Electronic Supplementary information for

Two Non-Centrosymmetric Mixed Alkali Metal and Alkaline Earth Metal Scandium Borate Nonlinear Optical Materials with Short Ultraviolet Cutoff Edges

Wenhao Liu,^{a,b,c} Ming-Hsien Lee,^d Ruixin Guo,^{a,b} and Jiyong Yao^{a,b,*}

a Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser

Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing

100190, P. R. China.

b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

d Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan.

*Corresponding author:

Jiyong

Yao;

jyao@mail.ipc.ac.cn

Figure S1. Refined powder XRD patterns of (a) $Rb_7SrSc_2B_{15}O_{30}$ and (b) $Rb_7CaSc_2B_{15}O_{30}$: the red line and blue line show calculated data and the difference, respectively; the black "×" and black "|" are the experimental data and Bragg positions of samples, respectively.

Figure S2. The heavy element analysis spectra and atomic percentages of (a) $Rb_7SrSc_2B_{15}O_{30}$ and (b) $Rb_7CaSc_2B_{15}O_{30}$.

Figure S3. The dihedral angles of B_5O_{10} groups in (a) $Rb_7SrSc_2B_{15}O_{30}$, (b) $Rb_7CaSc_2B_{15}O_{30}$, (c) $Rb_7SrY_2B_{15}O_{30}$, and (d) $Rb_7SrGd_2B_{15}O_{30}$.

Figure S4. DCS curves of (a) Rb₇SrSc₂B₁₅O₃₀ and (b) Rb₇CaSc₂B₁₅O₃₀.

Figure S5. XRD patterns before and after melting of (a) $Rb_7SrSc_2B_{15}O_{30}$ and (b) $Rb_7CaSc_2B_{15}O_{30}$.

No.	Compounds	Space group	a/Å	b/Å	c/Å	Cut- off/nm	SHG response	Phase matching	Equal structure type (No.)
1	$K_3ScB_6O_{12}$ ¹	R32	13.09	13.09	14.61	<274	1.3×KDP	NO	3
2	$K_{3}YB_{6}O_{12}^{2}$	R32	13.22	13.22	30.28	195	0.1×KDP	NA	4-6
3	$Rb_3YB_6O_{12}{}^3$	R32	13.38	13.38	15.20	<200	0.8×KDP	YES	1
4	$Rb_{3}NdB_{6}O_{12}{}^{4}$	R32	13.52	13.52	31.16	197	$4 \times \alpha$ -SiO ₂	NA	2, 5, 6
5	$Rb_3EuB_6O_{12}{}^5$	R32	13.47	13.47	30.84	NA	$16 \times \alpha$ -SiO ₂	NA	2, 4, 6
6	$Rb_3SmB_6O_{12}{}^6$	R32	13.48	13.48	30.93	NA	6.5×α-SiO₂	NA	2, 4, 5
7	$K_6LiCaSc_2B_{15}O_{30}{}^7$	R32	12.65	12.65	15.18	<200	0.4×KDP	YES	7-10
8	$K_6 Na Ca Sc_2 B_{15} O_{30}{}^7 \\$	R32	12.76	12.76	15.03	<200	0.4×KDP	YES	7-10
9	$K_6 Li_{0.7} Na_{0.3} Ca Sc_2 B_{15} O_{30}{}^7$	R32	12.69	12.69	15.11	190	0.4×KDP	YES	7-10
10	$K_6 Na Sr Sc_2 B_{15} O_{30}{}^1 \\$	R32	12.80	12.80	15.28	<248	0.7×KDP	YES	7-10
11	$K_{6}Li_{3}Sc_{2}B_{15}O_{30}{}^{8}$	R32	12.71	12.71	14.91	190	1×KDP	NO	
12	$K_7 Li_2 Y_2 B_{15} O_{30}{}^9$	R32	13.35	13.35	14.70	<244	0.8×KDP	YES	
13	$K_7 Ca Y_2 B_{15} O_{30}{}^{10}$	R32	13.21	13.21	14.94	<190	0.9×KDP	YES	13-26
14	$K_7 Sr Y_2 B_{15} O_{30}{}^{10}$	R32	13.11	13.11	15.31	<190	1.1×KDP	YES	13-26
15	$K_7BaY_2B_{15}O_{30}{}^{10}\\$	R32	12.98	12.98	15.71	<190	1.2×KDP	YES	13-26
16	$K_7 C dG d_2 B_{15} O_{30}{}^{11}$	R32	13.31	13.31	14.85	< 206	1.7×KDP	YES	13-26
17	$K_7 CdLu_2 B_{15} O_{30}{}^{11}$	R32	13.15	13.15	14.82	<192	1.9×KDP	YES	13-26
18	$K_7 CdSc_2 B_{15} O_{30}{}^{11}$	R32	13.11	13.11	14.62	<200	1.5×KDP	YES	13-26
19	$K_7 C d Y_2 B_{15} O_{30}{}^{11}$	R32	13.29	13.29	14.87	<200	1.6×KDP	YES	13-26
20	$K_7 P b Y_2 B_{15} O_{30}{}^{11} \\$	R32	13.10	13.10	15.32	NA	2.1×KDP	YES	13-26
21	$K_7 Ca Bi_2 B_{15} O_{30}{}^{12}$	R32	13.33	13.33	14.98	<282	0.6×KDP	YES	13-26
22	$K_7CaLa_2B_{15}O_{30}{}^{12}$	R32	13.45	13.45	15.23	NA	NA	NA	13-26
23	$Rb_7SrY_2B_{15}O_{30}{}^{13}$	R32	13.45	13.45	15.17	< 300	0.9×KDP	NO	13-26
24	$Rb_7SrGd_2B_{15}O_{30}{}^{14}$	R32	13.49	13.49	15.32	<225	0.5×KDP	NO	13-26
25	$Rb_7SrSc_2B_{15}O_{30}{}^{TW}$	R32	13.32	13.32	14.81	<200	0.76×KDP	NO	13-26
26	$Rb_7CaSc_2B_{15}O_{30}{}^{TW}$	R32	13.31	13.31	14.59	<200	0.88×KDP	NO	13-26
27	$K_{21}Yb_8B_{45}O_{90}{}^{15}$	R32	13.20	13.20	14.76	210	1×KDP	NO	

Table S1. Cell parameters and nonlinear optical properties of related borate compounds containing the equal fundamental building block B₅O₁₀ group.

"NA" means that the experimental data is not applicable, and "TW" means that the compound report in this work.

, 2 10 00			
Empirical formula	$Rb_7SrSc_2B_{15}O_{30}$	$Rb_7CaSc_2B_{15}O_{30}$	
Temperature/K	296.15	296.15	
Crystal system	trigonal	trigonal	
Space group	<i>R</i> 32	<i>R</i> 32	
a/Å	13.3256(10)	13.3114(10)	
$c/{ m \AA}$	14.8199(16)	14.5992(16)	
$lpha/^{\circ}$	90	90	
$eta /^{\circ}$	90	90	
$\gamma/^{\circ}$	120	120	
Volume/Å ³	2279.0(4)	2240.3(4)	
Ζ	3	3	
$\rho_{calc}g/cm^3$	3.099	3.047	
μ/mm^{-1}	13.439	12.077	
F (000)	1962.0	1908.0	
Radiation	Mo K α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)	
2Θ range for data collection/°	4.474 to 55.612	4.502 to 60.928	
Index ranges	-17 \leq h \leq 16, -16 \leq k \leq 15, -19 \leq	$-18 \le h \le 17, -18 \le k \le 18, -20 \le 1$	
muck ranges	$1 \le 17$	≤ 12	
Reflections collected	8878	9023	
Independent reflections	1132 [$R_{int} = 0.0973$, $R_{sigma} =$	1513 [$R_{int} = 0.0946$, $R_{sigma} =$	
independent reneetions	0.0996]	0.1184]	
Goodness-of-fit on F ²	1.062	1.025	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0611, wR_2 = 0.1575$	$R_1 = 0.0508, wR_2 = 0.0844$	
Final R indexes [all data]	$R_1 = 0.1084, wR_2 = 0.1772$	$R_1 = 0.1145, wR_2 = 0.0974$	
Largest diff. peak/hole / e Å-3	1.90/-2.84	0.86/-0.99	
Flack parameter	0.19(6)	0.036(15)	

Table S2. Crystallographic data and structure refinements for $Rb_7SrSc_2B_{15}O_{30}$ and $Rb_7CaSc_2B_{15}O_{30}$.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \text{ and } wR_{2} = [\Sigma w (F_{o}{}^{2} - F_{c}{}^{2})^{2} / \Sigma w F_{o}{}^{4}]^{1/2} \text{ for } F_{o}{}^{2} > 2\sigma (F_{o}{}^{2}).$

/ 4	2 15 50			
Atom	<i>x</i> ×10 ⁴	<i>y</i> ×10 ⁴	<i>z</i> ×10 ⁴	U _{eq} (Å ² ×10 ³)
Rb1	4547(2)	10000	5000	28.9(8)
Rb2	6667	8098(2)	3333	33.6(9)
Rb3	3333	6667	6667	34.2(14)
Sr	10000	10000	5000	54.4(19)
Sc	3333	6667	3888(3)	0.7(10)
B1	5951(19)	9284(19)	6667	30(9)
B2	7500(30)	8980(20)	6040(20)	52(9)
B3	5634(17)	8032(19)	5284(15)	26(6)
01	5281(12)	8618(12)	5870(8)	25(3)
O2	6038(12)	10406(12)	6638(11)	35(4)
O3	4917(12)	7299(13)	4672(10)	34(4)
O4	6742(10)	8235(12)	5403(12)	37(4)
05	8626(12)	9257(16)	6070(13)	49(4)

Table S3. Atomic coordinates and equivalent isotropic temperature factors for $Rb_7SrSc_2B_{15}O_{30}$.

/	2 15 50			
Atom	<i>x</i> ×10 ⁴	<i>y</i> ×10 ⁴	<i>z</i> ×10 ⁴	U _{eq} (Å ² ×10 ³)
Rb1	3333	1206.7(10)	6667	29.4(4)
Rb2	5242.8(11)	5242.8(11)	5000	33.1(4)
Rb3	6667	3333	8333	30.7(7)
Ca	3333	6667	6667	12.3(10)
Sc	6667	3333	5549(2)	18.2(7)
B1	4099(12)	3333	8333	17(4)
B2	5314(10)	4251(10)	6958(7)	19(3)
B3	4383(10)	5225(10)	7704(8)	24(3)
01	4728(6)	3327(5)	7519(4)	21.9(16)
02	3962(6)	4365(6)	8357(4)	28.7(17)
03	5122(6)	5188(6)	7048(5)	36.9(18)
04	4094(7)	6048(6)	7728(4)	32.0(18)
05	6059(6)	4292(6)	6317(4)	26.7(17)

Table S4. Atomic coordinates and equivalent isotropic temperature factors for $Rb_7CaSc_2B_{15}O_{30}$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Rb1	O1 ¹	2.795(13)	Rb3	O1 ²	2.853(15)
Rb1	01	2.795(13)	Sr	O5 ⁶	2.244(16)
Rb1	02	3.009(16)	Sr	O5 ¹³	2.244(16)
Rb1	O2 ¹	3.009(16)	Sr	O5 ¹	2.244(16)
Rb1	O3 ²	2.925(16)	Sr	O5 ¹⁴	2.244(16)
Rb1	O3 ³	2.925(16)	Sr	05	2.244(16)
Rb1	O4 ²	3.269(14)	Sr	O5 ¹⁵	2.244(16)
Rb1	O4 ³	3.269(14)	Sc	O3 ²	2.176(15)
Rb2	O21	2.937(15)	Sc	03	2.176(15)
Rb2	O2 ⁴	2.937(15)	Sc	O3 ⁹	2.176(15)
Rb2	03	2.833(14)	Sc	O5 ⁷	2.331(18)
Rb2	O3 ⁵	2.833(14)	Sc	O5 ¹²	2.331(18)
Rb2	04	3.071(17)	Sc	O5 ⁴	2.331(18)
Rb2	O4 ⁵	3.071(17)	B1	01	1.479(18)
Rb2	O5 ⁶	3.28(2)	B1	02	1.441(17)
Rb2	O5 ⁷	3.28(2)	B2	04	1.38(2)
Rb3	O1 ⁸	2.853(15)	B2	05	1.36(3)
Rb3	O1 ⁹	2.853(15)	B2	O2 ¹⁰	1.35(3)
Rb3	O1 ¹⁰	2.853(15)	В3	01	1.40(3)
Rb3	01	2.853(15)	B3	03	1.33(2)
Rb3	O1 ¹¹	2.853(15)	В3	O4	1.37(2)

Table S5. Selected bond lengths in Å for $Rb_7SrSc_2B_{15}O_{30}$.

 $Y, 2/3 + X-Y, -1/3 + Z; \ ^{8}2/3 - X, 1/3 - X + Y, 4/3 - Z; \ ^{9} + Y-X, 1-X, +Z; \ ^{10}-1/3 + Y, 1/3 + X, 4/3 - Z; \ ^{11}2/3 - Y + X, 4/3 - Y, 4/3 - Z; \ ^{12}-2/3 + X, -1/3 + Y, -1/3 + Y,$

1/3+Z; ¹³2-Y,1+X-Y,+Z; ¹⁴1+Y-X,2-X,+Z; ¹⁵2-X,1-X+Y,1-Z; ¹⁶5/3-Y,4/3+X-Y,1/3+Z; ¹⁷2/3+Y-X,4/3-

X,1/3+Z; ¹⁸2/3+X,1/3+Y,1/3+Z

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Rb1	O1 ⁴	2.779(6)	Rb3	01	2.838(7)
Rb1	01	2.779(6)	Ca	O4 ⁸	2.222(6)
Rb1	O2 ⁵	2.992(7)	Ca	O4 ⁴	2.222(6)
Rb1	O21	2.992(7)	Ca	O4 ¹⁵	2.222(6)
Rb1	O3 ³	3.223(7)	Ca	O4 ¹⁴	2.222(6)
Rb1	O3 ²	3.223(7)	Ca	O4	2.222(6)
Rb1	O5 ³	2.907(7)	Ca	O4 ¹³	2.222(6)
Rb1	O5 ²	2.907(7)	Sc	O4 ¹⁶	2.319(7)
Rb2	O2 ⁴	2.943(7)	Sc	O41	2.319(7)
Rb2	O2 ¹	2.943(7)	Sc	O4 ⁷	2.319(7)
Rb2	O3 ⁶	2.993(7)	Sc	O5 ⁹	2.138(6)
Rb2	03	2.993(7)	Sc	O5 ³	2.138(6)
Rb2	O4 ⁷	3.255(8)	Sc	05	2.138(6)
Rb2	O4 ⁸	3.255(8)	B1	01	1.456(10)
Rb2	05	2.803(6)	B1	02	1.474(11)
Rb2	O56	2.803(6)	B2	01	1.354(12)
Rb3	O1 ³	2.838(7)	B2	03	1.399(12)
Rb3	O1 ⁵	2.838(7)	B2	05	1.345(12)
Rb3	O1 ¹⁰	2.838(7)	В3	02	1.374(12)
Rb3	O1 ¹¹	2.838(7)	В3	03	1.392(12)
Rb3	O1 ⁹	2.838(7)	B3	O4	1.331(12)

Table S6. Selected bond lengths in Å for Rb₇CaSc₂B₁₅O₃₀.

¹1/3+Y-X,2/3-X,-1/3+Z; ²-1/3+Y,-2/3+X,4/3-Z; ³1-Y,+X-Y,+Z; ⁴2/3-X,1/3-X+Y,4/3-Z; ⁵1/3-Y+X,2/3-Y,5/3-Z; ⁶+Y,+X,1-Z; ⁷4/3-Y,2/3+X-Y,-1/3+Z; ⁸2/3-Y+X,4/3-Y,4/3-Z; ⁹1+Y-X,1-X,+Z; ¹⁰1/3+Y,-1/3+X,5/3-Z; ¹¹4/3-X,2/3-X+Y,5/3-Z; ¹²-1/3+X,1/3+Y,1/3+Z; ¹³-1/3+Y,1/3+X,4/3-Z; ¹⁴1-Y,1+X-Y,+Z; ¹⁵+Y-X,1-X,+Z; ¹⁶1/3+X,-1/3+Y,-1/3+Z; ¹⁷2/3-Y,1/3+X-Y,1/3+Z; ¹⁸2/3+Y-X,4/3-X,1/3+Z

References

- W. Liu, X. Liu, X. Meng, C. Li, M. Sun, Z. Lin and J. Yao, *J. Alloys Compd.*, 2022, 902, 163832.
- 2. S. Zhao, G. Zhang, J. Yao and Y. Wu, Mater. Res. Bull., 2012, 47, 3810-3813.
- Z. Jia, Q. Zeng, P. Gong, Y. Dong, X. Zhang, B. Xin, Z. Lin and M. Xia, *Inorg. Chem.*, 2020, **59**, 13029-13033.
- V. V. Atuchin, A. K. Subanakov, A. S. Aleksandrovsky, B. G. Bazarov, J. G. Bazarova, S. G. Dorzhieva, T. A. Gavrilova, A. S. Krylov, M. S. Molokeev, A. S. Oreshonkov, A. M. Pugachev, Y. L. Tushinova and A. P. Yelisseyev, *Adv. Powder Technol.*, 2017, 28, 1309-1315.
- V. V. Atuchin, A. K. Subanakov, A. S. Aleksandrovsky, B. G. Bazarov, J. G. Bazarova, T. A. Gavrilova, A. S. Krylov, M. S. Molokeev, A. S. Oreshonkov and S. Y. Stefanovich, *Mater. Des.*, 2018, 140, 488-494.
- V. Atuchin, A. Subanakov, A. Aleksandrovsky, B. Bazarov, J. Bazarova, A. Krylov, M. Molokeev, A. Oreshonkov and A. Pugachev, *J. Alloys Compd.*, 2022, 905, 164022.
- 7. J. Feng, X. Xu, C. L. Hu and J. G. Mao, *Inorg Chem*, 2019, **58**, 2833-2839.
- 8. S. Zhao, G. Zhang, J. Yao and Y. Wu, *CrystEngComm*, 2012, 14, 5209-5214.
- 9. J. Zhou and R. Li, J. Solid State Chem., 2021, 304, 122630.
- 10. M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M. R. S. A. Janjua and S. Pan, *J. Am. Chem. Soc.*, 2017, **139**, 18397-18405.
- Z. Xie, M. Mutailipu, G. He, G. Han, Y. Wang, Z. Yang, M. Zhang and S. Pan, *Chem. Mater.*, 2018, **30**, 2414-2423.
- Z. Xie, Y. Wang, S. Cheng, G. Han, Z. Yang and S. Pan, *Sci. China Mater.*, 2019, 62, 1151-1161.
- Y. Li, F. Liang, H. Song, W. Liu, Z. Lin, G. Zhang and Y. Wu, *Inorg Chem*, 2019, 58, 8943-8947.
- W. Liu, X. Liu, J. Shen, Y. Li, H. Song, J. Feng, Z. Lin and G. Zhang, *Dalton Trans.*, 2020, 49, 9355-9361.

 K. Feng, W. Yin, W. Hao, J. Yao and Y. Wu, *CrystEngComm*, 2013, 15, 5064-5069.