

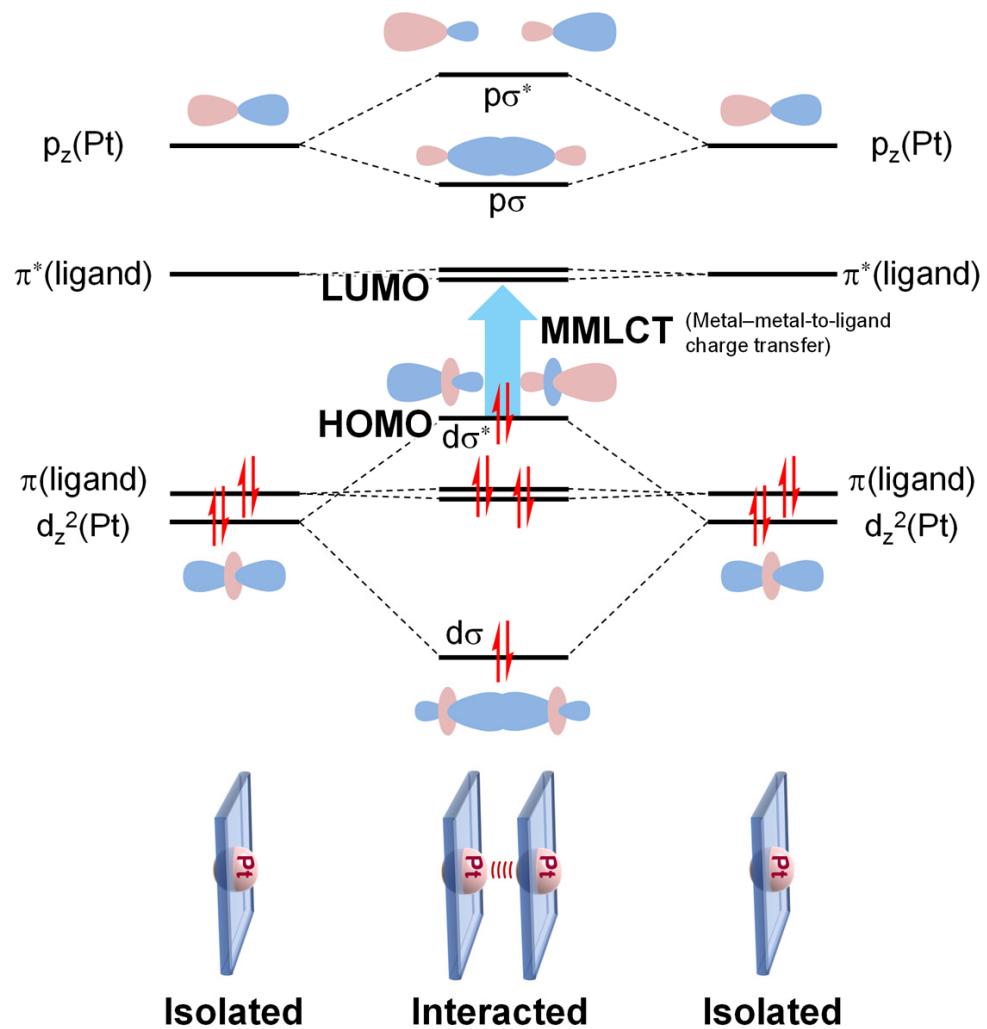
**Supporting Information for
Elastic and bright assembly-induced luminescent crystal of
platinum(II) complexes with near-unity emission quantum yield**

Yusuke Makino,^a Masaki Yoshida,^{*ab} Shotaro Hayashi,^c Toshiyuki Sasaki,^d Satoshi Takamizawa,^d Atsushi Kobayashi ^a and Masako Kato^{*ab}

^a Department of Chemistry, Faculty of Science, Hokkaido University
North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.

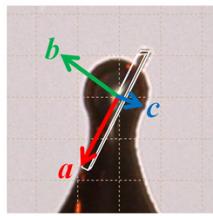
^b Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University
1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.

^c School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology
185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan.

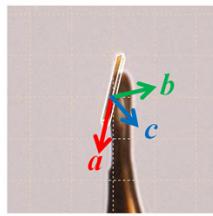

^d Department of Materials System Science, Yokohama City University
22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.

E-mail: masaki.yoshida@kwansei.ac.jp, katom@kwansei.ac.jp

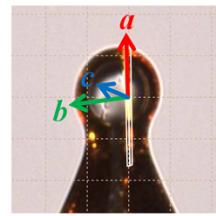
Table of Contents

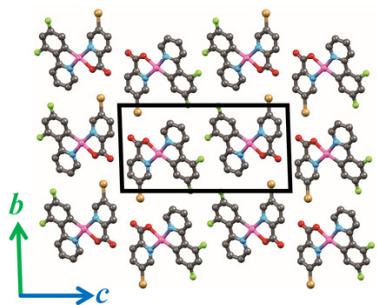

Scheme S1	Schematic MO energy level diagram for Pt(II) complexes with the Pt···Pt interaction.
Figs. S1-2	Packing structures of 1 , 2 , and co-crystal 1·2 .
Figs. S3-4	Energy frameworks and interaction energies of 1 and co-crystal 1·2 .
Fig. S5	Emission spectra of 1 , 2 , and co-crystal 1·2 at 298 K and 77 K.
Fig. S6	UV-vis diffuse-reflectance and excitation spectra of 1 , 2 , and co-crystal 1·2 .
Fig. S7	Emission decays of 1 , 2 , and co-crystal 1·2 .
Fig. S8	Kohn-Sham orbitals at the frontier region and NTOs of the dimeric unit of co-crystal 1·2 .
Figs. S9-10	Spatially resolved microscopic photoluminescence spectra and luminescence mappings.
Fig. S11	Powder X-ray diffraction pattern of co-crystal 1·2 .
Fig. S12	¹ H NMR spectra of complexes.
Table S1	Elastic moduli and related parameters of 1 and co-crystal 1·2 .
Table S2	Selected interatomic distances and angles.
Table S3	Crystal parameters and refinement data.
Table S4	Computed vertical excitations of the dimeric unit of co-crystal 1·2 .

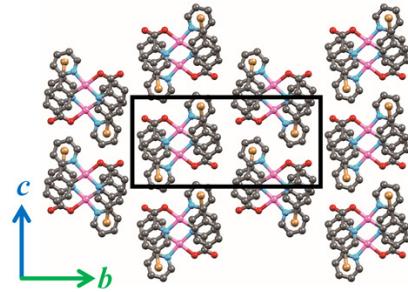
References

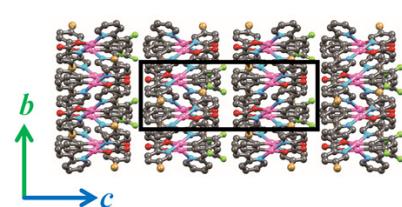


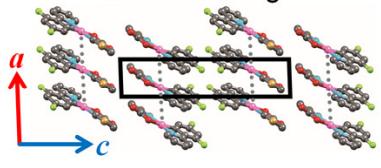
Scheme S1 Schematic MO energy level diagram for Pt(II) complexes with appropriate aromatic ligands showing effective Pt···Pt interaction by stacking. The blue arrow indicates the metal–metal-to-ligand charge transfer (MMLCT) transition.

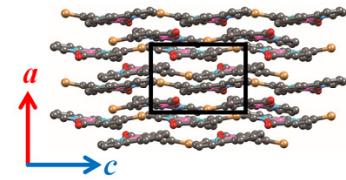

(a) Crystal 1

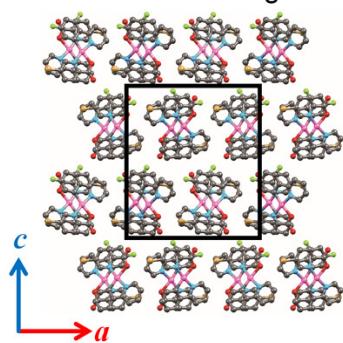

(b) Crystal 2

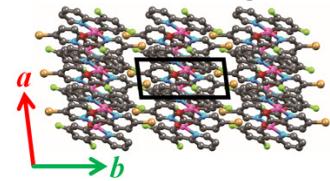

(c) Co-crystal 1·2

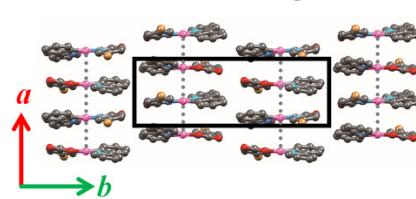

a-axis viewing

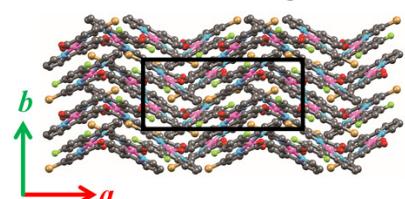

a-axis viewing

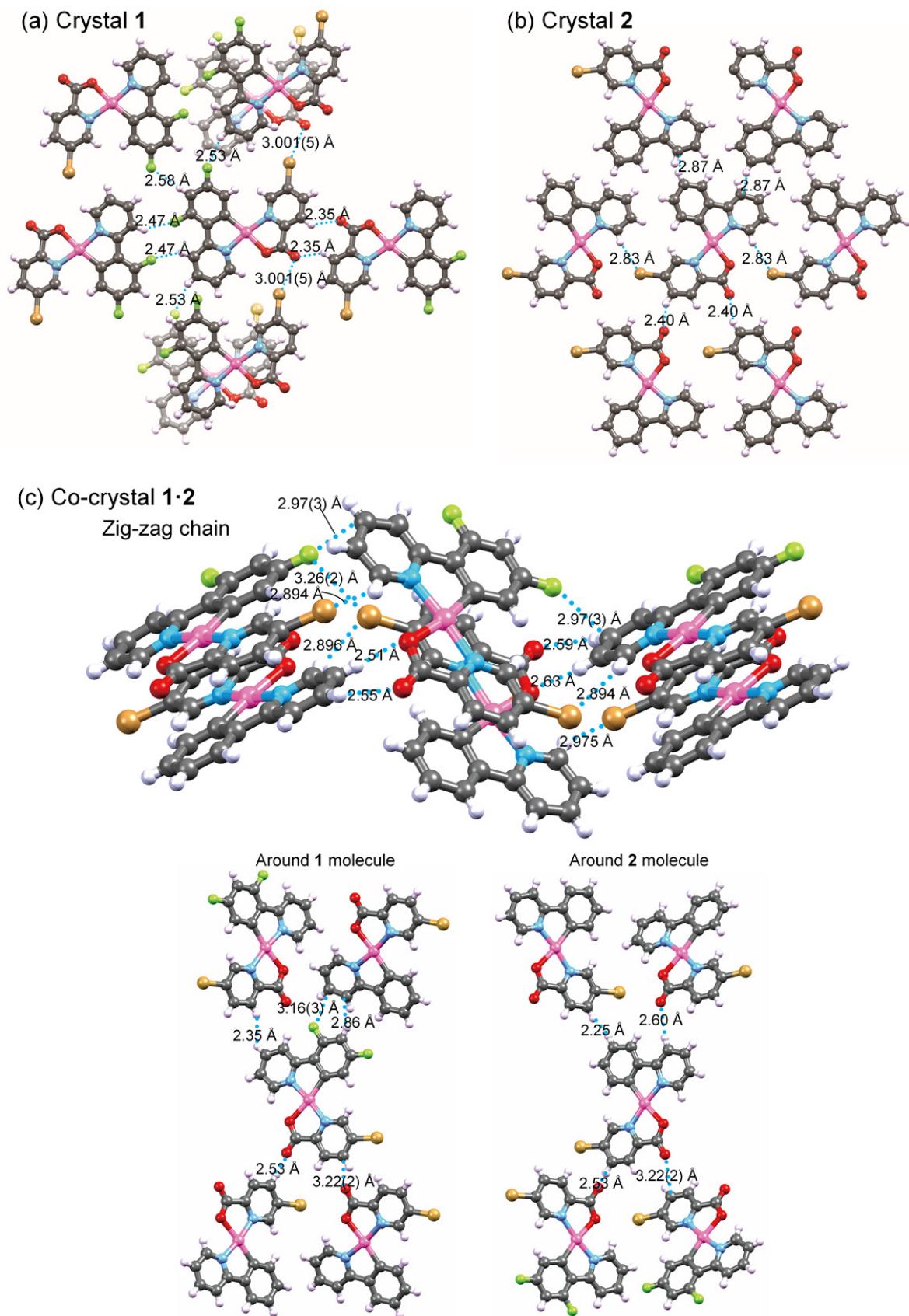

a-axis viewing

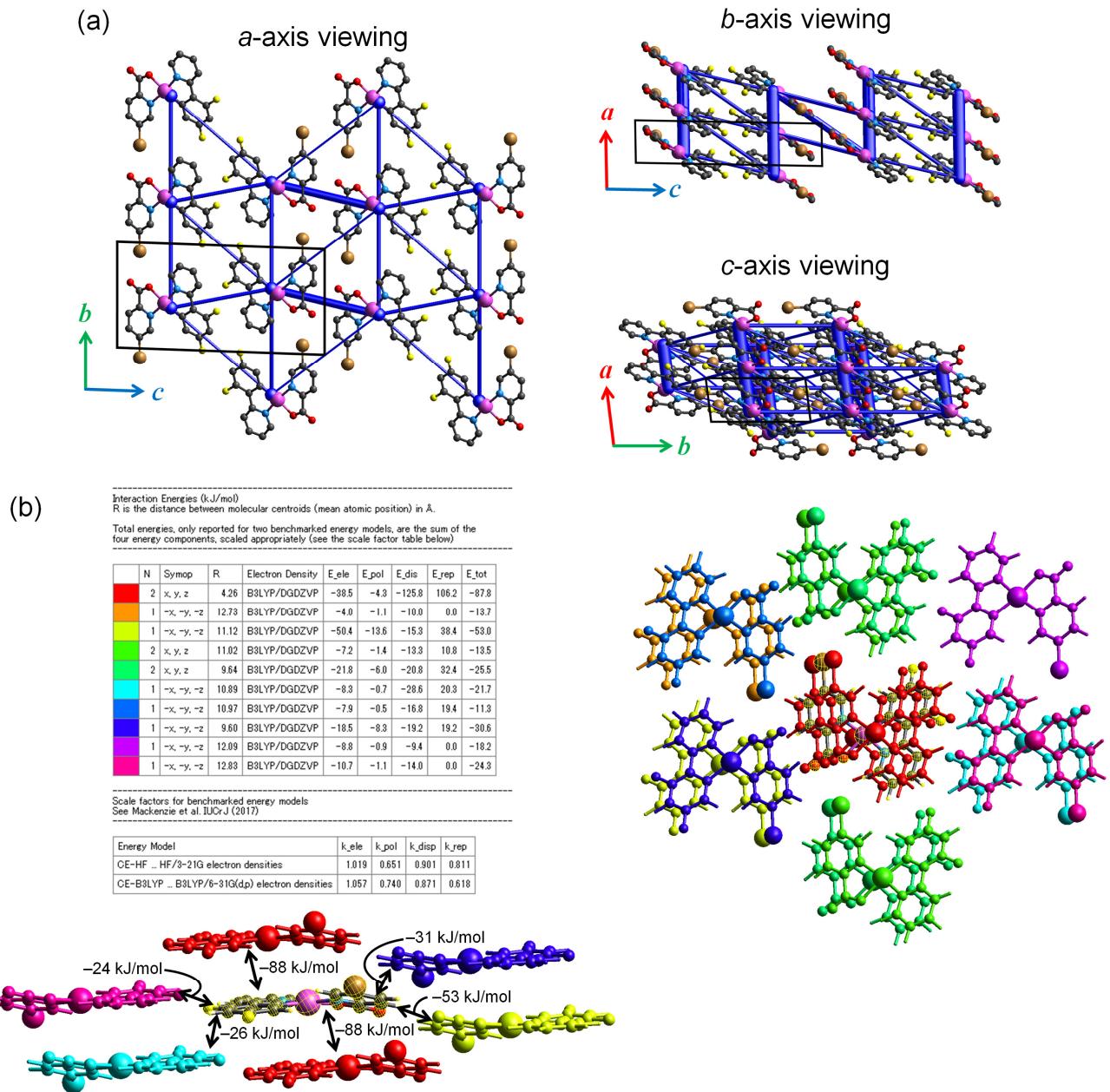

b-axis viewing

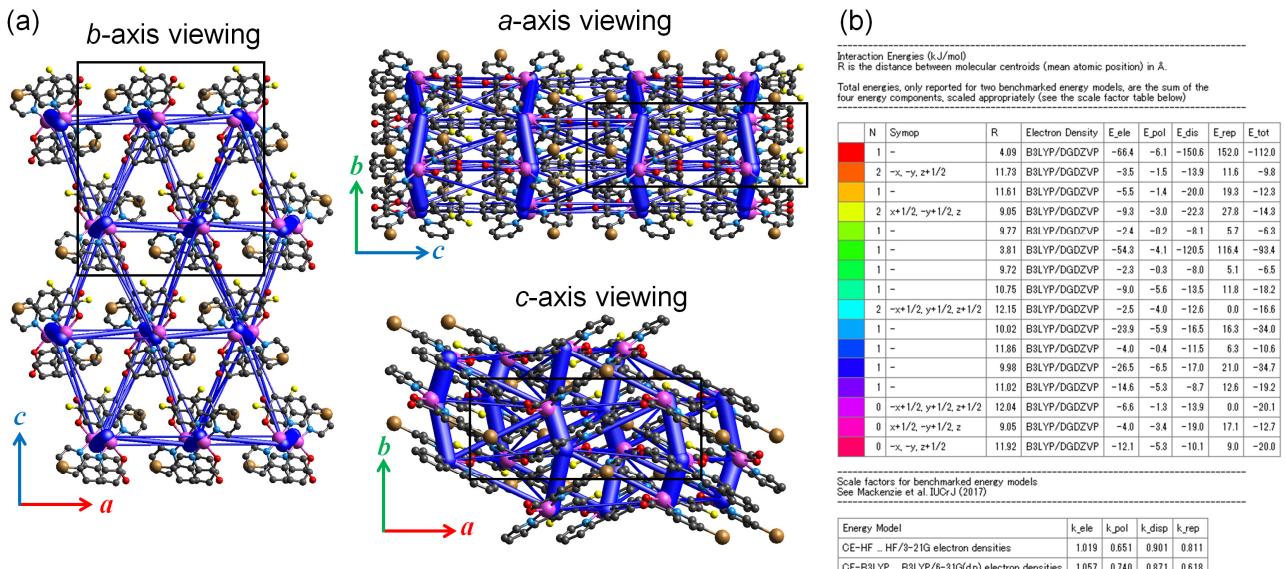

b-axis viewing

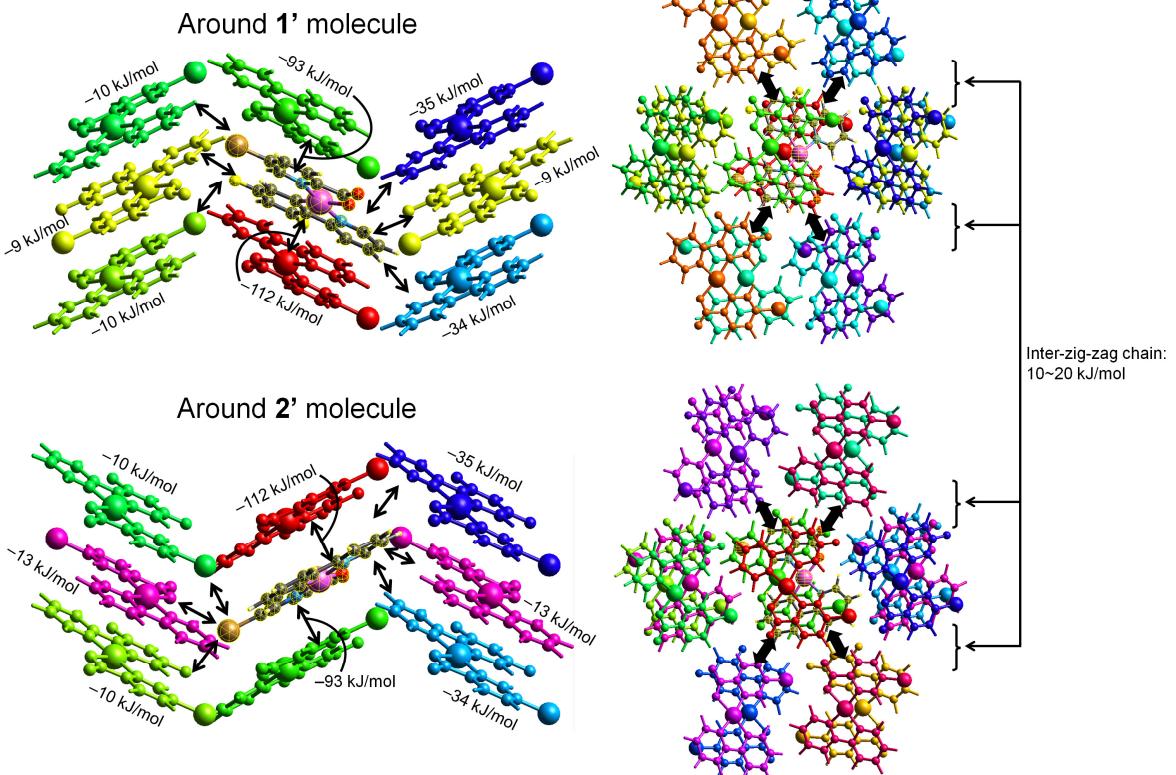

b-axis viewing

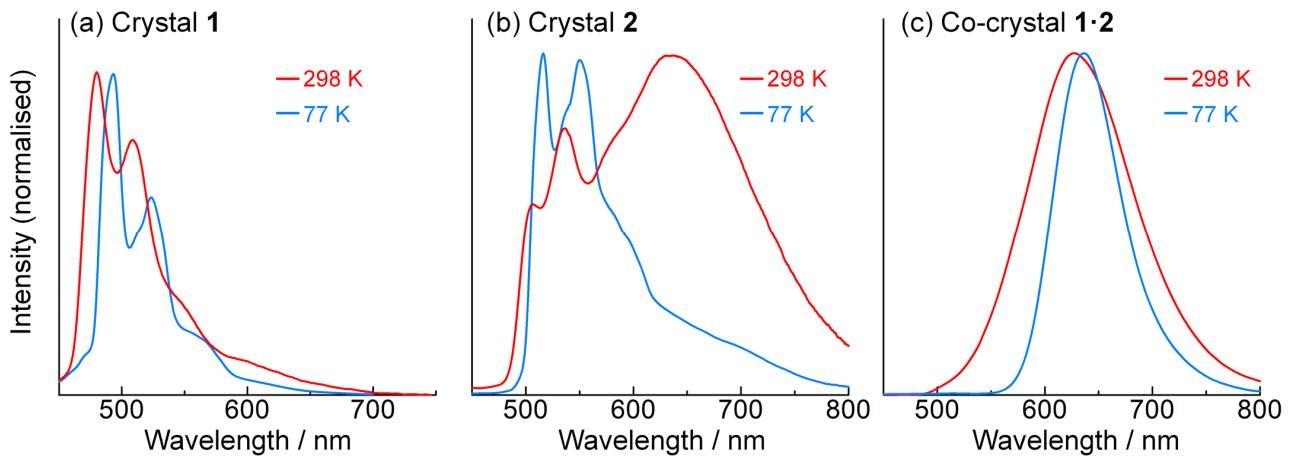

c-axis viewing


c-axis viewing


c-axis viewing


Fig. S1 Crystal photos and packing structures of crystals (a) 1, (b) 2, and (c) co-crystal 1·2. Grey dotted lines in (a) and (b) indicate the Pt···Pt stacking axes.


Fig. S2 Intermolecular hydrogen-bonds, halogen interactions, and halogen- π interactions in (a) crystals **1**, (b) **2**, and (c) co-crystal **1·2**.


Fig. S3 (a) Energy frameworks of crystal **1'** in total interaction strengths. (b) The interaction energies of various molecular dimers estimated using the CE-B3LYP method. The total energy (E_tot), and electrostatic (E_ele), polarisation (E_pol), dispersion (E_dis), and exchange-repulsion (E_rep) components are listed in the table in the figure.

(b) (continued)

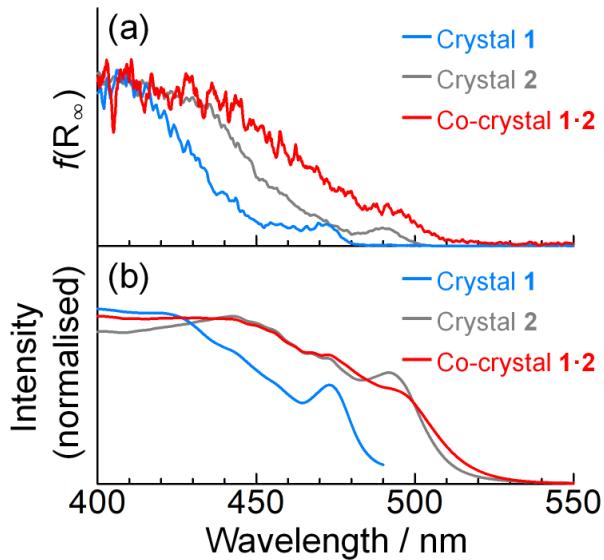

Fig. S4 (a) Energy frameworks of co-crystal **1'·2'** in total interaction strengths. (b) The interaction energies of various molecular dimers estimated using the CE-B3LYP method. The total energy (E_{tot}), and electrostatic (E_{ele}), polarisation (E_{pol}), dispersion (E_{dis}), and exchange-repulsion (E_{rep}) components are listed in the table in the figure.

Fig. S5 Emission spectra of crystals (a) **1**, (b) **2**, and (c) co-crystal **1·2** ($\lambda_{\text{ex}} = 350$ nm) at 298 K (red line) and 77 K (blue line).

In the case of **2**, only the structured emission band assignable to the ${}^3\pi\pi^*$ emission was observed at 77 K, where the broad emission band at around 600 nm disappeared. Therefore this lower-energy emission band of **2** at 298 K can be attributed to the excimer-derived emission due to the excited state structural deformation. The excitation spectrum of **2** at 298 K (Fig. S6(b)) and the emission decay profile of **2** (Fig. S7(b)) also supported this assignment.

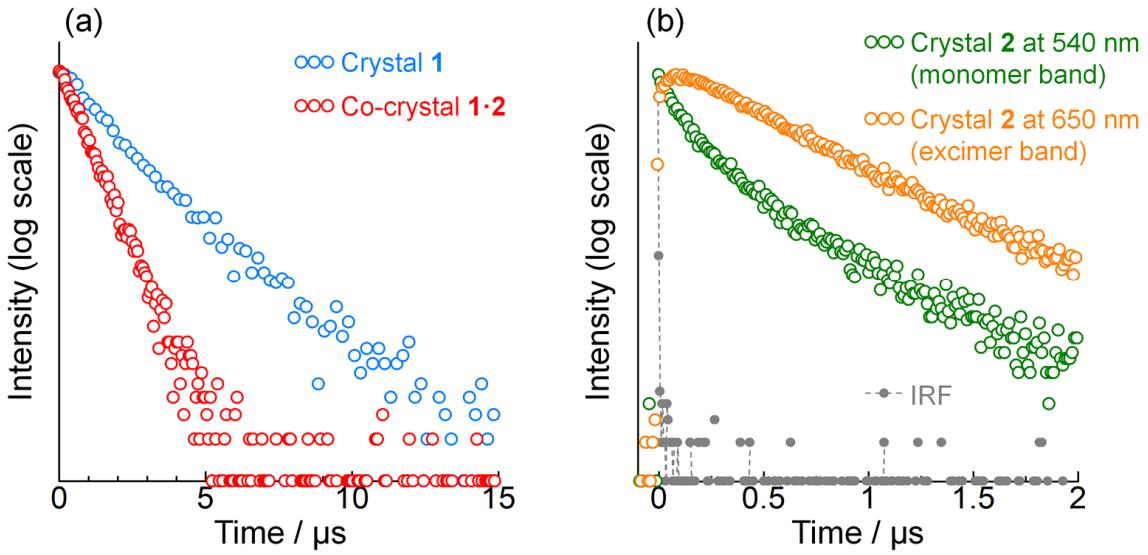
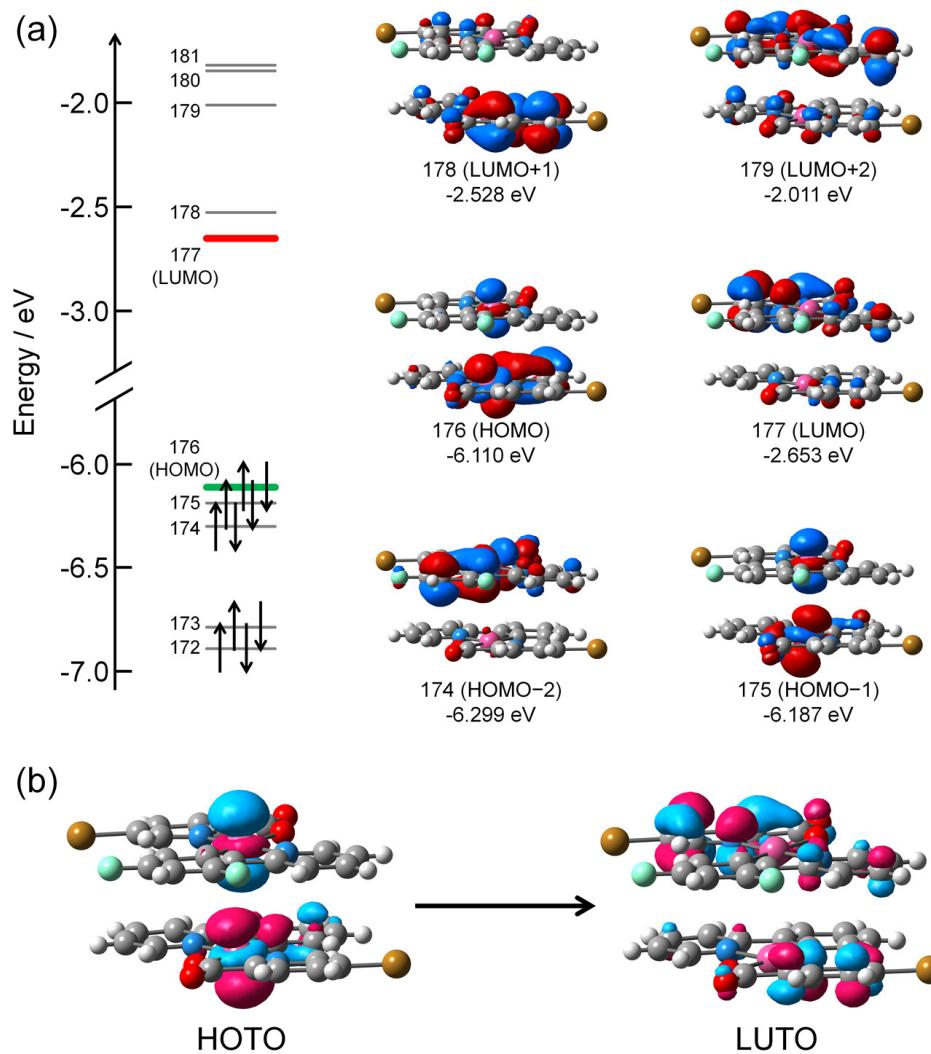

For co-crystal **1·2**, the emission band was only slightly red-shifted at 77 K (628 \rightarrow 637 nm). The ${}^3\text{MMLCT}$ emission of Pt(II) complexes is known to red-shift significantly at low temperatures depending on the delocalisation of the excited state,^{S1} but in the present co-crystal **1·2**, the metallophilic interaction is only effective between two molecules, so no change in the delocalisation should have occurred. Thus, the shift in luminescence is considered to be small even at 77 K.

Fig. S6 (a) UV-vis diffuse-reflectance and (b) excitation spectra of crystals **1** (blue line), **2** (grey line), and co-crystal **1·2** (red line) at 298 K. The detection wavelengths for the excitation spectra were 480 nm (for **1**), 630 nm (for **2**; detected by the excimer-derived emission band), and 628 nm (for **1·2**).


For **1** and **2**, the sharp absorption/excitation bands originating from the spin-forbidden ${}^3\pi\pi^*$ transition were observed at the lowest energy side in both diffuse-reflectance and excitation spectra. Importantly, even though the excitation spectrum for crystal **2** is detected in the lower energy side of the emission band (630 nm), the spin-forbidden ${}^3\pi\pi^*$ absorption was observed in the excitation spectrum. This indicated the negligible Pt···Pt interaction between the molecules of complex **2** in the ground state, and thus the lower energy emission band should be attributed to the structural deformation during the excitation.

In contrast to **1** and **2**, the spectra of **1·2** have a new shoulder on the lower energy side, attributed to the ${}^3\text{MMLCT}$ transition originating from the Pt···Pt interaction. This assignment was further supported by the TDDFT calculation (Fig. S8(b)).

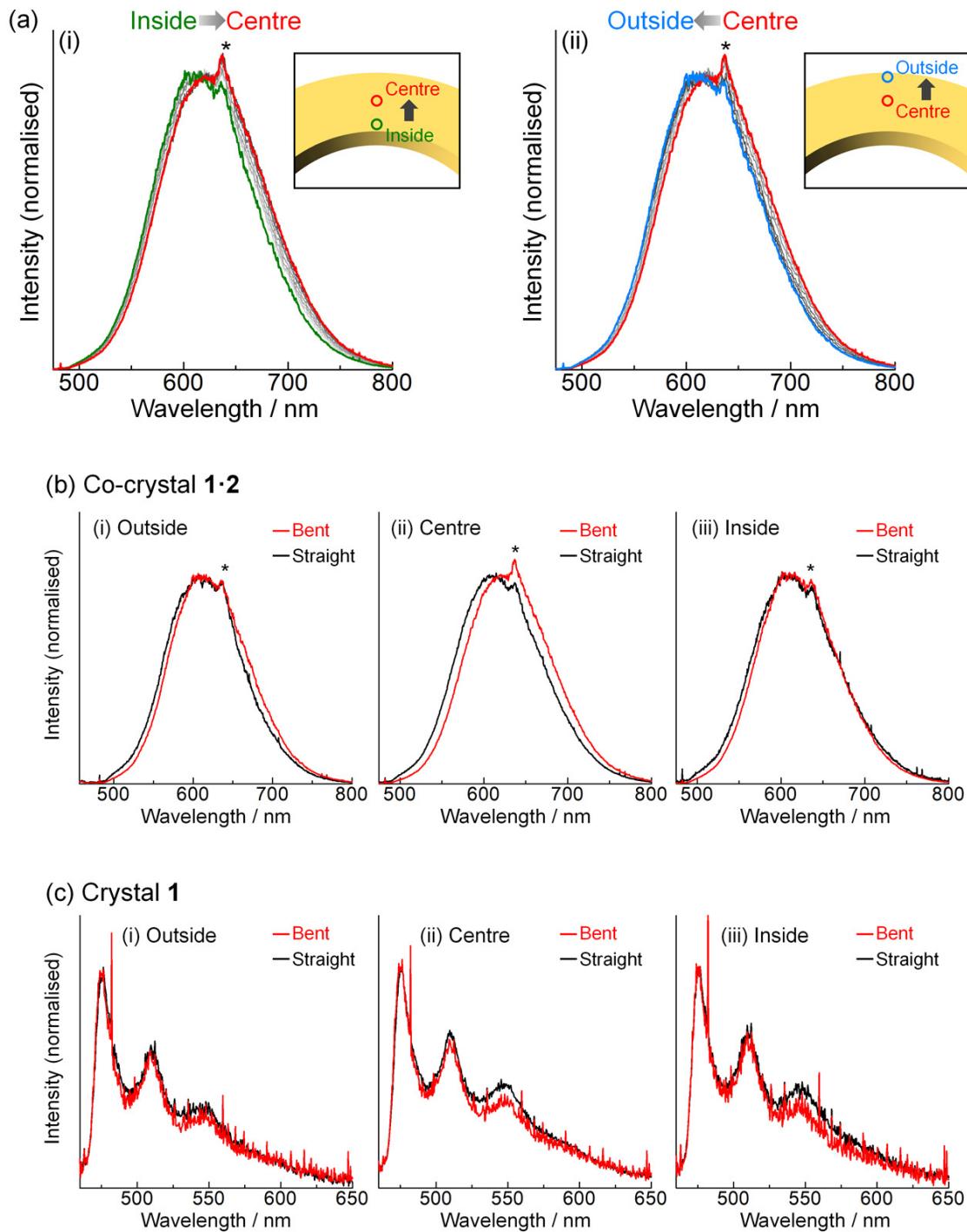


Fig. S7 Emission decays of (a) crystal 1 (blue) and co-crystal 1·2 (red), and (b) crystal 2 detected at 540 nm (green) and 650 nm (orange) at 298 K ($\lambda_{\text{ex}} = 340$ nm). The grey dashed line in (b) shows the instrument response function (IRF).

The emission decay of co-crystal 1·2 was analysed with single component decay ($\tau = 828$ ns), whereas that of 1 was analysed with two components of similar values ($\tau_1 = 1.54$ μs ($A_1 = 0.83$), $\tau_2 = 3.42$ μs ($A_2 = 0.17$), $\tau_{\text{av}} = 2.13$ μs; A_i are the pre-exponential factors for τ_i). The emission decay of 2 at 540 nm (assignable to the monomer emission band) was also analysed with two components ($\tau_1 = 113$ ns ($A_1 = 0.66$), $\tau_2 = 413$ ns ($A_2 = 0.34$), $\tau_{\text{av}} = 310$ ns). On the other hand, the emission decay profile of 2 at 650 nm (longer-wavelength emission band) clearly showed the fast rise ($\tau_{1(\text{rise})} = 54.6$ ns ($A_{1(\text{rise})} = -1.53$)) prior to the single component decay ($\tau_{2(\text{decay})} = 471$ ns ($A_{2(\text{decay})} = 2.53$))). Thus, we have concluded that the longer-wavelength emission band of 2 should be assignable to the excimer emission band.

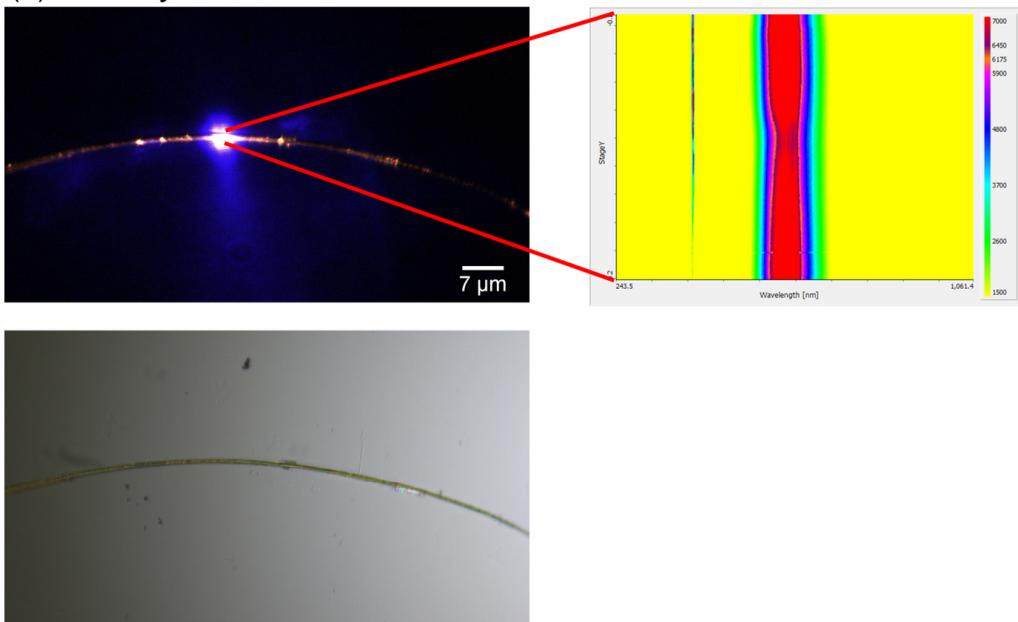


Fig. S8 (a) Kohn-Sham orbitals at the frontier region of the dimeric unit of co-crystal **1·2** (isovalue = 0.035). HOMO and HOMO-1 are mainly localised on the $d\sigma^*$ orbital between two Pt atoms (besides, HOMO is also slightly localised on the ligands), while LUMO to LUMO+2 are delocalised on the π^* orbitals of the ligands. (b) Natural transition orbitals (NTOs) of the dimeric unit of co-crystal **1·2** for the 1st vertical excitation ($\lambda = 475.75$ nm, $f = 0.0131$). The highest occupied transition orbital (HOTO) and the lowest unoccupied transition orbital (LUTO) indicate the occupied “hole” and the unoccupied “electron”, respectively. This result suggests that the lowest excited state of **1·2** could be assignable to the $d\sigma^* \rightarrow \pi^*$ transition, i.e., MMLCT transition.

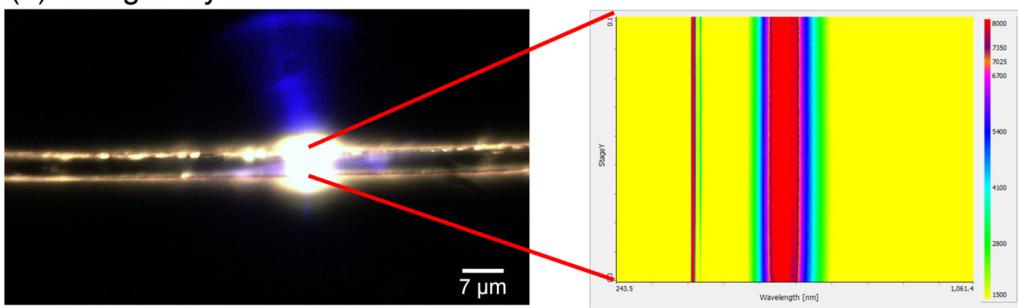
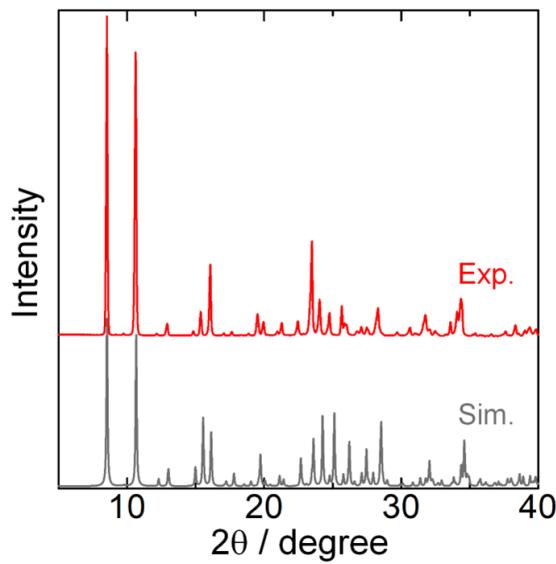


Fig. S9 Spatially resolved microscopic photoluminescence (μ PL) spectra ($\lambda_{\text{ex}} = 405 \text{ nm}$; ca. $500 \times 500 \text{ nm}$ for each measurement area) for (a,b) co-crystal **1·2** ($\varepsilon_a = 0.8\%$) and (c) crystal **1** ($\varepsilon_a = 2.3\%$). The peak indicated with an asterisk (*) is an artifact from the spectrometer. (a) The emission spectra for the bent co-crystal **1·2** showed (i) a gradual red-shift from the inside to the centre of the bent crystal, and (ii) a gradual blue-shift from the centre to the outside. (b,c) Emission spectra at the (i) outside, (ii) centre, and (iii) inside positions of the bent (red line) and straight (black line) crystals of the (b) co-crystal **1·2** and the (c) crystal **1**. A shift of the emission maximum due to bending was observed only in the central part of co-crystal **1·2**.


(a) Bent crystal

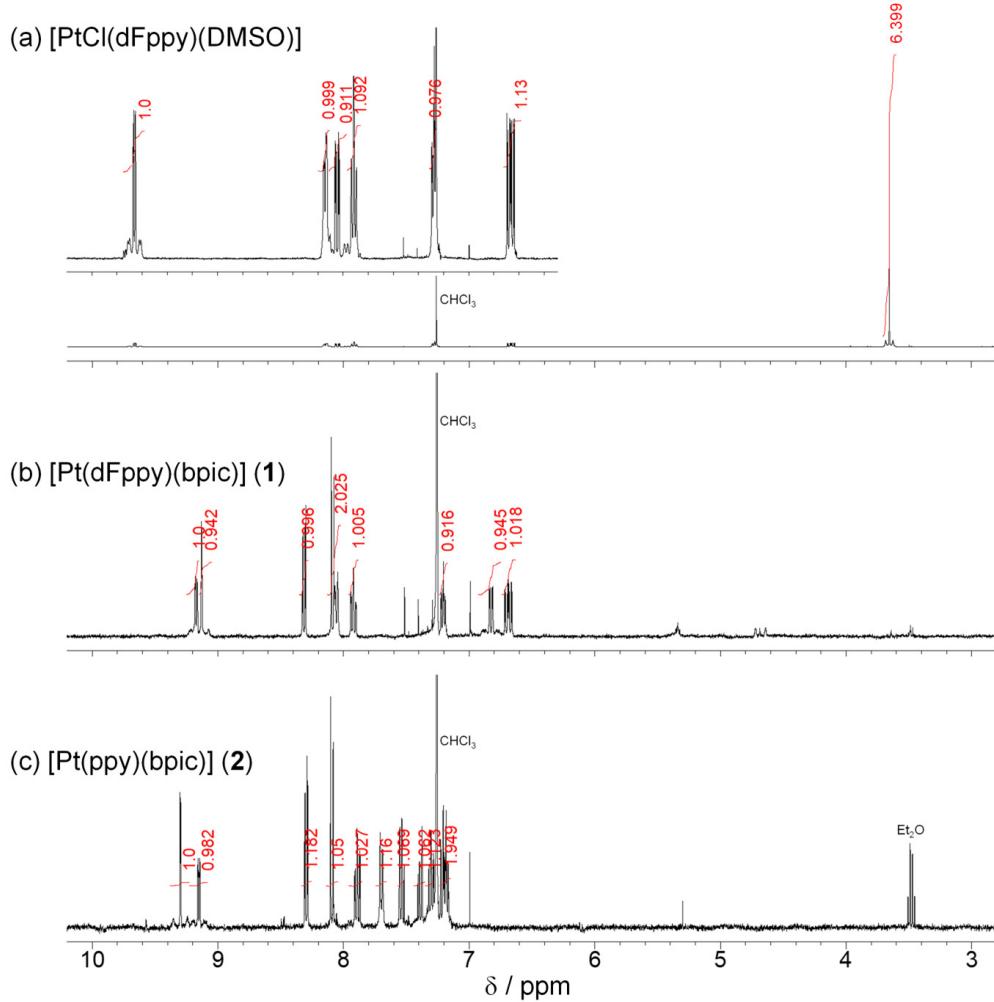
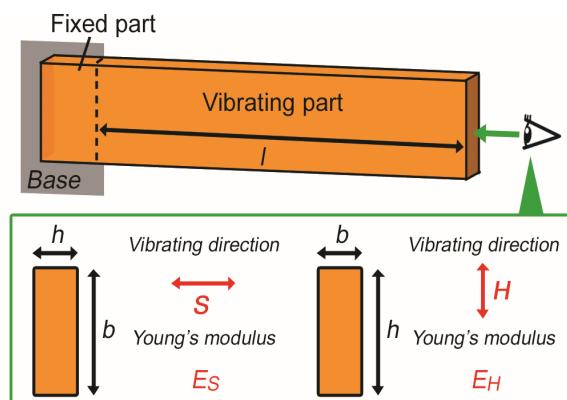

(b) Straight crystal

Fig. S10 Spatially resolved photoluminescence mappings for (a) bent ($\varepsilon_a = 0.4\%$) and straight crystals of co-crystal **1·2**.

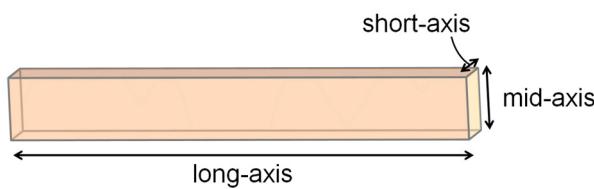
Fig. S11 Powder X-ray diffraction (PXRD) pattern of the polycrystalline sample of co-crystal **1·2** (red line). Grey line indicates the simulated pattern based on the crystal structure of **1·2**. Since the experimental PXRD pattern was almost identical to that of the simulated one, the obtained bulk sample of **1·2** should have the same structure as that obtained from the single crystal X-ray structural analysis (Fig. 1(c)).

Fig. S12 ^1H NMR spectra of present complexes (400 MHz, CDCl_3).


The elastic modulus E (Pa) was calculated on a formula (1).^{S2}

$$E = \left(\frac{2f_n \pi l^2}{\lambda_n^2} \right)^2 \frac{\rho A}{I} \quad (1)$$

where f is resonance frequency (Hz), l is length of a vibrating part of a crystal specimen (m), λ_n are 1.875 (n=1) and 4.694 (n=2), ρ is density (kg m⁻³), A is cross-sectional area (m²), and I is sectional moment of inertia (m⁴). Sectional moment of inertia for a specimen with a rectangular section is calculated on the following equation (2):


$$I = \frac{bh^3}{12} \quad (2)$$

where b and h are length of a rectangular section (m) perpendicular and parallel to vibrating direction, respectively.

Table S1 Elastic moduli (Young's moduli) and related parameters of **1** and co-crystal **1·2**.

	Vibrating direction	Crystal size / m ³	ρ / kg m ⁻³	f / Hz	E / GPa
1	S (short-axis)	$(778 \times 10^{-6}) \times (19 \times 10^{-6})$	2.577	834	0.21
	H (mid-axis)	$10^{-6} \times (11 \times 10^{-6})$		3657	1.3
Co-crystal 1·2	S (short-axis)	$(884 \times 10^{-6}) \times (13 \times 10^{-6})$	2.569	2317	1.9
	H (mid-axis)	$10^{-6} \times (13 \times 10^{-6})$		2679	2.6

Table S2 Selected interatomic distances (Å) and angles (deg) of **1**, **2**, and co-crystal **1·2**.

	1	2	1 in 1·2	2 in 1·2 ^[a]
Distances / Å				
Pt1-C1	2.001(7)	1.991(8)	1.98(2)	2.02(2)
Pt1-N1	2.001(6)	1.990(6)	1.995(15)	1.991(13)
Pt1-N2	2.032(6)	2.032(6)	2.043(15)	2.056(16)
Pt1-O1	2.073(5)	2.092(5)	2.082(13)	2.108(15)
Pt1-Pt1	4.2648(4)	4.5265(4)	3.5793(9) and 5.0181(9)	
Angles / deg				
C1-Pt1-N1	81.3(3)	80.9(3)	80.3(7)	82.1(7)
C1-Pt1-N2	105.8(3)	105.7(3)	107.5(7)	106.0(7)
C1-Pt1-O1	171.8(2)	173.1(3)	171.6(7)	173.6(7)
N1-Pt1-N2	172.3(2)	171.3(3)	172.2(6)	171.9(7)
N1-Pt1-O1	93.1(2)	94.1(2)	91.6(6)	91.8(6)
N2-Pt1-O1	80.2(2)	79.8(2)	80.7(6)	80.1(6)

[a] Pt2, C18, N3, N4, and O3 atoms in **2** in **1·2** correspond to Pt1, C1, N1, N2, and O1 atoms in **1** in **1·2**.

Supplementary Tables for X-ray crystallography and DFT calculation

Table S3 Crystal parameters and refinement data.

	1	2	Co-crystal 1·2
Formula	$\text{C}_{17}\text{H}_9\text{BrF}_2\text{N}_2\text{O}_2\text{Pt}$	$\text{C}_{17}\text{H}_{11}\text{BrN}_2\text{O}_2\text{Pt}$	$\text{C}_{17}\text{H}_9\text{BrF}_2\text{N}_2\text{O}_2\text{Pt}$ • $\text{C}_{17}\text{H}_{11}\text{BrN}_2\text{O}_2\text{Pt}$
Formula weight	586.26	550.28	1136.54
Crystal system	Triclinic	Orthorhombic	Orthorhombic
Space group	$P\bar{1}$ (#2)	$P2_12_12_1$ (#19)	$Pna2_1$ (#33)
<i>a</i> / Å	4.2648(2)	7.1788(1)	18.1002(6)
<i>b</i> / Å	9.6408(4)	20.8576(4)	7.8365(2)
<i>c</i> / Å	18.7288(7)	9.8686(2)	20.7171(5)
α / deg	91.577(3)	90	90
β / deg	91.691(4)	90	90
γ / deg	97.222(4)	90	90
<i>V</i> / Å ³	763.23(6)	1477.65(5)	2938.6(1)
<i>Z</i>	2	4	4
<i>D</i> _{calc} / g cm ⁻¹	2.551	2.474	2.569
<i>T</i> / K	150	150	150
Reflns collected	7903	5744	9769
Unique reflns	3077	2670	4618
GOF on <i>F</i> ²	1.087	1.063	1.067
<i>R</i> _{int}	0.0459	0.0250	0.0410
<i>R</i> ₁ (<i>I</i> > 2σ(<i>I</i>)) ^[a]	0.0370	0.0235	0.0455
w <i>R</i> ₂ ^[b]	0.1083	0.0628	0.1199
CCDC No.	2225408	2225409	2225410

[a] $R_1 = \sum |F_{\text{o}}| - |F_{\text{c}}| / \sum |F_{\text{o}}|$. [b] $wR_2 = [\sum w(F_{\text{o}}^2 - F_{\text{c}}^2) / \sum w(F_{\text{o}}^2)]^{1/2}$, $w = [\sigma_{\text{c}}^2(F_{\text{o}}^2) + (xP)^2 + yP]^{-1}$, $P = (F_{\text{o}}^2 - 2F_{\text{c}}^2)/3$.

Table S4 Computed vertical excitations of the dimeric unit of co-crystal **1·2**.

Excited State 1:	Singlet-A	2.6061 eV	475.75 nm	$f=0.0131$	$\langle S^{**2} \rangle = 0.000$
175 -> 177	0.38672				
176 -> 177	0.54813				
176 -> 178	0.16689				
Excited State 2:	Singlet-A	2.6635 eV	465.49 nm	$f=0.0122$	$\langle S^{**2} \rangle = 0.000$
175 -> 177	-0.39716				
175 -> 178	-0.33601				
176 -> 177	0.18426				
176 -> 178	0.42369				
Excited State 3:	Singlet-A	2.7055 eV	458.27 nm	$f=0.0008$	$\langle S^{**2} \rangle = 0.000$
174 -> 177	-0.12228				
175 -> 178	0.50949				
176 -> 177	-0.14504				
176 -> 178	0.42715				
Excited State 4:	Singlet-A	2.7422 eV	452.14 nm	$f=0.0059$	$\langle S^{**2} \rangle = 0.000$
174 -> 177	0.64817				
174 -> 178	-0.11005				
176 -> 177	-0.15358				
176 -> 178	0.15686				
Excited State 5:	Singlet-A	2.8288 eV	438.29 nm	$f=0.0010$	$\langle S^{**2} \rangle = 0.000$
174 -> 177	-0.16280				
175 -> 177	0.42046				
175 -> 178	-0.33278				
176 -> 177	-0.33552				
176 -> 178	0.25673				
Excited State 6:	Singlet-A	3.0425 eV	407.51 nm	$f=0.0029$	$\langle S^{**2} \rangle = 0.000$
174 -> 177	0.12638				
174 -> 178	0.68724				
Excited State 7:	Singlet-A	3.1941 eV	388.17 nm	$f=0.0097$	$\langle S^{**2} \rangle = 0.000$
175 -> 179	0.40179				

(Continued)

176 -> 179	0.51295
176 -> 181	-0.17998
<hr/>	
Excited State 8:	Singlet-A
175 -> 179	3.2650 eV 379.74 nm $f=0.0062$ $\langle S^{**2} \rangle=0.000$
175 -> 181	0.43103
176 -> 179	-0.18249
176 -> 180	-0.22792
176 -> 180	-0.32242
176 -> 181	0.31503
<hr/>	
Excited State 9:	Singlet-A
174 -> 179	3.3145 eV 374.07 nm $f=0.0014$ $\langle S^{**2} \rangle=0.000$
175 -> 179	0.17924
175 -> 180	0.11212
175 -> 180	0.41080
175 -> 181	-0.30934
176 -> 179	-0.16348
176 -> 180	0.31514
176 -> 181	-0.16839
<hr/>	
Excited State 10:	Singlet-A
173 -> 177	3.3437 eV 370.80 nm $f=0.0064$ $\langle S^{**2} \rangle=0.000$
174 -> 179	-0.18305
174 -> 180	0.53858
174 -> 180	-0.28303
175 -> 180	-0.20237
175 -> 181	0.16315

References.

S1 M. Nakagaki, S. Aono, M. Kato and S. Sakaki, *J. Phys. Chem. C*, 2020, **124**, 10453.

S2 (a) M. Horio and S. Onogi, *J. Appl. Phys.*, 1951, **22**, 977; (b) D. R. Bland and E. H. Lee, *J. Appl. Phys.*, 1955, **26**, 1497; (c) K. Hashimoto, M. Sakane, M. Ohnami and T. Yoshida, *J. Soc. Mater. Sci., Jpn.*, 1995, **44**, 1456; (d) T. Sasaki, S. Sakamoto, K. Nishizawa and S. Takamizawa, *Cryst. Growth Des.*, 2020, **20**, 3913.