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1. Experimental Section

1.1. Material Characterization 

The MgxNi1-xCo-OH synthesized is reflected by X-ray powder diffractometry 

(XRD), wherein Cu Kα radiation (λ = 0.15406 nm) 2θ ranged from 20 to 80. The surface 

morphology and microstructure of nanocrystals MgxNi1-xCo-OH and NiCo-OH are 

obtained by scanning electron microscopy (SEM; LEO1430VP, Germany) and 

transmission electron microscopy (TEM; FEI, Tecnai G2 F20 S-Twin, America).

1.2. Electrochemical Characterization 

 The electrochemical test of oxygen evolution reaction (OER) and hydrogen 

evolution reaction (HER) is performed at the CHI760e electrochemical workstation 

(CHI 760E, CH Instruments Inc., Shanghai, China). Using platinum wire, Ag/AgCl, 

and MgNiCo LDH/NF as the counter electrode, reference electrode, and working 

electrode, respectively. The reaction condition is at 1M KOH electrolyte 25℃. The 

overpotential is obtained by the formulation (1)(3) for OER and (1)(4) for HER. The 

LSV curves test for both HER and OER at the scan rate of 5mV/s. Hg/HgO makes the 

performance of the material better stable at the 5M KOH for HER and OER. So, we 

change to use carbon rod, Hg/HgO, and MgxNi1-xCo-OH as the counter electrode, 

reference electrode, and working electrode, at the industrial electrolysis conditions (5M 

KOH 65℃). The overpotentials obtained for HER and OER are calculated according 

to formulation (2)(4)(3). Tafel Slope shows the reaction kinetics and catalytic activity 

of all catalysts. Calculated by the following formulation (5).



Turnover frequency (TOF) quantitative the OER activity, calculated by the 

following formulation (6)(7), respectively.

1.3. Calculation formulae

The reversible hydrogen electrode (RHE) potential for the HER and OER at 1M 

KOH 25℃ are calculated based on the test LSV curves [1, 2]:

ERHE = EAg/AgCl + 0.197 + 0.059* PH          (1)

ERHE = EHg/HgO + 0.095 + 0.059* PH            (2)

The overpotential (η) for HER and OER are calculated according to the 

following formulations 1

ηOER= ERHE-1.23                                           (3)

ηHER=ERHE                                                                             (4)

The Tafel slope is obtained according to the following formulation 2, where η-

Overpotential (mV), b-Tafel Slope, i-Current density (mA cm-2).

η=a+blogi                                                      (5)

The computational formula for Turn over frequency (TOF) where j-current density 

(mA cm-2). A -surface area (1 m2) of NF with Mg0.75Ni0.25Co-OH, F -Faraday constant, 

and m-amounts of active sites in the catalysts 3.

                                                             (6)
𝑇𝑂𝐹=

𝑗 ∗ 𝐴
4 ∗ 𝐹 ∗ 𝑚

The mounts of active sites in the catalysts (m) are obtained by the following 

formulation, where n -the number of electrons transport (n=1), R-ideal gas constant, 

and T - absolute temperature, m is obtained by the following formulation.    



                             (7)
𝑠𝑙𝑜𝑝𝑒=

𝑛2 ∗ 𝐹2 ∗ 𝐴 ∗ 𝑚
4 ∗ 𝑅 ∗ 𝑇

Fig. S1. SEM images of (a, b, c) Mg0.25Ni0.75Co-OH and (d, e, f) Mg0.75Ni0.25Co-OH.

Fig. S2. TEM images of the Mg0.5Ni0.5Co-OH at high magnification(a) and low 

magnification
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Fig. S3. XRD images of Mg0.5Ni0.5Co-OH, Mg0.25Ni0.75Co-OH and Mg0.75Ni0.25Co-

OH

Fig. S4. FT-IR spectra of Mg0.5Ni0.5Co-OH and NiCo-OH



Fig. S5. (a) Survey XPS spectra of all samples. (b) XPS spectra of Mg1s.

Fig. S6. CV curves measured with different scan rates of 10, 30, 50, 70, and 90 mV/s: 

(a) NiCo-OH, (b) Mg0.5Ni0.5Co-OH, (c) Mg0.75Ni0.25Co-OH, (d) Mg0.25Ni0.75Co-OH.

Fig. S7. (h) LSV curves normalized by ECSA of NiCo-OH, Mg0.25Ni0.75Co-OH, 

Mg0.5Ni0.5Co-OH, and Mg0.75Ni0.25Co-OH for OER.



Fig. S8. (a) CV of Mg0.5Ni0.5Co-OH at different scan rates of 10, 20, 30, 40, and 50 

mV s-1 in 1 M KOH. (b) the relationship of the oxidation peak currents and scan rate.

Fig. S9. A digital photograph of the Hoffman apparatus is used for the measurement 

of the Faradaic efficiency. (a)  before test (b) after 320 min test at 12 mA cm-2.



Fig. S10. The TOF curve of Mg0.5Ni0.5Co-OH

Fig. S11. LSV curve of Mg0.5Ni0.5Co-OH at 5M KOH 65℃ for (a) HER and (b) OER.

Fig. S12. The i-t curve of Mg0.5Ni0.5Co-OH at 5M KOH 65℃ for HER and OER.



Fig. S13. Raman spectrum of Mg0.5Ni0.5Co-OH before and after stability test in 5M 
KOH 65℃.

Table S1 Atomic molar ratio of material feed and actual atomic molar ratio.

 

Theoretical atomic ratio Experimental atomic ratio 

Sample Element Feeding 
molar  

Ratio(mmol) 
Sample Elements Feeding 

molar  
Ratio(mmol) 

NiCo-OH Ni 0.33 NiCo-OH Ni 0.43 
Co 0.67 Co 0.57 

Mg0.25Ni0.75Co-OH Mg 0.08 Mg0.25Ni0.75Co-OH Mg 0.046 
Ni 0.26 Ni 0.353 
Co 0.66 Co 0.601 

Mg0.5Ni0.5Co-OH Mg 0.17 Mg0.5Ni0.5Co-OH Mg 0.05 
Ni 0.17 Ni 0.347 
Co 0.67 Co 0.604 

Mg0.75Ni0.25Co-OH Mg 0.25 Mg0.75Ni0.25Co-OH Mg 0.165 
Ni 0.08 Ni 0.252 
Co 0.67 Co 0.582 

Table S2 the impedance value for different samples of HER



Electrocatalysts Rs (ῼ)

NiCo-OH 5.53 Ω

Mg0.25Ni0.75Co-OH 4.872 Ω

Mg0.5Ni0.5Co-OH 3.337 Ω

Mg0.75Ni0.25Co-OH 3.684 Ω

Table S3 Performance of electrocatalysts for HER in 1M KOH

Catalysts Current 

density 

(mA cm-2)

Potential (mV)

(@10 mA cm-2)

references

Mg0.5Ni0.5Co-OH 10 110 This work

V-NiFe LDH/NF 10 120 [4]

NiFe LDH/(NiFe)Sx 10 157 [5]

LDH-Co3O4/NF 10 162 [6]

Cu@CoFe LDH 10 171 [7]

CoFe LDH-F 10 166 [8]

NiCo2S4@NiFe LDH 10 200 [9]

Co-N-C-800 10 224 [10]

CoCo3@NiFe LDH 10 171 [11]

Table S4 the impedance value for different samples for OER

Electrocatalysts Rs (ῼ)

NiCo-OH 1.672

Mg0.25Ni0.75Co-OH 1.57

Mg0.5Ni0.5Co-OH 1.304

Mg0.75Ni0.25Co-OH 1.403

Table S5 Performance of electrocatalysts for OER



catalysts Current density 

(mA cm-2)

Overpotential 

(mV)

(@10 mA cm-2)

references

Mg0.5Ni0.5Co-OH 10 277 This work

HCo3O4-NC@CoNi LDH 10 330 [12]

Co-B 10 320 [13]

(Co, Ni)Se2@NiFe LDH 10 277 [14]

NiFe LDH@Co, N-CNF 10 312 [15]

Co-NiMn LDH 10 310 [16]

Co-LDH@Ti3C2TX 10 340 [17]

Fe-doped Co4S3/Co9S8 10 354 [18]

NiCo2O4-MCNTs 10 350 [19]

Table S6 Comparison of overpotentials of selected electrocatalysts to deliver 10 mA 

cm-2 for water splitting in 1.0 M KOH.

Catalysts
Current density 

(mA cm-2)
Potential (V) References

Mg0.5Ni0.5Co-OH 10 1.617 This work

NF@G-5@Ni3S2 10 1.62 [20]

Ni0.85Se/RGO 10 1.64 [21]

Ni-Mo-S@CC (1:3) 10 1.66 [22]

Ni(II, III)Zn-LDH/NF-nm 10 1.68 [23]

Co1.4Ni0.6O2 10 1.75 [24]

NCP@WPCA-0.5 10 1.76 [25]

Ni2P/rGO/NF 10 1.676 [26]
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