Supporting Information for:

Synthesis and characterisation of Ga- and In-doped CdS by solventless thermolysis of single source precursors

Suliman A. Alderhami,^{a,b} Ruben Ahumada-Lazo,^{c,d} Mark A. Buckingham,^e David J. Binks,^c Paul O'Brien,^{a,e} David Collison,^a David J. Lewis^{e*}

^a Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

^b Department of Chemistry, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Saudi Arabia.

^c Department of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

^d Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849.

^e Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Corresponding author: <u>david.lewis-4@manchester.ac.uk</u>

Contents

Table S1 and S2: Mol% values of precursors to synthesise $M_xCd_{1-x}S_{1+0.5x}$

Figures S1, S2 and S3: pXRD patterns of Ga₂S₃, CdS, and In₂S₃

Figure S4: Lattice constants and d⁽¹⁰¹⁾ values with increasing Ga³⁺-doping concentration

Figure S5: EDX and ICP-OES determined Ga³⁺ concentrations vs input Ga precursor

Table S3: Table of data for EDX analysis for Ga_xCd_{1-x}S_{1+0.5x}

Figure S6: Lattice constants and d⁽¹⁰¹⁾ values with increasing In³⁺-doping concentration

Figure S7: EDX and ICP-OES determined In³⁺ concentrations vs input Ga precursor

Table S4: Table of data for EDX analysis for $In_xCd_{1-x}S_{1+0.5x}$

Figure S8: UV-Vis absorption spectra of $Ga_xCd_{1-x}S_{1+0.5x}$

Figure S9: UV-Vis absorption spectra of $In_xCd_{1-x}S_{1+0.5x}$

Figure S10: Photoluminescence lifetime with doping concentration for both $Ga_xCd_{1-x}S_{1+0.5x}$ and $In_xCd_{1-x}S_{1+0.5x}$.

Composition values of precursors for M_xCd_{1-x}S_{1+0.5x}

Table S1. Composition of $Ga_xCd_{1-x}S_{1+0.5x}$ $(0 \le x \le 0.1)$.

Composition of [Ga]/([Ga]+[Cd])	[Ga(S ₂ CNEt ₂) ₃]	[Cd(S ₂ CNEt ₂) ₂]
0	0 mmol	0.3668 mmol
0.02	0.0972 mmol	4.3683 mmol
0.04	0.0972 mmol	2.1471 mmol
0.06	0.0972 mmol	1.4016 mmol
0.08	0.0972 mmol	1.0288 mmol
0.1	0.0972 mmol	0.8052 mmol

Table

S2.

Composition of [In]/([In]+[Cd])	[In(S ₂ CNEt ₂) ₃]	[Cd(S ₂ CNEt ₂) ₂]
0	0 mmol	0.3668 mmol
0.02	0.0895 mmol	4.7618 mmol
0.04	0.0895 mmol	2.3323 mmol
0.06	0.0895 mmol	1.5225 mmol
0.08	0.0895 mmol	1.1117 mmol
0.1	0.0895 mmol	0.8746 mmol

Composition of $In_xCd_{1-x}S_{1+0.5x}$ $(0 \le x \le 0.1)$.

Figure S1. The powder XRD patterns of nanocrystals generated from the decomposition of $[Ga(S_2CNEt_2)_3]$ complex (1) at 400 °C (a) and 450 °C (b) for 1 h. These patterns are corresponding to Ga_2S_3 (ICDD: 00-043-0916).

Figure S2. The powder XRD patterns of nanocrystals generated from the decomposition of $[Cd(S_2CNEt_2)_2]$ complex (2) at 400 °C (a) and 450 °C (b) for 1 h. These patterns are corresponding to CdS (ICDD: 00-041-1049).

Figure S3. The powder XRD patterns of nanocrystals generated from the decomposition of $[In(S_2CNEt_2)_3]$ complex (3) at 400 °C (a) and 450 °C (b) for 1 h. These patterns are corresponding to In_2S_3 (ICDD: 03-065-0459).

Figure S4. Lattice parameters a (Å) (a), and c (Å) (b) and $d_{(101)}$ (Å) (c) of $Cd_{1-x}Ga_xS$ with the different mole % of composition [Ga]/([Ga]+[Cd]).

EDX and ICP-OES determined Ga³⁺ concentrations vs input Ga precursor

Figure S5. Linear correlation between mole % of [Ga]/([Ga]+[Cd]) in the precursor feedstock and atomic % of gallium found in $Ga_xCd_{1-x}S_{1+0.5x}$ ($0 \le x \le 0.1$) samples from ICP and EDX.

Table of data for EDX analysis for Ga_xCd_{1-x}S_{1+0.5x}

Table	S3 .	The	content	of	Cd,	Ga,	and	S	in	$Ga_xCd_{1-x}S_{1+0.5x}$	(0	\leq	х	\leq	0.1)	calculated	from
theore	tical	valu	es, EDX	and	I ICP	-OE	S.										

Mole fraction of [Ga]/[Ga]+[Cd]	Elements	Atomic % (Required composition)	Atomic % (Required composition by EDX)	Atomic % (Required composition by ICP-OES)		
	Cd	50	51.02	50.07		
0	Ga	0	0	0		
U	S	50	48.98	49.93		
	Cd	49	48.32	48.36		
0.02	Ga	1	0.97	0.95		
0.02	S	50	50.71	50.69		
	Cd	48	46.21	47.16		
0.04	Ga	2	1.97	1.96		
0.04	S	50	51.82	50.88		
	Cd	47	45.93	45.41		
0.07	Ga	3	2.85	2.95		
0.00	S	50	51.20	51.64		
	Cd	46	44.31	44.41		
0.00	Ga	4	3.83	3.85		
0.08	S	50	51.86	51.74		
	Cd	45	42.94	43.31		
0.1	Ga	5	4.76	4.87		
0.1	S	50	52.30	51.82		

Lattice constants and d(101) values with increasing In³⁺-doping concentration

Figure S6. Lattice parameters a (Å) (a), and c (Å) (b) and $d_{(101)}$ (Å) (c) of $In_xCd_{1-x}S_{1+0.5x}$ with the different mole % of composition [In]/([In+Cd]).

EDX and ICP-OES determined In³⁺ concentrations vs input Ga precursor

Figure S7: Approximately linear correlation between the mole % of [In]/([In]+[Cd]) in the precursor feedstock and atomic % of indium found in $Cd_{1-x}In_xS$ ($0 \le x \le 0.1$) samples from ICP and EDX.

Table of data for EDX analysis for In_xCd_{1-x}S_{1+0.5x}

Table S4. The content of Cd, In and S in $In_xCd_{1-x}S_{1+0.5x}$ ($0 \le x \le 0.1$) calculated from theoretical values, EDX and ICP-OES.

Mole fraction of [In]/([In]+[Cd])	Elements	Atomic % (Required composition)	Atomic % (Required composition by EDX)	Atomic % (Required composition by ICP-OES)		
	Cd	50	51.02	50.07		
0	In	0	0	0		
	S	50	48.98	49.93		
	Cd	49	48.32	49.41		
0.02	In	1	0.97	0.97		
	S	50	50.71	49.62		
	Cd	48	46.21	48.57		
0.04	In	2	1.97	1.57		
	S	50	51.82	49.86		
	Cd	47	45.93	46.50		
0.06	In	3	2.85	2.50		
	S	50	51.20	51.00		
	Cd	46	44.31	45.11		
0.08	In	4	3.83	3.54		
	S	50	51.86	51.74		
	Cd	45	42.94	44.25		
0.1	In	5	4.76	4.42		
	S	50	52.30	51.33		

UV-Vis absorption spectra of Ga_xCd_{1-x}S_{1+0.5x}

Figure S8. The UV-Vis-NIR absorbance spectra of $Ga_xCd_{1-x}S_{1+0.5x}$ powders x = 0 (black), x = 0.02 (red), x = 0.04 (blue), x = 0.06 (pink), x = 0.08 (green) and x=0.1 (navy).

Figure S9. The UV-Vis-NIR absorbance spectra of $In_xCd_{1-x}S_{1+0.5x}$ powders x = 0 (black), x = 0.02 (red), x = 0.04 (blue), x = 0.06 (pink), x = 0.08 (green) and x=0.1 (navy).

Photoluminescence lifetime with doping concentration for both $Ga_xCd_{1-x}S_{1+0.5x}$ and $In_xCd_{1-x}S_{1+0.5x}$

Figure S10. Lifetimes (a and c) and associated fractional amplitudes (b and d) as a function of dopant concentration for the blue and green emission bands, respectively.