487
0	3.93235	3.25767	0.38997

Cartesian coordinates of computed structure for complex 1 of TS[#] E(UB3LYP) = -1702.6876 Hartree ZPE (kcal mol⁻¹) = 252.21157975 С 0.25435 0.3117 -0.11338 С 1.49939 0.79039 0.33166 С 0.60889 3.0053 0.59754 С -0.6619 2.57403 0.15935 С -0.81982 1.22459 -0.20465 Η 0.10906 -0.72836 -0.37941 Η -1.50109 3.25741 0.1053 Η -1.78575 0.87434 -0.54945 С 2.75027 0.07594 0.56112 С 4.42712 -1.3879 0.83172 С 5.24371 -2.51801 0.85688 С 4.89718 -0.09511 1.21272 С 6.57537 -2.31855 1.29386 С 6.23093 0.09657 1.63381 С 7.05682 -1.03855 1.66994 6.60122 1.07542 1.91355 Η N 3.85301 0.80803 1.03496 N 3.08359 -1.21727 0.43575 С 1.03637 4.32067 1.05148 С 1.22969 6.44794 1.72203 С 2.50758 5.81203 1.83974 С 1.03204 7.79342 2.04125 С 3.64004 6.53886 2.27712 С 2.16515 8.50101 2.49344

С	3.44449 7.88473 2.60333
Η	4.61845 6.07922 2.34779
Ν	2.36774 4.49712 1.41992
Ν	0.35189 5.47054 1.22388
Ν	1.63358 2.10974 0.64931
Ru	3.46213 2.76403 1.22196
С	4.2123 2.93092 4.09688
С	2.04995 2.03254 4.01527
С	4.18693 2.85149 5.49794
С	2.05029 1.96176 5.42417
Ν	3.10847 2.36768 6.16452
Η	5.04087 3.18211 6.07717
Η	1.18609 1.57301 5.9496
Ν	3.13277 2.51255 3.36138
Η	2.47573 -1.96539 0.10896
Η	-0.63479 5.61733 1.02864
С	5.41047 3.46553 3.35495
0	6.41 3.93 3.92905
0	5.28279 3.36197 2.01606
Η	1.1903 1.70522 3.44736
Η	0.06558 8.27378 1.94021
Η	4.88861 -3.49544 0.55046
0	3.9964 3.25296 -0.43714
Η	4.28637 8.47774 2.94461
Η	2.06142 9.54875 2.75722
Η	8.088 -0.93502 1.99006
Η	7.24731 -3.16972 1.3342
0	5.80167 3.64978 -0.42992
Н	5.77762 4.50213 -0.92427
Н	5.94847 3.74654 0.57884

Cartesian coordinates of computed structure for complex 2 of TS[#] E(UB3LYP) = -1859.9449 Hartree ZPE (kcal mol⁻¹) = 329.2623425

С	0.27849	0.32927	-0.07126
С	1.52161	0.81881	0.37139
С	0.61937	3.02947	0.61864
С	-0.64837	2.58832	0.18552
С	-0.8001	1.23343	-0.1662
Н	0.14014	-0.71312	-0.3328
Н	-1.49233	3.26491	0.12504
Н	-1.76515	0.87577	-0.50591
С	2.77691	0.11091	0.59338
С	4.45889	-1.35885	0.81977

1.726Å

С	5.26435 -2.50232 0.81698
С	4.9201 -0.0656 1.21451
С	6.61922 -2.30315 1.25525
С	6.25681 0.12156 1.6302
С	7.0772 -1.01126 1.64216
Н	6.63086 1.09542 1.92203
Ν	3.87583 0.83412 1.06977
Ν	3.11052 -1.18252 0.44017
С	1.04592 4.3533 1.05366
С	1.25653 6.50932 1.64339
С	2.51579 5.85394 1.81801
С	1.04913 7.86906 1.89966
С	3.64563 6.57795 2.26308
С	2.20007 8.59099 2.36377
С	3.45687 7.93601 2.52786
Н	4.61147 6.10343 2.3871
Ν	2.37156 4.52692 1.45423
Ν	0.37691 5.51812 1.161
Ν	1.64816 2.13885 0.683
Ru	3.45565 2.80128 1.30285
C	4.18936 2.82663 4.17956
С	2.0268 1.93672 4.03908
С	4.15451 2.67398 5.5745
С	2.01761 1.79158 5.44154
Ν	3.07148 2.15819 6.20939
Н	5.00637 2.97021 6.17499
Н	1.15058 1.37608 5.9413
Ν	3.11164 2.45433 3.4173
Н	2.49313 -1.91691 0.10629
Н	-0.59982 5.66545 0.92524
С	5.39642 3.39372 3.47539
0	6.41647 3.76428 4.08379
0	5.24461 3.44994 2.13541
Н	1.1733 1.63767 3.44662
0	4.0376 3.25169 -0.38408
Н	4.30066 8.52505 2.87203
Н	8.10995 -0.9058 1.9579
0	5.80208 3.71793 -0.30056
Н	5.77535 4.57926 -0.77764
Н	5.91699 3.79771 0.71481
С	-0.28547 8.54469 1.70088
Н	-0.19785 9.3856 1.00195
Н	-0.65701 8.95419 2.64907
Н	-1.05047 7.86783 1.31107
С	2.09011 10.06244 2.67355
Н	3.03876 10.46486 3.03713

Н	1.32081 10.25369 3.43405
Н	1.7946 10.63398 1.78242
С	7.57134 -3.47113 1.3046
Н	7.2248 -4.23305 2.01713
Н	8.57317 -3.1554 1.60549
Н	7.64507 -3.9691 0.32846
С	4.76385 -3.85382 0.37206
Н	5.30184 -4.1912 -0.52341
Н	3.69604 -3.85493 0.13781
Η	4.93424 -4.60778 1.15024

Cartesian coordinates of computed			
structure for complex 3 of TS [#]			
E(UB3LYP) = -1901.1667 Hartree			
ZPE (kcal m	ol ⁻¹) = 241.	451106	
С	0.24948	0.31293	-0.05791
С	1.49623	0.80437	0.37023
С	0.59486	3.01593	0.62369
С	-0.67797	2.57187	0.20555
С	-0.83107	1.21725	-0.14427
Η	0.10903	-0.73018	-0.31477
Н	-1.5238	3.24679	0.15624
Η	-1.79907	0.85784	-0.47343
С	2.75322	0.09885	0.58967
С	4.43648	-1.36086	0.83316
С	5.25724	-2.48837	0.84442
С	4.90653	-0.06656	1.21135
С	6.59369	-2.28569	1.26303
С	6.24644	0.12734	1.61364
С	7.07616	-1.00448	1.63558
Η	6.62034	1.106	1.88906
Ν	3.85684	0.83313	1.05245
Ν	3.08842	-1.19381	0.45515
С	1.02327	4.33816	1.05953
С	1.23856	6.48468	1.66204
С	2.50445	5.83726	1.82163
С	1.05556	7.84298	1.9277
С	3.63948	6.56161	2.25612
С	2.19236	8.5516	2.37387
С	3.45877	7.92222	2.53025
Η	4.60682	6.08611	2.36536
Ν	2.35426	4.51066	1.44455
Ν	0.3542	5.50155	1.18382
Ν	1.62519	2.12621	0.6739
Ru	3.44608	2.79358	1.25447
С	4.20311	2.84708	4.133

С	2.03185	1.97357	4.02179
С	4.18083	2.71071	5.52972
С	2.03546	1.84408	5.42641
Ν	3.09935	2.21066	6.17953
Н	5.04008	3.00794	6.11913
Н	1.16976	1.44114	5.93848
Ν	3.11605	2.47353	3.38538
Η	2.47805	-1.94181	0.13379
Η	-0.62682	5.6589	0.96837
С	5.40317	3.40173	3.40989
0	6.4299	3.78226	3.99654
0	5.2381	3.43518	2.06683
Η	1.16932	1.6754	3.44241
Н	0.09876	8.33382	1.79114
Η	4.90069	-3.46637	0.54152
0	3.99565	3.26788	-0.41126
Η	4.30305	8.51438	2.86688
Н	8.11152	-0.89823	1.94098
0	5.78709	3.69123	-0.37687
Η	5.76729	4.54307	-0.87232
Н	5.92279	3.78723	0.6325
F	2.07603	9.86765	2.65135
F	7.43405	-3.34163	1.29889

Cartesian coordinates of computed structure for complex 1 of Ru(III)-OOH E(UB3LYP) = -1703.1776 Hartree ZPE (kcal mol⁻¹) = 251.6865715 0.25166 0.35732 -0.25741 С С 1.48134 0.83553 0.22537 С 0.58917 3.04234 0.45168 С -0.66166 2.61792 -0.02667 С -0.81443 1.26782 -0.39727 Η 0.11567 -0.68714 -0.512 Η -1.4956 3.30589 -0.1048 Η -1.76922 0.92022 -0.77548 С 2.7059 0.10157 0.53384 4.31866 -1.41328 0.90281 С С 5.11441 -2.56633 1.00344 С 4.79142 -0.12704 1.29881 С 6.40938 -2.39061 1.51334 С 6.09736 0.04102 1.79512 С 6.89341 -1.10777 1.89878 Η 6.47542 1.0181 2.07192 Ν 3.76034 0.7929 1.06042 Ν 3.01004 -1.22117 0.43137

С	0.98474 4.34661 0.97243
С	1.11748 6.45713 1.71805
С	2.37649 5.81526 1.91485
С	0.89571 7.79646 2.0783
С	3.46468 6.51596 2.46747
С	1.98273 8.48154 2.6412
С	3.24676 7.85247 2.82833
Η	4.43367 6.04797 2.59431
Ν	2.25687 4.49909 1.44555
Ν	0.27868 5.49993 1.12608
Ν	1.62616 2.15786 0.53549
Ru	3.43257 2.82917 1.13186
С	4.40866 2.94795 3.98941
С	2.25526 2.0376 4.04154
С	4.48002 2.84328 5.39001
С	2.34622 1.93952 5.44357
Ν	3.45208 2.34133 6.12
Η	5.37037 3.16597 5.91582
Η	1.5235 1.53592 6.02231
Ν	3.28708 2.54334 3.32695
Н	2.4009 -1.95065 0.07619
Н	-0.68872 5.64865 0.86069
С	5.54844 3.49634 3.16021
0	6.61041 3.88525 3.71529
0	5.32007 3.51922 1.8517
Η	1.369 1.71378 3.51194
Н	-0.06404 8.27838 1.92576
Н	4.74974 -3.54136 0.69845
0	3.88133 3.20774 -0.57675
Н	4.0624 8.42674 3.2574
Н	1.86155 9.51968 2.93594
Н	7.90721 -1.01968 2.27774
Η	7.06316 -3.2522 1.6108
0	6.52577 4.12523 -0.5918
Н	5.62172 3.82927 -0.86324
Η	6.51322 4.0595 0.39161

Cartesian coordinates of computed structure for complex 2 of Ru(III)-OOH E(UB3LYP) = -1860.4246 Hartree ZPE (kcal mol⁻¹) = 321.1858715 C 0.27757 0.36577 -0.21951 C 1.51526 0.83949 0.25658 C 0.62377 3.04914 0.49302 C -0.62703 2.62944 0.02137 C -0.78599 1.27574 -0.34603

Η	0.14048	-0.67725	-0.47968
Η	-1.45888	3.32001	-0.05688
Η	-1.74509	0.93118	-0.71646
С	2.74003	0.10287	0.53354
С	4.36414	-1.42217	0.83187
С	5.15183	-2.58957	0.89181
С	4.83979	-0.13621	1.23079
С	6.47305	-2.41854	1.37106
С	6.15739	0.02592	1.69244
С	6.94797	-1.12664	1.75352
Н	6.5446	0.99758	1.97657
Ν	3.80282	0.78266	1.04298
Ν	3.04206	-1.22317	0.3993
С	1.03221	4.3649	0.97944
С	1.18129	6.50826	1.63892
С	2.43696	5.86274	1.84532
С	0.94562	7.86301	1.94422
С	3.52841	6.5786	2.3617
С	2.05012	8.57532	2.4729
С	3.30719	7.9275	2.66636
Н	4.49556	6.11336	2.50977
Ν	2.30883	4.52916	1.43053
Ν	0.3329	5.52547	1.09467
N	1.66047	2.15933	0.57958
Ru	3.46433	2.82696	1.18738
С	4.42276	2.87767	4.05304
С	2.29175	1.9191	4.04395
С	4.4743	2.73689	5.45087
C	2.36008	1.7897	5.44487
Ν	3.44583	2.19449	6.15054
Н	5.34941	3.06355	5.99946
Н	1.53547	1.35538	5.99814
Ν	3.32391	2.46617	3.35957
Н	2.4182	-1.9389	0.04692
Н	-0.63545	5.65996	0.82769
С	5.55556	3.47975	3.25786
0	6.59971	3.88526	3.83158
0	5.33609	3.52836	1.94796
Н	1.42186	1.58675	3.49304
0	4.08101	3.04127	-0.49364
Н	4.12927	8.51399	3.06742
Н	7.97243	-1.04081	2.10537
0	6.67279	4.66965	-0.20028
Н	6.00033	4.53791	-0.89768
Н	6.27034	4.35071	0.64406
С	-0.40354	8.51632	1.72615

Н	-0.31043	9.41567	1.10509
Н	-0.84541	8.83005	2.68113
Н	-1.12069	7.85094	1.23541
С	1.90956	10.04152	2.83393
Н	2.83836	10.43379	3.25901
Н	1.10739	10.20048	3.56695
Н	1.65849	10.64909	1.95356
С	7.40511	-3.61007	1.47921
Н	7.00865	-4.36848	2.16833
Н	8.39142	-3.30741	1.8437
Н	7.54025	-4.10536	0.50818
С	4.62013	-3.94242	0.46444
Н	5.1865	-4.33643 -	0.38948
Н	3.5659	-3.90713	0.17234
Н	4.71199	-4.67532	1.27582

Cartesian coordinates of computed structure for complex 3 of Ru(III)-OOH E(UB3LYP) = -1901.6588 Hartree

ZPE (kcal mol ⁻¹) = 240.226714				
С	0.23273 0.35876 -0.24088			
С	1.46534 0.82692 0.25521			
С	0.58694 3.03866 0.46717			
С	$-0.65809 2.62862 \ -0.02595$			
С	-0.82057 1.2754 -0.3934			
Η	0.09096 -0.68532 -0.49324			
Η	-1.48103 3.32737 -0.12258			
Η	-1.7745 0.9368 -0.78157			
С	2.67818 0.08529 0.56541			
С	4.2833 -1.43913 0.89738			
С	5.07597 -2.59544 0.96981			
С	4.76624 -0.15547 1.29548			
С	6.36579 -2.38442 1.45039			
С	6.08624 0.00949 1.75876			
С	6.89171 -1.13083 1.83808			
Η	6.47232 0.98317 2.03428			
Ν	3.73333 0.76469 1.08857			
Ν	2.97347 -1.24318 0.44973			
С	0.99159 4.34899 0.97132			
С	1.1276 6.47164 1.6679			
С	2.38246 5.82951 1.8885			
С	0.9008 7.81687 1.99339			
С	3.46996 6.53664 2.43322			
С	2.00155 8.47142 2.54223			
С	3.26527 7.88059 2.76611			
Η	4.43344 6.06686 2.58463			

Ν	2.25957	4.50343	1.44683
Ν	0.28956	5.50577	1.09466
Ν	1.61709	2.14524	0.56828
Ru	3.42483	2.81525	1.1856
С	4.42245	2.92324	4.03661
С	2.27033	1.99567	4.1004
С	4.51057	2.80196	5.43377
С	2.3786	1.88895	5.50118
Ν	3.49215	2.2854	6.16891
Н	5.40563	3.12169	5.95341
Н	1.56267	1.47928	6.08524
Ν	3.29383	2.5111	3.38064
Н	2.35755	-1.96716	0.09573
Η	-0.67857	5.64902	0.82604
С	5.54873	3.48993	3.19428
0	6.62434	3.87252	3.72157
0	5.29234	3.49839	1.8866
Η	1.37698	1.67589	3.58047
Η	-0.04507	8.32044	1.83273
Н	4.72853	-3.57815	0.67355
0	4.01234	3.05627	-0.46867
Η	4.06359	8.47997	3.19027
Η	7.91717	-1.06998	2.18612
0	6.45313	4.44926	-0.47253
Н	7.26362	4.96204	-0.68018
Η	6.44618	4.20016	0.53486
F	1.85112	9.82108	2.89382
F	7.21663	-3.49594	1.54996

Cartesian coordinates of computed structure for complex 1 of Ru(IV)-OOH E(UB3LYP) = -1702.3166 Hartree ZPE (kcal mol⁻¹) = 246.03065825 С 0.37449 0.45586 2.32181 С 1.18485 1.02229 1.32542 С 0.09289 3.14192 1.57339 С -0.74348 2.62556 2.57791 С -0.59464 1.27292 2.94013 Η 0.48651 -0.58038 2.61718 Н -1.48512 3.24696 3.0658 Η -1.23152 0.85426 3.71126 С 2.26879 0.41358 0.5522 С 3.82524 -0.93344 -0.33473 С 4.66817 -1.9984 -0.69243 С 3.93389 0.3582 -0.93139 С 5.63071 -1.73001 -1.67649

Н	4.57914 -2.97736 -0.23411
С	4.89897 0.61407 -1.92388
С	5.74218 -0.4457 -2.28307
Н	6.30698 -2.52051 -1.98774
Н	4.98215 1.58687 -2.39484
Н	6.49996 -0.28782 -3.04456
Ν	2.95068 1.17637 -0.35696
Ν	2.77062 -0.84974 0.58637
С	0.1494 4.49454 1.0224
С	-0.14531 6.65691 0.51435
С	0.90308 6.12482 -0.29603
С	-0.56275 7.99473 0.41458
С	1.55898 6.9298 -1.24795
С	0.10319 8.78849 -0.53022
Η	-1.35943 8.39325 1.03331
С	1.14481 8.26356 -1.34959
Η	2.34441 6.53194 -1.88026
Η	-0.18284 9.82974 -0.64512
Η	1.62568 8.9167 -2.07157
Ν	1.06409 4.77768 0.04793
Ν	-0.58609 5.60033 1.32323
Ν	1.01552 2.33101 0.98106
Ru	2.18899 3.10297 -0.48474
Н	2.44369 -1.60879 1.17529
Η	-1.32901 5.65516 2.01183
С	5.88022 5.02906 0.60891
С	4.7567 4.47083 -0.02031
Ν	3.78276 3.85999 0.72864
С	3.93191 3.80798 2.07195
С	5.0716 4.37438 2.67886
Ν	6.04197 4.98344 1.95633
Η	6.64929 5.5131 0.01884
Η	3.16427 3.32567 2.66191
Η	5.19571 4.33343 3.75456
0	0.95021 2.66986 -1.83589
0	1.75383 2.8649 -3.35313
Η	2.58319 3.439 -3.07326
С	4.58314 4.52168 -1.52006
0	5.41791 5.06145 -2.27085
0	3.44834 3.92713 -1.93243

Cartesian coordinates of computed structure for complex 2 of Ru(IV)-OOH E(UB3LYP) = -1859.5682 Hartree ZPE (kcal mol⁻¹) = 315.647254 C 0.3393 0.39544 -0.20179

С	1.55623	0.87971	0.30868
С	0.6312	3.0738	0.56182
С	-0.60619	2.64129	0.05503
С	-0.73957	1.29243	-0.32823
Н	0.22533	-0.64215	-0.49396
Н	-1.44244	3.32438	-0.04044
Н	-1.6859	0.93886	-0.72268
С	2.8057	0.16109	0.54787
C	4.45502	-1.34708	0.73068
Ċ	5.28348	-2.48066	0.72748
C	4.92119	-0.08181	1.18591
Č	6.60243	-2.33634	1.18662
Č	6.24541	0.06793	1.63952
Č	7.08675	-1.05395	1.64271
H	6.60828	1.03497	1.97145
N	3.87121	0.83592	1.06407
N	3 12362	-1 15295	0 33859
C	1 01811	4 40084	1 03373
Č	1.12267	6.56089	1.62624
Č	2.38516	5.94646	1.85963
C	0.90194	7.92013	1.90061
C	3.4606	6.69989	2.36706
C	1.97087	8.67249	2.41341
Ċ	3.2583	8.05933	2.64506
H	4.42866	6.23812	2.53021
Ν	2.28756	4.60073	1.48648
Ν	0.29179	5.5576	1.10938
Ν	1.67117	2.19328	0.66961
Ru	3.4507	2.86605	1.34765
С	4.34133	2.94267	4.14155
С	2.18457	2.0271	4.09666
С	4.35904	2.80467	5.53897
С	2.22776	1.89833	5.49792
Ν	3.3075	2.28444	6.22269
Н	5.22972	3.1173	6.10282
Η	1.38489	1.48151	6.03703
Ν	3.2401	2.5486	3.42674
Η	2.5073	-1.8658	-0.03404
Η	-0.67838	5.67244	0.84042
С	5.51141	3.51949	3.37357
0	6.55039	3.89892	3.97255
0	5.31544	3.57118	2.05971
Η	1.3174	1.71632	3.52939
Η	-0.06389	8.38123	1.72014
Н	4.91984	-3.44218	0.3793
0	3.95204	3.28446	-0.50669
0	5.31457 3.86868 -0.63412		
---	--------------------------		
Н	5.65569 3.90863 0.30955		
С	1.76876 10.14321 2.72084		
Н	0.74591 10.45905 2.49325		
Н	1.96267 10.36071 3.77985		
Н	2.45512 10.77189 2.13766		
С	4.40407 8.89098 3.18902		
Н	4.6445 9.72881 2.52059		
Н	4.15593 9.32626 4.16646		
Н	5.30799 8.28573 3.30919		
С	7.52432 -3.53985 1.19773		
Н	7.88818 -3.75564 2.21136		
Н	7.01414 -4.43344 0.82488		
Н	8.41122 -3.37036 0.57236		
С	8.51755 -0.91606 2.12635		
Н	8.71736 -1.57532 2.98188		
Н	9.23477 -1.18972 1.34076		
Н	8.73202 0.11168 2.43548		

Cartesian coordinates of computed structure for complex 3 of Ru(IV)-OOH E(UB3LYP) = -1900.7868 Hartree ZPE (kcal mol⁻¹) = 235.26955725С 0.33903 0.39503 -0.19138 С 1.55524 0.87959 0.31907 С 0.63179 3.07178 0.57112 С -0.60547 2.64052 0.06443 С -0.74012 1.29166 -0.31807 0.22451 -0.64227 -0.48423 Η Η -1.44136 3.3239 -0.03186 Η -1.68639 0.93826 -0.71234 С 2.8072 0.16043 0.55518 С 4.45568 -1.34727 0.72038 С 5.27449 -2.4885 0.69929 С 4.92391 -0.07953 1.18256 С 6.57173 -2.27828 1.15952 С 6.24927 0.08351 1.63095 С 7.08094 -1.04119 1.61724 Η 6.61507 1.0472 1.96533 N 3.87035 0.83397 1.07066 N 3.1257 -1.153 0.33671 С 1.01999 4.40146 1.03981 С 1.12146 6.56368 1.61533 С 2.38776 5.94812 1.85648 С 0.88583 7.92431 1.87328 С 3.47158 6.69465 2.35883

С	1.98489	8.61649	2.37523
С	3.25763	8.05188	2.62122
Η	4.43931	6.23686	2.52679
Ν	2.28644	4.60084	1.49293
Ν	0.2933	5.55969	1.10583
Ν	1.67194	2.19236	0.68137
Ru	3.45004	2.86371	1.36449
С	4.33423	2.93545	4.15955
С	2.17518	2.02539	4.11004
С	4.34913	2.79673	5.55678
С	2.21569	1.89592	5.51149
Ν	3.29494	2.27885	6.23822
Н	5.21958	3.10687	6.12238
Η	1.37066	1.48107	6.04866
Ν	3.2332	2.54456	3.44215
Η	2.50866	-1.86471	-0.03787
Η	-0.67636	5.67344	0.83319
С	5.5072	3.51035	3.39493
0	6.54622	3.8863	3.99394
0	5.31229	3.56436	2.07946
Η	1.30792	1.71678	3.54179
0	3.96235	3.28627	-0.48597
0	5.32386	3.86055	-0.60912
Η	5.66455	3.90039	0.33563
Η	8.11199	-0.9819	1.94911
Η	4.05197	8.68159	3.00755
F	-0.30005	8.53128	1.65469
F	4.85762	-3.69809	0.26846
Η	1.86267	9.65776	2.58903
Η	7.23976	-3.1141	1.16565