Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting information

A Bifunctionalised Pb-Based MOF for Iodine Capture and Dyes Removal

Table S1. Selected bond lengths (Å) and bond angles (degree) for SM-3

Pb1-O1	2. 449 (3)
Pb1-O3	2. 477 (4)
Pb1-O4	2.704 (4)
Pb1-N1	2.676(4)
Pb1-N4	2. 592 (4)
O3-Pb1-O1	79. 74 (12)
O4-Pb1-O1	114. 60 (12)
O4-Pb1-O3	49. 18 (11)
N1-Pb1-O1	138. 21 (11)
N1-Pb1-O3	84. 11 (11)
N4-Pb1-O4	80.88(11)
N4-Pb1-O1	76.65(12)
N4-Pb1-O3	77.84(12)
N4-Pb1-O4	118.37 (12)
N4-Pb1-N1	62. 32 (12)

Table S2: Comparison of structural properties of Pb-crystals with SM-3.

Synthesized Pb-	Bond	Geometry	Anagostic	Dimensions	Ref.
crystals	Distances		interactions		
[Pb(mip)(1,4- NDC)] _n	Pb-O = 2.465(3)- 2.693(3)Å, Pb-N = 2.464(3)- 2.554(3)Å, Pb-Pb = 11.5400 Å	Pentagonal bipyramidal	Absent	2-D	36
[Pb ₂ (pzp) ₂ (adip)(NO 3)2]	Pb-O = 2.412(4)- 2.693(3)Å, Pb-N= 2.615(4)- 2.557(4) Å	Pentagonal bipyramidal	Absent	2-D	37
[Pb(pzp)(glu)]	Pb-O= 2.592(4)- 2.586(4)Å, Pb- N= 2.747(4)- 2.691(4) Å	Distorted pentagonal bipyramidal	Absent	2-D	37

[Pb(pzp)(chdc)]·[Pb (pzp)-(chdc)]· pzp ·H ₂ O	Pb-O= 2.360(7)- 2.481(7)Å Pb-N= 2.700(8)- 2.718(8) Å	Octahedral	Absent	2-D 3-D	37
O)]· 0.5H ₂ O	2.714(4)- 2.729(4) Å Pb-N= 2.624(4)- 2.644(4) Å Pb-Pb= 4.333 Å				
[Pb(pzp)(1,3- bdc)(H ₂ O) _{0.5}]	Pb-O= 2.382(4)- 2.482(4) Å PbN=2.504(5)- 2.671(5)Å	Pentagonal bipyramidal	Absent	2-D	37
[Pb(ptc)(1,4-bdc)]· 0.75H₂O	Pb-O= 2.551(4)- 2.510(4) Å Pb-N= 2.651(4)- 2.558(5) Å	Octahedral	Absent	2-D	37
[Pb(C ₈ H ₄ O ₄)(C ₂₄ H ₁₆ N ₂)]n	Pb-O=2.503 (4)- 2.663 (4) Å Pb-N= 2.686 (4)- 2.677 (4) Å	Octahedral	Absent	2-D	38
$\frac{[Pb_2(C_{12}H_6O_4)_2(C_{10}}{H_8N_2)]_n}$	Pb-O=2.418 (4) Å Pb-N= 2.841 (4) Pb-N= 2.678 (7)- 2.630(6)	Pentagonal bipyramidal	Absent	3-D	39
$\frac{[Pb_2(C_{12}H_6O_4)_2(C_{12})}{[Pb_2(C_{12}H_8N_2)]_n}$	Pb-O=2.464 (4)-2.756 (4) Å Pb-N=2.622(4)- 2.701(4)Å	Octahedral	Absent	3-D	40
[Pb(1,4- bdc)(MOPIP)] _n	Pb- Pb=11.4210(24) Å	Octahedral	Absent	1-D	41
[Pb ₂ (1,4-	Average Pb-O =	Pentagonal	Absent	3-D	42
bdc) ₂ (dpdp) ₂].H ₂ O	2.550 Å	bipyramidal			
[Pb(bdc)(dma)]	Pb-O= 2.440(4)- 2.699(4) Å	Tetragonal bipyramidal	Absent	3-D	43
SM-3	Pb-O= 2.449(3) to 2.704(4) Å Pb-N= 2.592(4) to 2.676(4) Å. Pb-Pb= 4.355 Å	Distorted square antiprismatic	Present	2-D	This work

Fig. S1. Calibration plot of iodine in a cyclohexane solution via a UV-vis spectrum.

Fig. S2. Stability provided due to (a) Pb $\cdots \pi$ interactions, (b) hydrogen bonding O3 \cdots H7-C7, C-H \cdots O and π - π stacking interactions in SM-3.

Fig. S3. PXRD pattern of synthesized SM-3 before and after immersing in water for 24 h.

Table S3. Parameters for first and second-order kinetic models for adsorption studies of Iodine.

Model	Parameters	Values
Pseudo first order	$K_1(min^{-1})$	0.552
	q_e (cal.)(mg/g)	1148.15
	$q_e(Exp.)(mg/g)$	350.06
	\mathbb{R}^2	0.870
Pseudo second order	$K_2(min^{-1})$	0.003
	q_e (cal.)(mg/g)	455.55
	$q_e(Exp.)(mg/g)$	350.06
	R ²	0.997

Fig. S4. Pseudo-first-order kinetics for the adsorption process of iodine by SM-3 in cyclohexane solution.

Table S4. Adsorption isotherm constants of SM-3 MOF for iodine adsorption.

Fig. S5. Freundlich isotherm model for the adsorption of iodine on SM-3.

Fig. S6. PXRD pattern of synthesized SM-3 and after iodine adsorption and desorption.

Fig. S7 Chemical structures of cationic and anionic dyes used in the experiments.

Fig. S8. PXRD pattern of synthesized SM-3 and after adsorption of MB and Rh-B.

Fig. S9. The adsorption of MB and Rh-B onto SM-3 using pseudo-first-order (a), pseudo-second-order (b) and intra particle (c) kinetics models.

Table S5. Summary of maximum adsorption capacities ((\mathbf{q}_{\max}) of	f various	commercial
adsorbent towards MB and/or RI	h-B.		

Adsorbent		Dye	Possible Mechanism	n Remo Efficie	val Ref. ncy
Apricot ston and commerce activated	es vial	MB	Chemisorption	36.68 n	ng/g 102
Red Oak (Ouercus rub	ra)	MB	Chemisorption	97.18	103
Rice husk)	Rh-B	Chemisorption	478.5 n	ng/g 104
Coconut leav	ves	MB	Chemisorption	149.3 n	ng/g 105
Lemon peel	s	MB	Chemisorption	841.37	mg/g 106
Carbonaceo slurry wast	us e	RhB	Physiosorption	91.1 m	ng/g 107
Platanusorient	talis	MB	-	114.94	mg/g 108
Coal fly as	h	MB	-	85%	<i>б</i> 109
SM-3 N	IB, Rh-B	Electros Cation- a	static interaction. $\pi, \pi - \pi$ interaction	90%, 92%	This work

рН	Zeta Potential (mV)		
2	0.23		
3	0.22		
4	0.23		
5	0.22		
6	0.00		
7	-0.23		
8	-0.30		
9	-0.32		
10	-0.33		
11	-0.33		
12	-0.32		

Table S6. Determination of zeta potential of SM-3 at varying pH.

Model	Parameters	MB	Rh-B
Pseudo first order	K_1 (min ⁻¹)	0.00016	0.0052
	q_e (Cal.) (mg/g)	40.43	39.64
	qe (Exp.) (mg/g)	49.47	53.91
	R^2	0.7714	0.92
Pseudo second order	K_2 (g mg ⁻¹ min ⁻¹)	0.0007	0.0007
	q_e (Cal.) (mg/g)	50.66	47.39
	q_e (Exp.) (mg/g)	49.47	53.91
	\mathbb{R}^2	0.99	0.99
Intraparticle Diffusion	$K_3 (mg g^{-1} min^{-1/2})$	1.37	5.71
	С	27.68	6.98
	R ²	0.7321	0.423