Supporting Information for:

Trimethyltriazacyclohexane Coordination Chemistry of Simple Rare-Earth Metal Salts

Justin C. Wedal, Joseph W. Ziller, and William J. Evans*

Department of Chemistry, University of California Irvine, Irvine, CA 92617, United States

Email: wevans@uci.edu

* To whom correspondence should be addressed.

Table of Contents

Experimental Details	S3
Table S1: M–Cnt distances in rare-earth metal R3tach complexes	S9
Table S2: M–Cnt distances in rare-earth metal Me3tacn complexes.	S10
Crystallographic Data	S11
References	S38
NMR spectra	S41

Experimental

All synthesis and manipulations were conducted with rigorous exclusion of air and water using standard vacuum line and glovebox techniques. Solvents were sparged with UHP argon and dried by passage through columns containing water and oxygen scavengers. Deuterated NMR solvents were dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use. ¹H and ¹³C NMR spectra were recorded on a CRYO500 MHz spectrometer at 298 K. Infrared spectra were recorded as compressed solids on an Agilent Cary 630 ATR-FTIR. Elemental analyses were conducted at the Irvine Materials Research Institute on a ThermoFisher FlashSmart CHNS/O Elemental Analyzer.

Anhydrous $LnCl_{3}$,¹ $La(OTf)_{3}$,^{1a,2} $SmI_{2}(THF)_{2}$,² and $LnI_{3}(THF)_{x}$,³ were prepared as previously described. Anhydrous, base-free SmI_{2} (Sigma) was used as received. Me₃tach and Me₃tach (Fisher) were purchased under argon and kept over molecular sieves in the glovebox.

Synthesis of (Me₃tach)₂LaI₃, 1-La. LaI₃(THF)₄ (130 mg, 0.161 mmol) was dissolved in THF (5 mL) to form a colorless solution. Me₃tach (48 mg, 0.37 mmol) was dissolved in THF (1 mL) and was slowly added to the stirring solution by pipet. The solution was stirred for two hours and a small amount of precipitate formed. The solids were removed via filtration and the solvent was removed under vacuum to afford a white powder. The solids were redissolved in minimal THF and layered under hexane and placed at -35 °C. Colorless crystals of 1-La, suitable for X-ray diffraction, were grown overnight (9 mg, 14%). The data provided connectivity of the molecule only. ¹H NMR (THF-*d*₈): δ 5.48 (s, 6H, CH₂), 3.13 (s, 6H, CH₂), 2.46 ppm (s, 18H, Me). ¹³C NMR (THF-*d*₈): δ 80.1 (CH₂), 38.6 ppm (Me). IR (cm⁻¹): 2954w, 2903w, 2864w, 2801m, 2748w, 2687w, 1686w, 1640w, 1465m, 1384m, 1260s, 1165m, 1104s, 1009m, 935s, 889w, 801w. Anal. Calcd for C₁₂H₃₀N₆LaI₃: C, 18.53; H, 3.89; N, 10.80. Found: C, 19.940;

H, 4.193; N, 11.679. The values were consistently high and suggest incomplete combustion or decomposition of the sample. The observed ratio of $C_{12}H_{30,1}N_{6,0}$ is close to the expected values.

Synthesis of (Me₃tach)₂CeI₃, 1-Ce. As described above for 1-La, CeI₃(THF)₄ (53 mg, 0.065 mmol) and Me₃tach (20 mg, 0.15 mmol) were reacted in THF (3 mL). Colorless crystals of 1-Ce were grown from THF/hexane at -35 °C overnight (33 mg, 65%). The data provided connectivity of the molecule only. ¹H NMR (THF-*d*₈): δ 38.95 (br s, 6H, CH₂), 29.23 (br s, 6H, CH₂), 6.93 ppm (br s, 18H, Me). ¹³C NMR (THF-*d*₈): δ 48.6 (CH₂), 30.4 ppm (Me). IR (cm⁻¹): 1984w, 1950w, 2908w, 2860w, 2801m, 2749m, 2686m, 1642m, 1464s, 1384s, 1361m, 1287m, 1259s, 1165m, 1106s, 1075m, 1042w, 1009m, 936s, 866m, 861w, 795w, 727w, 694w. Anal. Calcd for C₁₂H₃₀N₆CeI₃: C, 18.50; H, 3.88; N, 10.79. Found: C, 21.03; H, 3.782; N, 9.213. The values were consistently high and suggest incomplete combustion or decomposition of the sample. The observed ratio of C₁₂H_{30.0}N_{6.0} matches the expected values.

Synthesis of (Me₃tach)₂NdI₃, 1-Nd and [(Me₃tach)₂NdI₂][I], 2-Nd. As above, NdI₃(THF)_{3.5} (102 mg, 0.131 mmol) was reacted with Me₃tach (34 mg, 0.26 mmol) in THF (5 mL). Pale blue needle-like crystals of 1-Nd suitable for X-ray diffraction were grown from THF/hexane at -35 °C overnight (85 mg, 83%). The data provided connectivity of the molecule only. Pale blue parallelepiped crystals of 2-Nd were grown by recrystallization of 1-Nd from THF/hexane at -35 °C. No resonances in the ¹H NMR spectrum were observed between ± 400 ppm besides residual solvent. IR (cm⁻¹): 2919m, 2869m, 2804m, 2748m, 2684m, 1642s, 1449s, 1385s, 1288w, 1261s, 1169s, 1104s, 1078m, 1041m, 937s, 888m, 799w, 723w, 693w. Anal. Calcd for C₁₂H₃₀N₆NdI₃: C, 18.40; H, 3.86; N, 10.73. Found: C, 17.63; H, 4.261; N, 8.700.

Crystallization of [(Me₃tach)₂SmI₂][I], 2-Sm. $SmI_2(THF)_2$ (67 mg, 0.12 mmol) was dissolved in THF (2 mL) to form a deep blue solution. Me₃tach was dissolved in THF and added

to the stirring solution via pipet. The solution became dark green. After a few hours, the solution became yellow. The solution was stirred overnight then dried under vacuum. The solids were redissolved in minimal THF and layered under hexane and placed at -35 °C. A few colorless crystals of **2-Sm**, suitable for X-ray diffraction, were grown overnight. The data provided connectivity of the molecule only.

Synthesis of (Me₃tach)₂LaCl₃, 3-La. LaCl₃ (44 mg, 0.18 mmol) was added to THF (5 mL). Me₃tach (46 mg, 0.36 mmol) was dissolved in THF and added to the stirring suspension by pipet. White solid immediately precipitated. The suspension was stirred for 90 minutes then the mixture was centrifuged. The colorless supernatant was collected and dried under vacuum to yield white solids of **3** (7 mg, 8%). Colorless hexagonal prism crystals of **3** were grown from THF/hexane at -35 °C overnight. ¹H NMR (THF-*d*₈): δ 2.20 ppm (s, 18H, Me). Only one resonance was observed, presumably due to the low solubility, and a ¹³C spectrum could not be obtained. IR (thin film from THF-*d*₈, cm⁻¹): 2921s, 2853m, 2806m, 2749w, 2686w, 1644m, 1453s, 1385m, 1263s, 1171m, 1108s, 1079m, 1043m, 1013m, 938s, 889w, 825w.

Synthesis of (Me₃tach)YCl₃(THF)₂, 4-Y. YCl₃ (50 mg, 0.20 mmol) was stirred in THF (5 mL). Me₃tach was added by pipet to the stirring slurry to form a colorless solution. The solution was stirred for two hours then dried under vacuum. The white solids were redissolved in minimal THF and layered under hexane at -35 °C. Large, colorless crystals of 4, suitable for X-ray diffraction, were grown overnight (97 mg, 92%). ¹H NMR (THF-*d*₈): δ 4.48 (d, *J* = 6.9 Hz, 6H, CH₂), 3.05 (d, *J* = 6.9 Hz, 6H, CH₂), 2.35 ppm (s, 18H, Me). ¹³C NMR (THF-*d*₈): δ 77.8 (CH₂), 38.5 ppm (CH₃). Only unbound, free THF was observed in the NMR spectra. IR (cm⁻¹): 2966m, 2898m, 2879m, 2811m, 1648m, 1454s, 1384s, 1264s, 1175s, 1110s, 1015s, 939s, 865s, 666m.

Anal. Calcd for $C_{14}H_{36}N_3O_2YCl_3$: C, 35.88; H, 6.67; N, 8.97. Found: C, 15.70; H, 5.998; N, 8.432. Low C values suggest incomplete combustion or carbide formation.

Synthesis of {[(Me₃tach)La(μ -OH)(μ -OTf)]₂(μ -OTf)₂}₂, 5-La. La(OTf)₃ (66 mg, 0.11 mmol) was dissolved in THF. Me₃tach (29 mg, 0.22 mmol) was added to the stirring solution by pipet. The solution was dried, the solids were redissolved in minimal THF, layered under hexane, and placed at -35 °C. Overnight, colorless crystals of 5 suitable for X-ray diffraction deposited. The infrared spectrum of the La(OTf)₃ starting material showed two broad absorptions above 3000 cm⁻¹.

Synthesis of $[(Me_3tach)_2La(OTf)_4][HMe_3tach]$, 6-La. La $(OTf)_3$ (52 mg, 0.089 mmol) was dissolved in THF to form a colorless solution. Me_3tach (23 mg, 0.18 mmol) was added by pipet and the solution was stirred overnight. The solvent was removed under vacuum and the product was extracted in toluene and placed at -35 °C. Overnight, large colorless plates of 6-toluene deposited.

Synthesis of (Me₃tach)₂SmI₂(THF), 7-Sm. Me₃tach (24 mg, 0.19 mmol) was dissolved in THF. SmI₂ (50 mg, 0.12 mmol) was added to the stirring solution. The solution became green. The solution was stirred for 30 minutes then dried under vacuum to afford red solids. The solids were redissolved in minimal THF, layered under Et₂O, and placed at -35 °C for crystallization. Over two days, dark green crystals of 7 formed (50 mg, 55%). The crystal data was not of high enough quality to discuss metrical parameters but provided connectivity of the molecule. ¹H NMR (THF-*d*₈): δ -3.24 ppm. This was the only resonance observed between 600 and -300 ppm. No ¹³C signals were observed in a reasonable scan time. IR (cm⁻¹): 2983w, 2951m, 1866m, 2798m, 2737m, 2687m, 2664w, 1643m, 1468s, 1446s, 1385s, 1267s, 1161s, 1110s, 1082m, 1042w, 1013s, 932s, 886w, 739m. Anal. Calcd for $C_{16}H_{38}N_6OsmI_2$: C, 26.16; H, 5.21; N, 11.44. Found: C, 24.98; H, 4.838; N, 11.02. The observed ratio of $C_{16}H_{36.9}N_{6.1}$ is close to the expected values.

Synthesis of (Me₃tacn)LaI₃(THF), 8-La. LaI₃(THF)₄ (56 mg, 0.069 mmol) was dissolved in THF. Me₃tacn (~50 mg, 0.292 mmol) was added to the stirring solution. The solution was stirred for 15 minutes then dried under vacuum. The white solids were redissolved in minimal THF, layered under hexane, and placed at -35 °C for crystallization. Overnight, colorless needles of **8** suitable for X-ray diffraction were formed (26 mg, 49%). ¹H NMR (THF-*d*₈): δ 3.68 (m, 6H, CH₂), 3.07 (s, 9H, Me), 2.89 ppm (m, 6H, CH₂). ¹³C NMR (THF-*d*₈): δ 58.1 (CH₂), 50.5 ppm (Me). IR (cm⁻¹): 2921w, 2848w, 2822w, 2770w, 1635w, 1446s, 1368s, 1341m, 1302m, 1279m, 1220w, 1188m, 1065s, 1031m, 998s, 861m, 819w, 764m, 738s, 692m. Anal. Calcd for C₁₃H₂₉N₃OlaI₃: C, 20.46; H, 3.83; N, 5.51. Found: C, 19.91; H, 3.601; N, 4.990.

Synthesis of (Me₃tacn)YCl₃, 9-Y. YCl₃ (50 mg, 0.26 mmol) was added to THF (5 mL) to form a white slurry. Me₃tacn (44 mg, 0.26 mmol) was added and the mixture became a colorless solution. The solution was stirred for two hours then dried under vacuum. The mixture was redissolved in minimal THF and layered under hexane at -35 °C. Overnight, white crystals of **9** suitable for X-ray diffraction formed (13 mg, 14%). ¹H NMR (THF-*d*₈): δ 3.33 (m, 6H, CH₂), 2.85 (s, 9H, Me), 2.76 ppm (m, 6H, CH₂). ¹³C NMR (THF-*d*₈): δ 56.7 (CH₂), 49.4 ppm (Me). IR (cm⁻¹): 2993w, 2966w, 2933w, 2903w, 2865w, 2824w, 1490m, 1462s, 1364m, 1298s, 1201m, 1153m, 1124w, 1060s, 998s, 884m, 773s, 741s. Anal. Calcd for C₉H₂₁N₃YCl₃: C, 29.49; H, 5.78; N, 11.46. Found: C, 30.92; H, 6.048; N, 10.77.

Synthesis of (Me₃tacn)SmI₂(THF), 10-Sm. SmI₂ (50 mg, 0.12 mmol) and Me₃tacn (16 mg, 0.93 mmol) were combined in THF (5 mL) to form a blue/green solution. The solution was stirred for 30 minutes the dried. The mixture was redissolved in minimal THF and layered under

hexane at -35 °C. Overnight, dark blue crystals of **10** suitable for X-ray diffraction formed (14 mg, 18%). ¹H NMR (THF-*d*₈): δ 17.56 (s, 9H, Me), -2.08 (s, 6H, CH₂), -6.34 ppm (s, 6H, CH₂). No ¹³C resonances were observed in a reasonable scan time. IR (cm⁻¹): 2935m, 2882, 2810m, 1449s, 1366m, 1340w, 1294m, 1174m, 1148m, 1102m, 1066m, 1005s, 917w, 871s, 823s, 749s, 670w.

Crystallization of [HMe₃tach][Cl]. Colorless crystals of [HMe₃tach][Cl] were obtained from THF/hexane at -35 °C from the reaction of ScCl₃ with 2 equivalents of Me₃tach in THF. The crystal data were not of high enough quality to discuss metrical parameters but provided connectivity of the molecule.

Crystallization of [HMe₃tach][Br]. Colorless crystals of [HMe₃tach][Br] were obtained from a concentrated THF solution at -20 °C from the reaction of ThBr₄(THF)₄ with 2 equivalents of Me₃tach in THF.

Crystallization of [HMe₃tach][I]. Colorless crystals of [HMe₃tach][I] were obtained from a concentrated THF solution at -35 °C from the reaction of TbI₃(THF)_{3.5} with 2 equivalents of Me₃tach in THF. The crystal data were not of high enough quality to discuss metrical parameters but provided connectivity of the molecule.

Crystallization of [HMe₃tacn][OTf]. Colorless rod-like crystals of [HMe₃tacn][OTf] were obtained from THF/hexane at -35 °C during the reaction of La(OTf)₃ with Me₃tacn. The crystal data were not of high enough quality to discuss metrical parameters but provided connectivity of the molecule.

S8

Table S1:	M–Cnt	distances	in	rare-earth	metal	R ₃ tach	complexes.	Complexes	containing
							-	1	0

	M–Cnt (Å)	Eight-coordinate	M-Cnt distance
		ionic radius $(Å)^4$	– radius (Å)
$(Me_3tach)_2LaCl_3$, 3-La	2.428 ^a	1.16	1.268
$[(Me_3tach)La(O_2CCPh_3)](\mu -$	2 205	1 16	1 225
$O_2CCPh_3)_3[La(O_2CCPh_3)_2]^5$	2.393	1.10	1.233
$(^{i}Pr_{3}tach)La[\eta^{4}-Me_{3}AlCH_{2}AlMe_{2}CH_{2}AlMe_{3}]^{6}$	2.405	1.16	1.245
5-La	2.411, 2.419	1.16	1.251, 1.259
6-La	2.449, 2.454	1.16	2.289, 1.294
$(Me_3tach)La(AlMe_4)(Me_3AlCH_2AlMe_3)^7$	2.465	1.16	1.305
(Me ₃ tach)La(O ₂ CCPh ₃) ₄][MeNH ₃] ⁵	2.488	1.16	1.328
$(^{t}Bu_{3}tach)La[\eta^{4}-Me_{3}AlCH_{2}AlMe_{2}CH_{2}AlMe_{3}]^{6}$	2.469	1.16	1.309
$(Me3tach)Ce(CF_3-camphor)_2^8$	2.462	1.143	1.319
$[(Et_3tach)Pr(OTf)_2]_3(\mu-OTf)_3^9$	2.282, 2.291	1.126	1.156, 1.165
$(Me_3tach)_2Pr(OTf)_3^9$	2.305, 2.307	1.126	1.179, 1.181
(Me ₃ tach)Pr[CH(AlMe ₃) ₃] ⁶	2.322, 2.398	1.126	1.196, 1.272
$(^{t}Bu_{3}tach)Pr[\eta^{4}-Me_{3}AlCH_{2}AlMe_{2}CH_{2}AlMe_{3}]^{6}$	2.411	1.126	1.285
$(Me_3tach)NdCl_2(C_5Ph_3H_2)^{10}$	2.295	1.109	1.186
$(Me_3tach)Nd(O_2CCPh_3)_3^5$	2.316	1.109	1.207
$(Me_3tach)Sm[\eta^4-Me_3AlCH_2AlMe_2CH_2AlMe_3]^7$	2.262, 2.270	1.079	1.183, 1.191
$(^{i}Pr_{3}tach)Sm[\eta^{4}-Me_{3}AlCH_{2}AlMe_{2}CH_{2}AlMe_{3}]^{11}$	2.315	1.079	1.236
$(Cy_3 tach)Sm[CH(AlMe_3)_3]^{12}$	2.351	1.079	1.272
$(^{i}Pr_{3}tach)_{2}Sm(AlMe_{4})_{2}^{11}$	2.409ª	1.079	1.330
$(Et_3tach)_2Sm(AlMe_4)_2^{11}$	2.416 ^a	1.079	1.337
$(cyclohexyl_3tach)_2Sm(AlMe_4)_2^{12}$	2.447, 2.455	1.079	1.368, 1.376
$(Me_3tach)TbCl_2[C_5Ph_2(OMePh)H_2]^{10}$	2.177, 2.166	1.04	1.137, 1.126
$(Me_3tach)TbCl_2(C_5Ph_3H_2)^{10}$	2.181	1.04	1.141
(Matach)ThCl IC Dh (OMaDh)U 110	2.170, 2.174,	1.04	1.13, 1.134,
	2.180, 2.193	1.04	1.14, 1.153
$(Me_3tach)_2Y(C \equiv CPh)_2][AlMe_2(C \equiv CPh)_2]^{13}$	2.160, 2.171	1.019	1.141, 1.152
4-Y	2.214	1.019	1.195
$(^{i}Pr_{3}tach)Y(AlMe_{4})(\eta^{3}-Me_{3}AlCH_{2}AlMe_{3})^{14}$	2.22	1.019	1.201
(ⁱ Pr ₃ tach)Y(AlMe ₄)(Me ₃ AlCH ₂ AlMe ₃) ¹⁴	2.22	1.019	1.201
$[(Me_3 tach)_2 YMe_2][AlMe_4]^{14}$	2.223, 2.229	1.019	1.204, 1.21
[(cyclohexyl ₃ tach) ₂ YMe ₂][AlMe ₄] ¹⁴	2.281, 2.291	1.019	1.262, 1.272
$(Me_3tach)_2Y(1,8-dialkynylanthracene)_3^{13}$	2.273, 2.298	1.019	1.254, 1.279
$(Me_3tach)_2Ho(C \equiv CPh)_3^{13}$	2.283, 2.298	1.015	1.268, 1.283
(Me ₃ tach)ScCl ₃ ¹⁵	1.912	0.87	1.042

chelating R substituents are omitted. ^a one distance due to symmetry

	M–Cnt (Å)	Eight-	MCnt
		coordinate ionic	distance –
		radius (Å) ⁴	radius (Å)
$(Me_3tacn)La(p-Me-benzyl)_3^{16}$	2.185	1.16	1.025
8-La	2.129	1.16	0.969
$(Me_3tacn)NdCl_2(C_5Ph_3H_2)^{10}$	2.072	1.109	0.963
$(Me_3tacn)Gd[(Mes_2(p-OMePh)corrole]^{17}$	2.056	1.053	1.003
10-Sm	2.065	1.27	0.795
$(Me_3tacn)TbCl_2(C_5Ph_3H_2)^{10}$	1.990	1.04	0.95
(Me ₃ tacn)YI ₃ ¹⁸	1.820	1.019	0.801
9-Y	1.848	1.019	0.829
$[(Me_3tacn)YI_2]_2(\mu - O)^{18}$	1.889, 1.892 ^a	1.019	0.87, 0.873
$(Me_3tacn)Y[OSi(O^tBu)_3]_3^{19}$	1.966	1.019	0.947
$(Me_3tacn)Y(CH_2SiMe_3)_3^{20}$	1.981, 1.983,	1.010	0.962, 0.964,
	1.995 ^a	1.019	0.976
(Me ₃ tacn)ScCl ₃ ²¹	1.655	0.87	0.785
$[(Me_3tacn)ScF_2](\mu-F)(SnMe_3Cl)^{18}$	1.667	0.87	0.797
$(Me_3tacn)ScF_2Cl^{18}$	1.677	0.87	0.807
(Me ₃ tacn)ScMe ₃ ²²	1.752	0.87	0.882
(Me ₃ tacn)Sc(CH ₂ SiMe ₃) ₃ ¹⁵	1.812, 1.825 a	0.87	0.942, 0.955

Table S2: M-Cnt distances in rare-earth metal Me3tacn complexes. Complexes containingchelating R substituents are omitted. a multiple independent molecules in the unit cell.

Crystallographic Details

 Table S3: Crystal data and structure refinement for 1-Ln. The data were not high enough quality

	1-La	1-Ce	1-Nd
Identification code	jcw87	jcw90	jcw96
Empirical Formula	C ₁₂ H ₃₀ N ₆ I ₃ La	C ₁₂ H ₃₀ N ₆ I ₃ Ce	C ₁₂ H ₃₀ N ₆ I ₃ Nd
Formula weight	778.09	779.30	783.42
Temperature (K)	93(2)	133(2)	133(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	Pnma	Pnma	Pnma
a (Å)	23.664	23.499	23.556
b (Å)	10.680	10.642	10.557
c (Å)	12.365	12.427	12.203
α (°)	90	90	90
β(°)	90	90	90
γ (°)	90	90	90
Volume (Å ³)	3125	3107.4	3034.5
Ζ	4	4	4
Color	colorless	colorless	pale blue
Crystal size (mm ³)	0.166x0.215x0.289	0.133x0.199x0.240	0.200x0.265x0.329

to discuss metrical parameters, hence only the unrefined cell data are given.

 Table S4: Crystal data and structure refinement for 2-Ln and 3-La. The data of 2-Ln were not

high enough quality to discuss metrical parameters, hence only the unrefined cell data are given.

	2-Nd	2-Sm	3-La
CCDC Deposition			2236571
Number			
Identification code	jcw83	jcw100	jcw84
Empirical Formula	$C_{12}H_{30}N_6I_3Nd$	$C_{12}H_{30}N_{6}I_{3}Sm$	C ₁₂ H ₃₀ N ₆ Cl ₃ La
Formula weight	783.42	789.54	503.67
Temperature (K)	133(2)	92(2)	133(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Hexagonal
Space group	$P2_1/c$	$P2_1/m$	$P6_{3}/m$
a (Å)	11.504	9.073	11.9427(7)
b (Å)	12.661	11.911	11.9427(7)
c (Å)	21.998	12.804	10.5184(6)
α (°)	90	90	90
β(°)	92.384	92.110	90

γ (°)	90	90	120
Volume (Å ³)	3201.1	1382.8	1299.23(17)
Ζ	4	4	2
Density (mg/m ³)			1.288
Absorption coefficient			1.956
F(000)			504
Color	pale blue	colorless	colorless
Crystal size (mm ³)	0.208x0.210x0.276	0.117x0.131x0.201	0.381x0.186x0.156
θ range for collection (°)			2.762 to 30.502
Index ranges			$-17 \le h \le 17, -17 \le k$
			$\leq 16, -14 \leq l \leq 14$
independent reflections			1382
collected			
completeness			98.9
Absorption correction			semi-empirical from
			equivalents
refinement method			Full-matrix least-
			squares on F ²
data / restraints /			1382 / 0 / 37
parameters			
Goodness-of-fit on F ²			1.111
Final R indices $[I>2\sigma(I)]$			R1 = 0.0118, wR2 =
			0.0315
R indices (all data)			R1 = 0.0124, wR2 =
			0.0317
Data cutoff (Å)			0.70
Largest diff. peak and			0.390 and -0.263
hole ($e \cdot Å^3$)			

Table S5: Crystal data and structure refinement for 4-Y, 5-La, 6-La, and 7-Sm. The data of 7-

 \mathbf{Sm} were not high enough quality to discuss metrical parameters, hence only unrefined cell data

are given.

	4-Y	5-La	6-La	7-Sm
CCDC Deposition	2236569	2244010	2236568	
Number				
Identification	jcw107	jcw89	jcw115	jcw118
code	-			
Empirical	$C_{14}H_{31}N_3O_2Cl_3Y$	$C_{32}H_{64}F_{24}La_4N_{12}O_{28}$	C ₁₆ H ₃₀ N ₆ O ₁₂ F ₁₂ S ₄	C ₁₆ H ₃₈ N ₆ OI ₂ Sm
Formula		$S_8 \cdot 2(C_4 H_8 O)$	La•C ₇ H ₈	
Formula weight	468.68	2477.28	1215.96	734.76
Temperature (K)	133(2)	133(2)	93(2)	93(2)

Wavelength (Å)	0.71073	0.71073	0.71073	1.54178
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁	$P2_1/n$	$P2_{1}/c$	Pnma
a (Å)	7.5589(5)	15.371(5)	10.4880(9)	14.328
b (Å)	13.5752(9)	15.387(5)	23.4369(19)	11.238
c (Å)	20.0150(13)	18.158(6)	19.8069(16)	16.435
α (°)	90	90	90	90
β (°)	90	93.231(5)	92.0552(14)	90
γ (°)	90	90	90	90
Volume (Å ³)	2053.8(2)	4288(2)	4865.5(7)	2646.2
Ζ	4	2	4	4
Density (mg/m ³)	1.516	1.919	1.660	
Absorption	3.240	2.277	1.157	
coefficient				
F(000)	968	2432	2464	
Color	colorless	colorless	colorless	red
Crystal size	0.377x0.271x0.230	0.257x0.151x0.087	0.242x0.199x0.17	0.092x0.093x0.139
(mm^3)			6	
θ range for	1.813 to 30.549	1.690 to 28.334	1.738 to 25.682	
collection (°)				
Index ranges	$-10 \le h \le 10, -19 \le$	$-20 \le h \le 20, -20 \le k$	$-12 \le h \le 12, -28 \le$	
_	$k \le 18, -27 \le l \le 28$	$\leq 20, -24 \leq l \leq 24$	$k \le 28, -24 \le l \le 24$	
independent	6104	10679	9139	
reflections				
collected				
completeness	100.0	100.	99.0	
Absorption	semi-empirical	semi-empirical from	Semi-empirical	
correction	from equivalents	equivalents	from equivalents	
refinement	Full-matrix least-	Full-matrix least-	Full-matrix least-	
method	squares on F ²	squares on F ²	squares on F ²	
data / restraints /	6104 / 0 / 211	10679 / 2 / 519	9139 / 0 / 618	
parameters				
Goodness-of-fit	0.958	1.062	1.009	
on F ²				
Final R indices	R1 = 0.0188, wR2	R1 = 0.0394, wR2 =	R1 = 0.0390, wR2	
[I>2σ(I)]	= 0.0372	0.0999	= 0.0705	
R indices (all	R1 = 0.0224, wR2	R1 = 0.0594, wR2 =	R1 = 0.0649, wR2	
data)	= 0.0377	0.1122	= 0.0771	
Absolute structure	-0.0062(17)	N/A	N/A	
parameter				
Data cutoff (Å)	0.70	0.75	0.82	
Largest diff. peak	0.470 and -0.252	1.935 and -1.211	0.640 and -0.599	
and hole $(e \cdot Å^3)$				

	8-La	9-Y	10-Sm
CCDC Deposition Number	2236570	2236566	2236567
Identification code	jcw114	jcw116	jcw95
Empirical Formula	C ₁₃ H ₂₉ N ₃ OI ₃ La	C ₉ H ₂₁ Cl ₃ N ₃ Y	C ₁₃ H ₂₉ N ₃ OI ₂ Sm
Formula weight	763.00	366.55	647.54
Temperature (K)	93(2)	93(2)	93(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	$Pna2_1$	$P2_{1}/c$	$Pna2_1$
a (Å)	16.0712(13)	12.6519(18)	17.308(4)
b (Å)	10.0909(8)	7.6180(11)	8.404(2)
c (Å)	13.2624(10)	15.904(2)	13.853(3)
α(°)	90	90	90
β(°)	90	90.870(3)	90
γ(°)	90	90	90
Volume (Å ³)	2150.8(3)	1532.7(4)	2015.0(8)
Ζ	4	4	4
Density (mg/m ³)	2.356	1.588	2.135
Absorption coefficient	6.295	4.309	5.979
F(000)	1408	744	1216
Color	colorless	colorless	Green
crystal size (mm ³)	0.184x0.165x0.082	0.236x0.208x0.177	0.226x0.166x0.120
θ range for collection	2.383 to 30.510	1.280 to 26.372	2.353 to 30.602
Index ranges	-22 < h < 22 $-14 < 14$	$-15 \le h \le 15, -9 \le$	$-22 \le h \le 22, -11 \le$
	k < 14 - 18 < l < 18	$k \le 9, -19 \le l \le 19$	$k \le 11, -18 \le l \le 18$
independent reflections	<u>6364</u>	3137	4718
collected	0504	5157	4/10
completeness	100.0	100.0	100.0
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents
Max and min transmission	0 4330 and 0 3064	0 4330 and 0 3449	0 7461 and 0 6191
refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2	squares on F^2
data / restraints / parameters	6364 / 1 / 193	3137/0/149	4178 / 1 / 179
$\frac{1}{1} \frac{1}{1} \frac{1}$	1.021	1.098	0.985
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0397, wR2	R1 = 0.0521, wR2	$R_1 = 0.0506$, wR2
	= 0.0837	= 0.1279	= 0.0489
R indices (all data)	R1 = 0.0493, wR2	R1 = 0.0738, wR2	R1 = 0.1029. wR2
	=0.0872	= 0.1458	= 0.0563
Data cutoff	0.70	0.80	0.76
Largest diff. peak and hole	3.879 and -1.764	1.166 and -0.739	1.252 and -1.120
$(e \cdot \tilde{A^3})$			

 Table S6:
 Crystal data and structure refinement for 8-La, 9-Y, and 10-Sm.

	[HMe ₃ tach][Br]	[HMe ₃ tach][I]	[HMe ₃ tacn][OTf]
CCDC Deposition	2236565		
Number			
Identification code	jcw119	jcw91	jcw97
Empirical Formula	C ₆ H ₁₆ N ₃ Br	C ₆ H ₁₆ N ₃ I	C ₁₀ H ₂₂ F ₃ N ₃ O ₃ S
Formula weight	210.13	257.12	321.37
Temperature (K)	93(2)	93(2)	93(2)
Wavelength (Å)	1.54178	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1/n$	$P2_1/n$	P2 ₁ 2 ₁ 2 ₁
a (Å)	6.6133(5)	6.6726(14)	9.096(7)
b (Å)	11.0336(9)	11.590(2)	12.377(11)
c (Å)	12.9024(11)	13.362(3)	13.351(9)
α (°)	90	90	90
β (°)	97.338(5)	96.205(4)	90
γ (°)	90	90	90
Volume (Å ³)	933.76(13)	1027.3(4)	1503(2)
Ζ	4	4	4
Density (mg/m ³)	1.495		
Absorption coefficient	5.513		
F(000)	432		
Color	colorless	colorless	colorless
Crystal size (mm ³)	0.150x0.114x0.083	0.257x0.192x0.164	0.360x0.256x0.173
θ range for collection	5.293 to 68.825		
Index ranges	$-7 \le h \le 7, -13 \le k \le 13, -$		
	$15 \le l \le 15$		
Independent	1723		
reflections collected			
Completeness	100.0		
Absorption correction	Semi-empirical from		
	equivalents		
Max. and min.	0.4675 and 0.2187		
transmission			
Refinement method	Full-matrix least-squares		
	on F ²		
Data / restraints /	1723 / 0 / 155		
parameters			
Goodness-of-fit on F ²	1.033		
Final R indices	$R_1 = 0.0290, wR_2 =$		
$[1>2\sigma(1)]$	0.0657		
R indices (all data)	R1 = 0.0385, wR2 =		

 Table S7:
 Crystal data and structure refinement for [HMe₃tach][Br], [HMe₃tach][I], and [HMe₃tacn][OTf].

	0.0700	
Data cutoff	0.83	
Largest diff. peak and	0.613 and -0.445	
hole (e·Å ³)		

X-ray Data Collection, Structure Solution and Refinement for 3-La.

A colorless crystal of approximate dimensions 0.156 x 0.186 x 0.381 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2²³ program package was used to determine the unit-cell parameters and for data collection (10 sec/frame scan). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The systematic absences were consistent with the hexagonal space groups $P6_3$, $P6_3/m$ and $P6_322$. The centrosymmetric space group $P6_3/m$ was assigned and later determined to be correct.

The structure was solved by dual space methods and refined on F² by full-matrix leastsquares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0317 and Goof = 1.111 for 37 variables refined against 1382 data (0.70 Å), R1 = 0.0118 for those 1329 data with I > 2.0σ (I).

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals. The crystals were obtained from a mixture of THF and hexane, however, a suitable model for the solvent(s) could not be established. The SQUEEZE²⁸ routine in the PLATON²⁹ program package was used to account for the electrons in the solvent accessible voids. The empirical formula reported does not contain contributions from the unidentified solvent(s).

0			
La(1)-N(1)#1	2.7759(8)	N(1)#1-La(1)-Cl(1)#4	75.556(17)
La(1)-N(1)#2	2.7759(8)	N(1)#2-La(1)-Cl(1)#4	75.556(17)
La(1)-N(1)#3	2.7759(8)	N(1)#3-La(1)-Cl(1)#4	76.379(17)
La(1)-N(1)#4	2.7759(8)	N(1)#4-La(1)-Cl(1)#4	76.379(17)
La(1)-N(1)	2.7759(8)	N(1)-La(1)-Cl(1)#4	119.009(17)
La(1)-N(1)#5	2.7759(8)	N(1)#5-La(1)-Cl(1)#4	119.010(17)
La(1)-Cl(1)#4	2.7878(4)	N(1)#1-La(1)-Cl(1)#1	76.379(17)
La(1)-Cl(1)#1	2.7878(4)	N(1)#2-La(1)-Cl(1)#1	76.379(17)
La(1)-Cl(1)	2.7878(4)	N(1)#3-La(1)-Cl(1)#1	119.010(17)
N(1)-C(2)	1.4663(12)	N(1)#4-La(1)-Cl(1)#1	119.010(17)
N(1)-C(1)	1.4662(12)	N(1)-La(1)-Cl(1)#1	75.555(17)
N(1)-C(1)#4	1.4669(12)	N(1)#5-La(1)-Cl(1)#1	75.556(17)
C(1)-N(1)#1	1.4669(12)	Cl(1)#4-La(1)-Cl(1)#1	120.0
		N(1)#1-La(1)-Cl(1)	119.009(17)
N(1)#1-La(1)-N(1)#2	121.97(3)	N(1)#2-La(1)-Cl(1)	119.009(17)
N(1)#1-La(1)-N(1)#3	151.932(15)	N(1)#3-La(1)-Cl(1)	75.554(17)
N(1)#2-La(1)-N(1)#3	49.67(3)	N(1)#4-La(1)-Cl(1)	75.554(17)
N(1)#1-La(1)-N(1)#4	49.67(3)	N(1)-La(1)-Cl(1)	76.379(17)
N(1)#2-La(1)-N(1)#4	151.932(15)	N(1)#5-La(1)-Cl(1)	76.377(17)
N(1)#3-La(1)-N(1)#4	121.97(3)	Cl(1)#4-La(1)-Cl(1)	120.0
N(1)#1-La(1)-N(1)	49.67(3)	Cl(1)#1-La(1)-Cl(1)	120.0
N(1)#2-La(1)-N(1)	151.931(15)	C(2)-N(1)-C(1)	111.84(8)
N(1)#3-La(1)-N(1)	151.930(15)	C(2)-N(1)-C(1)#4	112.02(8)
N(1)#4-La(1)-N(1)	49.67(3)	C(1)-N(1)-C(1)#4	108.95(9)
N(1)#1-La(1)-N(1)#5	151.931(15)	C(2)-N(1)-La(1)	129.49(7)
N(1)#2-La(1)-N(1)#5	49.67(3)	C(1)-N(1)-La(1)	96.10(5)
N(1)#3-La(1)-N(1)#5	49.67(3)	C(1)#4-N(1)-La(1)	96.08(5)
N(1)#4-La(1)-N(1)#5	151.928(15)	N(1)-C(1)-N(1)#1	105.32(8)
N(1)-La(1)-N(1)#5	121.97(3)		

Table S8: Bond lengths [Å] and angles [°] for **3-La**.

Symmetry transformations used to generate equivalent atoms: #1 -x+y+1,-x+1,z #2 -x+y+1,-x+1,-z+1/2 #3 -y+1,x-y,-z+1/2 #4 -y+1,x-y,z #5 x,y,-z+1/2

X-ray Data Collection, Structure Solution and Refinement for 4-Y.

A colorless crystal of approximate dimensions 0.230 x 0.271 x 0.377 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2²³ program

package was used to determine the unit-cell parameters. Data was collected using a 40 sec/frame scan time. The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space group $P2_12_12_1$ that was later determined to be correct.

The structure was solved by dual space methods and refined on F^2 by full-matrix leastsquares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0377 and Goof = 0.958 for 211 variables refined against 6104 data (0.70 Å), R1 = 0.0188 for those 5625 with I > 2.0σ (I). The absolute structure was assigned by refinement of the Flack³⁰ parameter.

1 abit 57.	Dona lenguis [A] an		
Y(1)-O(2)	2.4208(13)	C(9)-C(10) 1	.506(3)
Y(1)-O(1)	2.4440(12)	C(11)-C(12) 1	.513(3)
Y(1)-N(1)	2.5661(15)	C(12)-C(13) 1	.524(3)
Y(1)-N(2)	2.5881(16)	C(13)-C(14) 1	.532(3)
Y(1)-N(3)	2.6138(15)		
Y(1)-Cl(2)	2.6232(5)	O(2)-Y(1)-O(1)	73.82(4)
Y(1)-Cl(3)	2.6356(5)	O(2)-Y(1)-N(1)	144.77(5)
Y(1)-Cl(1)	2.6558(5)	O(1)-Y(1)-N(1)	124.22(5)
O(1)-C(10)	1.459(2)	O(2)-Y(1)-N(2)	146.78(5)
O(1)-C(7)	1.461(2)	O(1)-Y(1)-N(2)	74.90(5)
O(2)-C(11)	1.441(2)	N(1)-Y(1)-N(2)	53.75(5)
O(2)-C(14)	1.441(2)	O(2)-Y(1)-N(3)	154.18(5)
N(1)-C(3)	1.462(2)	O(1)-Y(1)-N(3)	113.37(5)
N(1)-C(1)	1.467(2)	N(1)-Y(1)-N(3)	53.08(5)
N(1)-C(2)	1.469(2)	N(2)-Y(1)-N(3)	53.30(5)
N(2)-C(6)	1.467(2)	O(2)-Y(1)-Cl(2)	83.98(3)
N(2)-C(5)	1.468(2)	O(1)-Y(1)-Cl(2)	156.37(3)
N(2)-C(1)	1.476(2)	N(1)-Y(1)-Cl(2)	78.91(4)
N(3)-C(4)	1.463(2)	N(2)-Y(1)-Cl(2)	128.36(4)
N(3)-C(5)	1.464(2)	N(3)-Y(1)-Cl(2)	83.51(4)
N(3)-C(3)	1.466(2)	O(2)-Y(1)-Cl(3)	80.53(3)
C(7)-C(8)	1.513(3)	O(1)-Y(1)-Cl(3)	78.25(3)
C(8)-C(9)	1.527(3)	N(1)-Y(1)-Cl(3)	129.69(4)

Table S9:	Bond lengths	[Å]	and angles	[°]	for	4- Y.

N(2)-Y(1)-Cl(3)	103.75(4)	C(6)-N(2)-C(1)	110.67(15)
N(3)-Y(1)-Cl(3)	77.06(4)	C(5)-N(2)-C(1)	108.48(14)
Cl(2)-Y(1)-Cl(3)	90.371(16)	C(6)-N(2)-Y(1)	134.19(12)
O(2)-Y(1)-Cl(1)	76.81(3)	C(5)-N(2)-Y(1)	95.35(10)
O(1)-Y(1)-Cl(1)	82.77(3)	C(1)-N(2)-Y(1)	94.22(10)
N(1)-Y(1)-Cl(1)	76.26(4)	C(4)-N(3)-C(5)	111.63(15)
N(2)-Y(1)-Cl(1)	88.47(4)	C(4)-N(3)-C(3)	111.76(16)
N(3)-Y(1)-Cl(1)	127.71(4)	C(5)-N(3)-C(3)	109.23(15)
Cl(2)-Y(1)-Cl(1)	100.232(17)	C(4)-N(3)-Y(1)	132.58(13)
Cl(3)-Y(1)-Cl(1)	153.725(16)	C(5)-N(3)-Y(1)	94.40(10)
C(10)-O(1)-C(7)	108.42(13)	C(3)-N(3)-Y(1)	94.57(10)
C(10)-O(1)-Y(1)	125.47(10)	N(1)-C(1)-N(2)	104.70(14)
C(7)-O(1)-Y(1)	126.11(10)	N(1)-C(3)-N(3)	104.45(14)
C(11)-O(2)-C(14)	104.89(15)	N(3)-C(5)-N(2)	105.44(14)
C(11)-O(2)-Y(1)	123.51(11)	O(1)-C(7)-C(8)	105.53(15)
C(14)-O(2)-Y(1)	127.81(11)	C(7)-C(8)-C(9)	101.42(15)
C(3)-N(1)-C(1)	108.73(14)	C(10)-C(9)-C(8)	101.53(15)
C(3)-N(1)-C(2)	112.62(15)	O(1)-C(10)-C(9)	105.58(15)
C(1)-N(1)-C(2)	112.25(15)	O(2)-C(11)-C(12)	102.67(16)
C(3)-N(1)-Y(1)	96.66(11)	C(11)-C(12)-C(13)	103.76(17)
C(1)-N(1)-Y(1)	95.36(10)	C(12)-C(13)-C(14)	104.09(16)
C(2)-N(1)-Y(1)	128.72(11)	O(2)-C(14)-C(13)	105.30(16)
C(6)-N(2)-C(5)	111.11(15)		

X-ray Data Collection, Structure Solution and Refinement for 5-La.

A colorless crystal of approximate dimensions 0.087 x 0.151 x 0.257 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2²³ program package was used to determine the unit-cell parameters and for data collection (120 sec/frame scan time). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/n$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. The molecule was located about an inversion center. Hydrogen atoms H(1) and H(2) were located

from a difference-Fourier map and refined (x,y,z, riding U_{iso}) with d(O-H) = 0.80Å. The remaining hydrogen atoms were included using a riding model. There were two molecules of tetrahydrofuran solvent present per tetrameric formula-unit. The solvent molecule exhibited high thermal motion and was refined using isotropic displacement parameters.

Least-squares analysis yielded wR2 = 0.1122 and Goof = 1.062 for 519 variables refined against 10679 data (0.75 Å), R1 = 0.0394 for those 8252 data with I > 2.0σ (I).

Table STU. Do	and lengths [A] and angles [] for 5-L	a.	
La(1)-O(1)	2.362(3)	S(4)-O(13)	1.448(3)
La(1)-O(2)	2.387(3)	S(4)-C(16)	1.834(5)
La(1)-O(9)	2.510(3)	F(1)-C(13)	1.315(6)
La(1)-O(12)	2.530(3)	F(2)-C(13)	1.334(6)
La(1)-O(3)	2.594(3)	F(3)-C(13)	1.332(6)
La(1)-O(6)	2.620(3)	F(4)-C(14)	1.312(6)
La(1)-N(2)	2.752(4)	F(5)-C(14)	1.318(6)
La(1)-N(3)	2.761(4)	F(6)-C(14)	1.339(6)
La(1)-N(1)	2.777(4)	F(7)-C(15)	1.317(6)
La(1)-La(2)	3.8289(9)	F(8)-C(15)	1.315(6)
La(2)-O(2)	2.367(3)	F(9)-C(15)	1.334(6)
La(2)-O(1)	2.369(3)	F(10)-C(16)	1.328(6)
La(2)-O(13)#1	2.537(3)	F(11)-C(16)	1.336(5)
La(2)-O(11)#1	2.551(3)	F(12)-C(16)	1.318(6)
La(2)-O(4)	2.588(3)	O(11)-La(2)#1	2.551(3)
La(2)-O(7)	2.592(3)	O(13)-La(2)#1	2.537(3)
La(2)-N(5)	2.761(4)	N(1)-C(3)	1.459(6)
La(2)-N(4)	2.771(4)	N(1)-C(4)	1.460(7)
La(2)-N(6)	2.783(4)	N(1)-C(1)	1.462(7)
S(1)-O(5)	1.424(4)	N(2)-C(2)	1.461(7)
S(1)-O(3)	1.443(3)	N(2)-C(1)	1.465(7)
S(1)-O(4)	1.446(3)	N(2)-C(5)	1.471(7)
S(1)-C(13)	1.813(5)	N(3)-C(3)	1.445(6)
S(2)-O(8)	1.426(4)	N(3)-C(2)	1.454(6)
S(2)-O(6)	1.451(3)	N(3)-C(6)	1.460(6)
S(2)-O(7)	1.452(3)	N(4)-C(7)	1.448(7)
S(2)-C(14)	1.826(5)	N(4)-C(10)	1.464(6)
S(3)-O(10)	1.410(4)	N(4)-C(9)	1.471(6)
S(3)-O(11)	1.437(4)	N(5)-C(7)	1.462(7)
S(3)-O(9)	1.444(3)	N(5)-C(11)	1.462(7)
S(3)-C(15)	1.817(5)	N(5)-C(8)	1.471(7)
S(4)-O(14)	1.423(3)	N(6)-C(12)	1.458(6)
S(4)-O(12)	1.446(3)	N(6)-C(8)	1.460(7)

Table S10. Bond lengths [Å] and angles [°] for 5-La.

N(6)-C(9)	1.467(6	5)
O(15)-C(20)	1.382(1	1)
O(15)-C(17)	1.399(1	4)
C(17)-C(18)	1.425(1	6)
C(18)-C(19)	1.541(1	4)
C(19)-C(20)	1.456(1	3)
	(-)
O(1)-La(1)-O(2	2)	72.11(10)
O(1)-La(1)-O(9)	135.66(11)
O(2)-La(1)-O(9)	81.47(11)
O(1)-La(1)-O(1)	12)	139.10(11)
O(2)-La(1)-O(12)	90.72(10)
O(9)-La(1)-O(12)	74.14(11)
O(1)-La(1)-O(3)	69.79(10)
O(2)-La(1)-O(2)	3)	79.15(11)
O(9)-La(1)-O(2)	3)	139.26(11)
O(12)-La(1)-O	(3)	70.65(10)
O(1)-La(1)-O(1)	6)	70.08(11)
O(2)-La(1)-O(6)	82.32(11)
O(9)-La(1)-O(6)	71.64(11)
O(12)-La(1)-O	(6)	$145\ 71(10)$
O(3)-La(1)-O((0) 6)	139.77(10)
O(1)-La(1)-N(2)	76 13(12)
O(2)-La(1)-N(2)	2)	14655(11)
O(9)-La(1)-N(2)	2)	115.87(13)
O(12)-La(1)-N	(2)	12074(12)
O(3)-La(1)-N((2)	99 61(13)
O(6)-La(1)-N(2)	2)	77 23(12)
O(1)-La(1)-N(2)	3)	$104\ 75(11)$
O(2)-La(1)-N(2)	3)	150.25(11)
O(9)-La(1)-N(3)	11533(12)
O(12)-La(1)-N	(3)	72 26(11)
O(3)-La(1)-N((3)	72.20(11) 72.30(12)
O(6)-La(1)-N(3)	125 32(11)
N(2)-La(1)-N(2)	3)	50.04(12)
$\Omega(1)$ -La(1)-N(1)	125 61(11)
O(1)-La(1)-N(O(2) La(1) N(1)	123.01(11) 154.00(11)
O(2)-La(1)-N(O(0) L $a(1)$ N(1)	73 53(12)
O(12) La(1) - N(1) N	(1)	84.67(12)
O(12)-La(1)-N	(1)	121.85(12)
O(5)-La(1)-N(O(6) La(1) N(1) 1)	121.03(12) 87.67(11)
V(0)-La(1)-N(N(2) La(1) N(1) 1)	$\frac{0}{.0} \frac{11}{12}$
N(2) = La(1) - N(1)	1) 1)	J0.20(13) A0.03(13)
$\Omega(1) L_{\alpha}(1) L_{\alpha}$	(2)	77.73(12) 26 02(7)
O(1)-La(1)-La(1) La(1) La(1	(2)	30.03(7) 26.17(7)
O(2)-La(1)-La((2)	30.1/(/)
O(9)-La(1)-La	(2)	111.84(8)

O(12)-La(1)-La(2)	116.99(8)
O(3)-La(1)-La(2)	68.70(8)
O(6)-La(1)-La(2)	74.94(8)
N(2)-La(1)-La(2)	111.89(9)
N(3)-La(1)-La(2)	132.50(9)
N(1)-La(1)-La(2)	158.31(9)
O(2)-La(2)-O(1)	72.34(10)
O(2)-La(2)-O(13)#1	86.70(10)
O(1)-La(2)-O(13)#1	144.92(11)
O(2)-La(2)-O(11)#1	82.37(12)
O(1)-La(2)-O(11)#1	129.70(11)
O(13)#1-La(2)-O(11)	#1 72.28(11)
O(2)-La(2)-O(4)	93.95(10)
O(1)-La(2)-O(4)	70.02(10)
O(13)#1-La(2)-O(4)	141.03(11)
O(11)#1-La(2)-O(4)	69.22(11)
O(2)-La(2)-O(7)	79.40(11)
O(1)-La(2)-O(7)	71.82(10)
O(13)#1-La(2)-O(7)	76.97(11)
O(11)#1-La(2)-O(7)	144.93(11)
O(4)-La(2)-O(7)	141.46(10)
O(2)-La(2)-N(5)	158.64(12)
O(1)-La(2)-N(5)	116.87(12)
O(13)#1-La(2)-N(5)	92.82(12)
O(11)#1-La(2)-N(5)	77.17(13)
O(4)-La(2)-N(5)	73.16(12)
O(7)-La(2)-N(5)	121.31(12)
O(2)-La(2)-N(4)	146.34(11)
O(1)-La(2)-N(4)	115.25(10)
O(13)#1-La(2)-N(4)	68.80(11)
O(11)#1-La(2)-N(4)	109.93(12)
O(4)-La(2)-N(4)	119.65(11)
O(7)-La(2)-N(4)	72.99(11)
N(5)-La(2)-N(4)	50.11(12)
O(2)-La(2)-N(6)	146.00(11)
O(1)-La(2)-N(6)	74.23(11)
O(13)#1-La(2)-N(6)	118.63(11)
O(11)#1-La(2)-N(6)	125.03(12)
O(4)-La(2)-N(6)	80.28(12)
O(7)-La(2)-N(6)	84.56(12)
N(5)-La(2)-N(6)	50.14(12)
N(4)-La(2)-N(6)	49.84(12)
O(2)-La(2)-La(1)	36.53(7)
O(1)-La(2)-La(1)	35.91(7)
O(13)#1-La(2)-La(1)	119.47(8)
O(11)#1-La(2)-La(1)	106.98(9)

O(4)-La(2)-La(1)	78.24(7)	C(2)-N(2)-C(5)	112.2(5)
O(7)-La(2)-La(1)	74.11(8)	C(1)-N(2)-C(5)	110.7(5)
N(5)-La(2)-La(1)	147.42(10)	C(2)-N(2)-La(1)	95.0(3)
N(4)-La(2)-La(1)	142.76(8)	C(1)-N(2)-La(1)	95.8(3)
N(6)-La(2)-La(1)	110.10(9)	C(5)-N(2)-La(1)	131.7(4)
O(5)-S(1)-O(3)	115.0(2)	C(3)-N(3)-C(2)	109.8(4)
O(5)-S(1)-O(4)	116.3(2)	C(3)-N(3)-C(6)	112.3(4)
O(3)-S(1)-O(4)	114.0(2)	C(2)-N(3)-C(6)	112.3(4)
O(5)-S(1)-C(13)	104.8(2)	C(3)-N(3)-La(1)	95.7(3)
O(3)-S(1)-C(13)	101.8(2)	C(2)-N(3)-La(1)	94.9(3)
O(4)-S(1)-C(13)	102.3(2)	C(6)-N(3)-La(1)	129.5(3)
O(8)-S(2)-O(6)	115.5(2)	C(7)-N(4)-C(10)	112.9(4)
O(8)-S(2)-O(7)	115.2(2)	C(7)-N(4)-C(9)	109.8(4)
O(6)-S(2)-O(7)	114.8(2)	C(10)-N(4)-C(9)	110.7(4)
O(8)-S(2)-C(14)	104.2(2)	C(7)-N(4)-La(2)	94.4(3)
O(6)-S(2)-C(14)	102.2(2)	C(10)-N(4)-La(2)	130.6(3)
O(7)-S(2)-C(14)	102.4(2)	C(9)-N(4)-La(2)	96.1(3)
O(10)-S(3)-O(11)	114.9(2)	C(7)-N(5)-C(11)	113.6(5)
O(10)-S(3)-O(9)	115.6(2)	C(7)-N(5)-C(8)	108.8(4)
O(11)-S(3)-O(9)	113.7(2)	C(11)-N(5)-C(8)	111.5(4)
O(10)-S(3)-C(15)	105.8(2)	C(7)-N(5)-La(2)	94.6(3)
O(11)-S(3)-C(15)	103.1(2)	C(11)-N(5)-La(2)	130.0(3)
O(9)-S(3)-C(15)	101.5(2)	C(8)-N(5)-La(2)	95.7(3)
O(14)-S(4)-O(12)	114.8(2)	C(12)-N(6)-C(8)	111.9(4)
O(14)-S(4)-O(13)	114.8(2)	C(12)-N(6)-C(9)	111.3(4)
O(12)-S(4)-O(13)	113.18(19)	C(8)-N(6)-C(9)	109.2(4)
O(14)-S(4)-C(16)	105.8(2)	C(12)-N(6)-La(2)	131.3(3)
O(12)-S(4)-C(16)	103.7(2)	C(8)-N(6)-La(2)	95.0(3)
O(13)-S(4)-C(16)	102.7(2)	C(9)-N(6)-La(2)	95.7(2)
La(1)-O(1)-La(2)	108.06(11)	N(1)-C(1)-N(2)	106.7(4)
La(2)-O(2)-La(1)	107.29(11)	N(3)-C(2)-N(2)	106.3(4)
S(1)-O(3)-La(1)	130.78(19)	N(3)-C(3)-N(1)	107.2(4)
S(1)-O(4)-La(2)	125.73(18)	N(4)-C(7)-N(5)	107.3(4)
S(2)-O(6)-La(1)	129.67(19)	N(6)-C(8)-N(5)	106.5(4)
S(2)-O(7)-La(2)	129.39(18)	N(6)-C(9)-N(4)	105.6(4)
S(3)-O(9)-La(1)	155.0(2)	F(1)-C(13)-F(3)	108.3(4)
S(3)-O(11)-La(2)#1	150.1(2)	F(1)-C(13)-F(2)	108.2(4)
S(4)-O(12)-La(1)	162.5(2)	F(3)-C(13)-F(2)	106.5(4)
S(4)-O(13)-La(2)#1	166.2(2)	F(1)-C(13)-S(1)	111.6(3)
C(3)-N(1)-C(4)	112.1(4)	F(3)-C(13)-S(1)	110.7(3)
C(3)-N(1)-C(1)	108.1(4)	F(2)-C(13)-S(1)	111.3(4)
C(4)-N(1)-C(1)	112.1(4)	F(4)-C(14)-F(5)	108.4(4)
C(3)-N(1)-La(1)	94.7(3)	F(4)-C(14)-F(6)	107.7(4)
C(4)-N(1)-La(1)	131.9(3)	F(5)-C(14)-F(6)	108.6(4)
$C(1)-N(1)-L_{2}(1)$	· ·		× /
$\mathcal{O}(1)$ $\mathcal{I}(1)$ $\mathcal{L}u(1)$	94.9(3)	F(4)-C(14)-S(2)	112.2(3)

F(6)-C(14)-S(2) F(8)-C(15)-F(7)	109.6(3) 108.5(4)	F(10)-C(16)-F(11) F(12)-C(16)-S(4)	108.1(4) 110.7(3)
F(8)-C(15)-F(9)	107.5(4)	F(10)-C(16)-S(4)	110.1(3)
F(7)-C(15)-F(9)	107.9(4)	F(11)-C(16)-S(4)	109.1(3)
F(8)-C(15)-S(3)	111.5(4)	C(20)-O(15)-C(17)	103.2(9)
F(7)-C(15)-S(3)	110.7(3)	O(15)-C(17)-C(18)	112.2(12)
F(9)-C(15)-S(3)	110.5(3)	C(17)-C(18)-C(19)	102.8(11)
F(12)-C(16)-F(10)	109.5(4)	C(20)-C(19)-C(18)	97.8(9)
F(12)-C(16)-F(11)	109.3(4)	O(15)-C(20)-C(19)	110.7(9)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

X-ray Data Collection, Structure Solution and Refinement for 6-La.

A colorless crystal of approximate dimensions 0.242 x 0.199 x 0.176 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2²³ program package was used to determine the unit-cell parameters. Data collection used a 120 sec/frame scan time. The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atom H(7) was located from a difference-Fourier map refined (x,y,z and U_{iso}). The remaining hydrogen atoms were included using a riding model. There was one molecule of toluene present and one molecule of HMe₃tach present which is involved in hydrogen bonding to triflate oxygen atoms.

Least-squares analysis yielded wR2 = 0.0771 and Goof = 1.009 for 618 variables refined against 9139 data (0.82 Å), R1 = 0.0390 for those 6919 data with I > 2.0σ (I).

		L J	
La(1)-O(1)	2.468(2)	N(3)-C(5)	1.464(4)
La(1)-O(7)	2.525(2)	N(3)-C(4)	1.471(5)
La(1)-O(4)	2.525(2)	N(4)-C(7)	1.465(4)
La(1)-O(10)	2.579(2)	N(4)-C(11)	1.466(4)
La(1)-N(6)	2.774(3)	N(4)-C(12)	1.473(4)
La(1)-N(2)	2.778(3)	N(5)-C(9)	1.461(4)
La(1)-N(3)	2.782(3)	N(5)-C(7)	1.463(4)
La(1)-N(5)	2.795(3)	N(5)-C(8)	1.475(4)
La(1)-N(4)	2.824(3)	N(6)-C(9)	1.462(4)
La(1)-N(1)	2.842(3)	N(6)-C(10)	1.465(4)
S(1)-O(3)	1.427(3)	N(6)-C(11)	1.469(4)
S(1)-O(2)	1.436(3)	N(7)-C(22)	1.484(5)
S(1)-O(1)	1.447(2)	N(7)-C(17)	1.497(5)
S(1)-C(13)	1.819(4)	N(7)-C(21)	1.535(5)
S(2)-O(6)	1.434(3)	N(8)-C(17)	1.447(5)
S(2)-O(5)	1.444(2)	N(8)-C(18)	1.457(5)
S(2)-O(4)	1.453(2)	N(8)-C(19)	1.460(5)
S(2)-C(14)	1.818(4)	N(9)-C(21)	1.428(5)
S(3)-O(9)	1.417(3)	N(9)-C(19)	1.449(5)
S(3)-O(8)	1.430(3)	N(9)-C(20)	1.466(5)
S(3)-O(7)	1.470(2)	C(23)-C(28)	1.388(6)
S(3)-C(15)	1.818(5)	C(23)-C(24)	1.400(6)
S(4)-O(12)	1.429(3)	C(23)-C(29)	1.479(6)
S(4)-O(11)	1.429(3)	C(24)-C(25)	1.374(6)
S(4)-O(10)	1.463(2)	C(25)-C(26)	1.399(6)
S(4)-C(16)	1.818(4)	C(26)-C(27)	1.373(6)
F(1)-C(13)	1.347(4)	C(27)-C(28)	1.375(6)
F(2)-C(13)	1.320(4)		
F(3)-C(13)	1.327(4)	O(1)-La(1)-O	(7) 155.93(8)
F(4)-C(14)	1.336(4)	O(1)-La(1)-O	(4) 77.06(8)
F(5)-C(14)	1.334(4)	O(7)-La(1)-O	(4) 79.21(7)
F(6)-C(14)	1.328(4)	O(1)-La(1)-O	(10) 87.05(8)
F(7)-C(15)	1.322(5)	O(7)-La(1)-O	(10) 116.69(7)
F(8)-C(15)	1.332(5)	O(4)-La(1)-O	(10) 164.10(7)
F(9)-C(15)	1.316(5)	O(1)-La(1)-N	(6) 123.11(8)
F(10)-C(16)	1.326(5)	O(7)-La(1)-N	(6) 71.71(8)
F(11)-C(16)	1.324(4)	O(4)-La(1)-N	(6) 116.07(7)
F(12)-C(16)	1.340(4)	O(10)-La(1)-N	N(6) 72.12(7)
N(1)-C(5)	1.459(4)	O(1)-La(1)-N	(2) 93.64(8)
N(1)-C(1)	1.464(4)	O(7)-La(1)-N	(2) 74.30(8)
N(1)-C(6)	1.474(4)	O(4)-La(1)-N	(2) 69.91(8)
N(2)-C(1)	1.459(4)	O(10)-La(1)-N	N(2) 112.45(8)
N(2)-C(3)	1.459(4)	N(6)-La(1)-N	(2) 143.23(8)
N(2)-C(2)	1.473(4)	O(1)-La(1)-N	(3) 116.38(8)
N(3)-C(3)	1.464(4)	O(7)-La(1)-N	(3) 71.76(8)

Table S11:	Bond le	ngths [Å] and	angles	[°]	for	6-La .
------------	---------	----------	-------	--------	-----	-----	---------------

O(4)-La(1)-N(3)	117.59(8)	O(12)-S(4)-O(11)
O(10)-La(1)-N(3)	70.18(8)	O(12)-S(4)-O(10)
N(6)-La(1)-N(3)	105.33(8)	O(11)-S(4)-O(10)
N(2)-La(1)-N(3)	49.67(8)	O(12)-S(4)-C(16)
O(1)-La(1)-N(5)	100.09(8)	O(11)-S(4)-C(16)
O(7)-La(1)-N(5)	74.64(8)	O(10)-S(4)-C(16)
O(4)-La(1)-N(5)	68.43(8)	S(1)-O(1)-La(1)
O(10)-La(1)-N(5)	114.46(8)	S(2)-O(4)-La(1)
N(6)-La(1)-N(5)	49.61(8)	S(3)-O(7)-La(1)
N(2)-La(1)-N(5)	131.55(8)	S(4)-O(10)-La(1)
N(3)-La(1)-N(5)	143.54(8)	C(5)-N(1)-C(1)
O(1)-La(1)-N(4)	73.85(8)	C(5)-N(1)-C(6)
O(7)-La(1)-N(4)	115.68(7)	C(1)-N(1)-C(6)
O(4)-La(1)-N(4)	102.49(7)	C(5)-N(1)-La(1)
O(10)-La(1)-N(4)	71.83(7)	C(1)-N(1)-La(1)
N(6)-La(1)-N(4)	49.55(8)	C(6)-N(1)-La(1)
N(2)-La(1)-N(4)	166.80(8)	C(1)-N(2)-C(3)
N(3)-La(1)-N(4)	139.80(8)	C(1)-N(2)-C(2)
N(5)-La(1)-N(4)	49.49(8)	C(3)-N(2)-C(2)
O(1)-La(1)-N(1)	67.44(8)	C(1)-N(2)-La(1)
O(7)-La(1)-N(1)	115.10(8)	C(3)-N(2)-La(1)
O(4)-La(1)-N(1)	103.89(8)	C(2)-N(2)-La(1)
O(10)-La(1)-N(1)	69.98(8)	C(3)-N(3)-C(5)
N(6)-La(1)-N(1)	139.91(8)	C(3)-N(3)-C(4)
N(2)-La(1)-N(1)	49.32(8)	C(5)-N(3)-C(4)
N(3)-La(1)-N(1)	49.04(8)	C(3)-N(3)-La(1)
N(5)-La(1)-N(1)	166.99(8)	C(5)-N(3)-La(1)
N(4)-La(1)-N(1)	125.94(8)	C(4)-N(3)-La(1)
O(3)-S(1)-O(2)	117.01(16)	C(7)-N(4)-C(11)
O(3)-S(1)-O(1)	113.60(15)	C(7)-N(4)-C(12)
O(2)-S(1)-O(1)	113.60(15)	C(11)-N(4)-C(12)
O(3)-S(1)-C(13)	104.14(17)	C(7)-N(4)-La(1)
O(2)-S(1)-C(13)	103.60(17)	C(11)-N(4)-La(1)
O(1)-S(1)-C(13)	102.66(17)	C(12)-N(4)-La(1)
O(6)-S(2)-O(5)	115.72(16)	C(9)-N(5)-C(7)
O(6)-S(2)-O(4)	114.63(15)	C(9)-N(5)-C(8)
O(5)-S(2)-O(4)	113.72(15)	C(7)-N(5)-C(8)
O(6)-S(2)-C(14)	104.16(18)	C(9)-N(5)-La(1)
O(5)-S(2)-C(14)	103.14(16)	C(7)-N(5)-La(1)
O(4)-S(2)-C(14)	103.31(16)	C(8)-N(5)-La(1)
O(9)-S(3)-O(8)	117.35(19)	C(9)-N(6)-C(10)
O(9)-S(3)-O(7)	114.02(15)	C(9)-N(6)-C(11)
O(8)-S(3)-O(7)	113.27(16)	C(10)-N(6)-C(11)
O(9)-S(3)-C(15)	103.62(19)	C(9)-N(6)-La(1)
O(8)-S(3)-C(15)	104.5(2)	C(10)-N(6)-La(1)
O(7)-S(3)-C(15)	101.70(17)	C(11)-N(6)-La(1)

116.27(17) 114.10(15) 114.94(15) 103.01(19) 103.55(18) 102.37(17) 156.03(15) 153.13(14) 154.51(14) 159.30(14) 109.2(3) 111.3(3) 110.4(3)95.88(18) 93.16(18) 134.2(2) 109.3(3) 110.0(3) 110.9(3) 95.91(19) 95.98(19) 132.6(2) 106.5(3) 111.6(3) 111.6(3) 95.68(19) 98.26(19) 130.3(2) 108.9(3) 109.8(3) 110.6(3) 94.19(18) 95.30(18) 135.4(2) 109.5(3) 110.9(3) 110.7(3) 95.36(18) 95.46(18) 132.6(2) 111.0(3) 107.4(3) 112.3(3) 96.18(18) 130.0(2) 97.29(18)

N(2)-C(1)-N(1)	106.8(3)	F(11)-C(16)-F(12)	107.5(3)
N(2)-C(3)-N(3)	106.1(3)	F(10)-C(16)-F(12)	107.3(3)
N(1)-C(5)-N(3)	106.1(3)	F(11)-C(16)-S(4)	111.8(3)
N(5)-C(7)-N(4)	106.9(3)	F(10)-C(16)-S(4)	112.0(3)
N(5)-C(9)-N(6)	106.2(3)	F(12)-C(16)-S(4)	109.9(3)
N(4)-C(11)-N(6)	106.2(3)	C(22)-N(7)-C(17)	110.7(3)
F(2)-C(13)-F(3)	107.4(3)	C(22)-N(7)-C(21)	111.5(3)
F(2)-C(13)-F(1)	107.2(3)	C(17)-N(7)-C(21)	109.1(3)
F(3)-C(13)-F(1)	107.4(3)	C(17)-N(8)-C(18)	110.0(3)
F(2)-C(13)-S(1)	110.6(3)	C(17)-N(8)-C(19)	110.1(3)
F(3)-C(13)-S(1)	112.6(3)	C(18)-N(8)-C(19)	111.8(3)
F(1)-C(13)-S(1)	111.3(3)	C(21)-N(9)-C(19)	110.5(3)
F(6)-C(14)-F(5)	107.8(3)	C(21)-N(9)-C(20)	114.7(3)
F(6)-C(14)-F(4)	107.8(3)	C(19)-N(9)-C(20)	113.6(3)
F(5)-C(14)-F(4)	106.7(3)	N(8)-C(17)-N(7)	109.3(3)
F(6)-C(14)-S(2)	111.6(3)	N(9)-C(19)-N(8)	111.2(3)
F(5)-C(14)-S(2)	112.4(3)	N(9)-C(21)-N(7)	111.7(3)
F(4)-C(14)-S(2)	110.3(3)	C(28)-C(23)-C(24)	117.1(4)
F(9)-C(15)-F(7)	108.1(4)	C(28)-C(23)-C(29)	121.2(4)
F(9)-C(15)-F(8)	108.1(4)	C(24)-C(23)-C(29)	121.7(4)
F(7)-C(15)-F(8)	106.9(4)	C(25)-C(24)-C(23)	122.1(4)
F(9)-C(15)-S(3)	111.1(3)	C(24)-C(25)-C(26)	119.5(4)
F(7)-C(15)-S(3)	111.2(4)	C(27)-C(26)-C(25)	118.8(4)
F(8)-C(15)-S(3)	111.3(3)	C(26)-C(27)-C(28)	121.3(4)
F(11)-C(16)-F(10)	108.2(4)	C(27)-C(28)-C(23)	121.2(4)

X-ray Data Collection, Structure Solution and Refinement for 8-La.

A colorless crystal of approximate dimensions 0.184 x 0.165 x 0.082 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2²³ program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space groups *Pnma* and *Pna*2₁. It was later determined that space group *Pna*2₁ was correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The structure was refined as an inversion twin.

Least-squares analysis yielded wR2 = 0.0873 and Goof = 1.021 for 193 variables refined against 6364 data (0.70 Å), R1 = 0.0397 for those 5660 data with I > 2.0σ (I).

Table S12:	Bond lengths	[Å] and	angles [°]	for 8-La .
------------	--------------	---------	------------	-------------------

La(1)-O(1)	2.628(6)	C(4)-H(4B)	0.9900
La(1)-N(2)	2.668(9)	C(5)-H(5A)	0.9900
La(1)-N(3)	2.744(8)	C(5)-H(5B)	0.9900
La(1)-N(1)	2.752(9)	C(6)-H(6A)	0.9800
La(1)-I(3)	3.1337(9)	C(6)-H(6B)	0.9800
La(1)-I(2)	3.1738(9)	C(6)-H(6C)	0.9800
La(1)-I(1)	3.1749(9)	C(7)-C(8)	1.493(17)
O(1)-C(13)	1.438(12)	C(7)-H(7A)	0.9900
O(1)-C(10)	1.455(13)	C(7)-H(7B)	0.9900
N(1)-C(9)	1.484(14)	C(8)-H(8A)	0.9900
N(1)-C(1)	1.493(13)	C(8)-H(8B)	0.9900
N(1)-C(8)	1.501(14)	C(9)-H(9A)	0.9800
N(2)-C(2)	1.478(13)	C(9)-H(9B)	0.9800
N(2)-C(3)	1.488(14)	C(9)-H(9C)	0.9800
N(2)-C(4)	1.509(14)	C(10)-C(11)	1.510(16)
N(3)-C(6)	1.478(12)	C(10)-H(10A)	0.9900
N(3)-C(7)	1.484(14)	C(10)-H(10B)	0.9900
N(3)-C(5)	1.515(14)	C(11)-C(12)	1.524(14)
C(1)-C(2)	1.491(15)	C(11)-H(11A)	0.9900
C(1)-H(1A)	0.9900	C(11)-H(11B)	0.9900
C(1)-H(1B)	0.9900	C(12)-C(13)	1.513(15)
C(2)-H(2A)	0.9900	C(12)-H(12A)	0.9900
C(2)-H(2B)	0.9900	C(12)-H(12B)	0.9900
C(3)-H(3A)	0.9800	C(13)-H(13A)	0.9900
C(3)-H(3B)	0.9800	C(13)-H(13B)	0.9900
C(3)-H(3C)	0.9800		
C(4)-C(5)	1.509(15)	O(1)-La(1)-N(2)	132.3(3)
C(4)-H(4A)	0.9900	O(1)-La(1)-N(3)	145.4(2)

N(2)-La(1)-N(3)	65.1(3)	C(2)-C(1)-N(1)	115.0(8)
O(1)-La(1)-N(1)	145.4(2)	C(2)-C(1)-H(1A)	108.5
N(2)-La(1)-N(1)	65.9(3)	N(1)-C(1)-H(1A)	108.5
N(3)-La(1)-N(1)	64.8(3)	C(2)-C(1)-H(1B)	108.5
O(1)-La(1)-I(3)	81.46(17)	N(1)-C(1)-H(1B)	108.5
N(2)-La(1)-I(3)	146.2(2)	H(1A)-C(1)-H(1B)	107.5
N(3)-La(1)-I(3)	86.90(17)	N(2)-C(2)-C(1)	114.6(9)
N(1)-La(1)-I(3)	85.72(19)	N(2)-C(2)-H(2A)	108.6
O(1)-La(1)-I(2)	72.39(16)	C(1)-C(2)-H(2A)	108.6
N(2)-La(1)-I(2)	86.13(19)	N(2)-C(2)-H(2B)	108.6
N(3)-La(1)-I(2)	80.92(18)	C(1)-C(2)-H(2B)	108.6
N(1)-La(1)-I(2)	142.19(19)	H(2A)-C(2)-H(2B)	107.6
I(3)-La(1)-I(2)	108.76(2)	N(2)-C(3)-H(3A)	109.5
O(1)-La(1)-I(1)	71.62(15)	N(2)-C(3)-H(3B)	109.5
N(2)-La(1)-I(1)	87.85(18)	H(3A)-C(3)-H(3B)	109.5
N(3)-La(1)-I(1)	142.91(18)	N(2)-C(3)-H(3C)	109.5
N(1)-La(1)-I(1)	81.55(19)	H(3A)-C(3)-H(3C)	109.5
I(3)-La(1)-I(1)	106.44(3)	H(3B)-C(3)-H(3C)	109.5
I(2)-La(1)-I(1)	124.13(3)	N(2)-C(4)-C(5)	114.7(9)
C(13)-O(1)-C(10)	108.9(7)	N(2)-C(4)-H(4A)	108.6
C(13)-O(1)-La(1)	126.8(6)	C(5)-C(4)-H(4A)	108.6
C(10)-O(1)-La(1)	120.0(6)	N(2)-C(4)-H(4B)	108.6
C(9)-N(1)-C(1)	109.1(8)	C(5)-C(4)-H(4B)	108.6
C(9)-N(1)-C(8)	106.9(9)	H(4A)-C(4)-H(4B)	107.6
C(1)-N(1)-C(8)	110.1(8)	C(4)-C(5)-N(3)	111.7(8)
C(9)-N(1)-La(1)	112.6(6)	C(4)-C(5)-H(5A)	109.3
C(1)-N(1)-La(1)	111.9(6)	N(3)-C(5)-H(5A)	109.3
C(8)-N(1)-La(1)	106.0(7)	C(4)-C(5)-H(5B)	109.3
C(2)-N(2)-C(3)	108.5(8)	N(3)-C(5)-H(5B)	109.3
C(2)-N(2)-C(4)	111.0(9)	H(5A)-C(5)-H(5B)	107.9
C(3)-N(2)-C(4)	110.2(9)	N(3)-C(6)-H(6A)	109.5
C(2)-N(2)-La(1)	105.9(6)	N(3)-C(6)-H(6B)	109.5
C(3)-N(2)-La(1)	104.8(6)	H(6A)-C(6)-H(6B)	109.5
C(4)-N(2)-La(1)	116.0(6)	N(3)-C(6)-H(6C)	109.5
C(6)-N(3)-C(7)	109.5(8)	H(6A)-C(6)-H(6C)	109.5
C(6)-N(3)-C(5)	107.0(8)	H(6B)-C(6)-H(6C)	109.5
C(7)-N(3)-C(5)	109.8(9)	N(3)-C(7)-C(8)	113.5(9)
C(6)-N(3)-La(1)	108.8(6)	N(3)-C(7)-H(7A)	108.9
C(7)-N(3)-La(1)	115.7(6)	C(8)-C(7)-H(7A)	108.9
C(5)-N(3)-La(1)	105.6(6)	N(3)-C(7)-H(7B)	108.9

C(8)-C(7)-H(7B)	108.9	H(10A)-C(10)-H(10B)	108.6
H(7A)-C(7)-H(7B)	107.7	C(10)-C(11)-C(12)	104.2(9)
C(7)-C(8)-N(1)	114.7(9)	C(10)-C(11)-H(11A)	110.9
C(7)-C(8)-H(8A)	108.6	C(12)-C(11)-H(11A)	110.9
N(1)-C(8)-H(8A)	108.6	C(10)-C(11)-H(11B)	110.9
C(7)-C(8)-H(8B)	108.6	C(12)-C(11)-H(11B)	110.9
N(1)-C(8)-H(8B)	108.6	H(11A)-C(11)-H(11B)	108.9
H(8A)-C(8)-H(8B)	107.6	C(13)-C(12)-C(11)	102.0(9)
N(1)-C(9)-H(9A)	109.5	C(13)-C(12)-H(12A)	111.4
N(1)-C(9)-H(9B)	109.5	C(11)-C(12)-H(12A)	111.4
H(9A)-C(9)-H(9B)	109.5	C(13)-C(12)-H(12B)	111.4
N(1)-C(9)-H(9C)	109.5	C(11)-C(12)-H(12B)	111.4
H(9A)-C(9)-H(9C)	109.5	H(12A)-C(12)-H(12B)	109.2
H(9B)-C(9)-H(9C)	109.5	O(1)-C(13)-C(12)	105.7(8)
O(1)-C(10)-C(11)	106.8(9)	O(1)-C(13)-H(13A)	110.6
O(1)-C(10)-H(10A)	110.4	C(12)-C(13)-H(13A)	110.6
C(11)-C(10)-H(10A)	110.4	O(1)-C(13)-H(13B)	110.6
O(1)-C(10)-H(10B)	110.4	C(12)-C(13)-H(13B)	110.6
C(11)-C(10)-H(10B)	110.4	H(13A)-C(13)-H(13B)	108.7

X-ray Data Collection, Structure Solution and Refinement for 9-Y.

A colorless crystal of approximate dimensions 0.177 x 0.208 x 0.236 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2²³ program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis.

Hydrogen atoms were included using a riding model. The structure was refined as a twocomponent twin.

Least-squares analysis yielded wR2 = 0.1458 and Goof = 1.098 for 149 variables refined against 3137 data (0.80 Å), R1 = 0.0521 for those 2475 data with I > 2.0σ (I).

Table S13: Bond lengths [Å] and angles [°] for 9-Y.

V(1)-N(3)	2483(5)	N(3)-Y(1)-C(2)	94.02(13)
Y(1) - N(2)	2.409(5)	N(2)-Y(1)-C1(2)	91.02(13)
V(1)-N(1)	2.199(3) 2.508(5)	N(1)-V(1)-Cl(2)	159 82(13)
V(1)-C(1)	2.500(5) 2.5555(17)	$C_{1}(1) - V_{1}(1) - C_{1}(2)$	101 28(6)
V(1) C1(2)	2.5555(17) 2.5502(18)	$C_1(1) = T_1(1) - C_1(2)$ $C_1(2) = V_1(1) - C_1(2)$	101.20(0) 101.02(6)
V(1) C1(3)	2.5392(18) 2.5610(17)	C(3) - 1(1) - C(2) C(0) N(1) C(1)	101.92(0) 108.4(5)
I(1)-CI(2) N(1)-C(0)	2.3010(17) 1.485(0)	C(9) - N(1) - C(1)	100.4(3) 110.2(5)
N(1)-C(9)	1.483(9)	C(9)-N(1)-C(8)	110.3(3)
N(1)-C(1)	1.492(9)	C(1)-N(1)-C(8)	111.0(5)
N(1)-C(8)	1.495(8)	C(9)-N(1)-Y(1)	109.4(4)
N(2)-C(2)	1.490(9)	C(1)-N(1)-Y(1)	104.2(4)
N(2)-C(4)	1.491(8)	C(8)-N(1)-Y(1)	113.4(4)
N(2)-C(3)	1.505(9)	C(2)-N(2)-C(4)	112.8(5)
N(3)-C(6)	1.488(8)	C(2)-N(2)-C(3)	110.4(5)
N(3)-C(5)	1.498(8)	C(4)-N(2)-C(3)	108.2(5)
N(3)-C(7)	1.506(9)	C(2)-N(2)-Y(1)	112.5(4)
C(1)-C(2)	1.504(10)	C(4)-N(2)-Y(1)	103.2(4)
C(4)-C(5)	1.509(9)	C(3)-N(2)-Y(1)	109.3(4)
C(7)-C(8)	1.513(9)	C(6)-N(3)-C(5)	110.0(5)
		C(6)-N(3)-C(7)	107.8(5)
N(3)-Y(1)-N(2)	71.74(18)	C(5)-N(3)-C(7)	111.3(5)
N(3)-Y(1)-N(1)	70.84(17)	C(6)-N(3)-Y(1)	110.0(4)
N(2)-Y(1)-N(1)	71.15(19)	C(5)-N(3)-Y(1)	112.2(4)
N(3)-Y(1)-Cl(1)	156.86(13)	C(7)-N(3)-Y(1)	105.5(4)
N(2)-Y(1)-Cl(1)	90.37(13)	N(1)-C(1)-C(2)	112.9(5)
N(1)-Y(1)-Cl(1)	89.82(13)	N(2)-C(2)-C(1)	113.7(5)
N(3)-Y(1)-Cl(3)	92.35(14)	N(2)-C(4)-C(5)	112.9(5)
N(2)-Y(1)-Cl(3)	159.81(13)	N(3)-C(5)-C(4)	113.1(5)
N(1)-Y(1)-Cl(3)	92.22(14)	N(3)-C(7)-C(8)	112.1(5)
Cl(1)-Y(1)-Cl(3)	101.23(6)	N(1)-C(8)-C(7)	112.2(5)

X-ray Data Collection, Structure Solution and Refinement for 10-Sm.

A green crystal of approximate dimensions 0.226 x 0.166 x 0.120 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer system. The APEX2²³

program package was used to determine the unit-cell parameters and for data collection (120 sec/frame scan time). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was *mmm* and the systematic absences were consistent with the orthorhombic space groups *Pnma* and *Pna*2₁. It was later determined that space group *Pna*2₁ was correct.

The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. Disordered carbon atoms were included using multiple components, partial site-occupancy-factors and equivalent isotropic displacement parameters.

Least-squares analysis yielded wR2 = 0.0563 and Goof = 0.985 for 179 variables refined against 4718 data (0.76 Å), R1 = 0.0506 for those 3222 data with I > 2.0σ (I). The structure was refined as a two-component inversion twin.

 Table S14:
 Bond lengths [Å] and angles [°] for 10-Sm.

Sm(1)-O(1)	2.534(9)	N(3)-C(8A)	1.42(3)
Sm(1)-N(3)	2.636(9)	N(3)-C(6B)	1.44(3)
Sm(1)-N(1)	2.653(10)	N(3)-C(7)	1.447(16)
Sm(1)-N(2)	2.699(10)	N(3)-C(8B)	1.56(3)
Sm(1)-I(2)	3.1804(12)	N(3)-C(6A)	1.59(3)
Sm(1)-I(1)	3.2030(11)	C(1)-H(1A)	0.9800
O(1)-C(10)	1.394(16)	C(1)-H(1B)	0.9800
O(1)-C(13)	1.469(17)	C(1)-H(1C)	0.9800
N(1)-C(2)	1.466(18)	C(2)-C(3B)	1.37(3)
N(1)-C(1)	1.468(17)	C(2)-C(3A)	1.43(4)
N(1)-C(9)	1.481(18)	C(2)-H(2A)	0.9900
N(2)-C(5)	1.440(17)	C(2)-H(2B)	0.9900
N(2)-C(3B)	1.46(3)	C(3A)-H(3AA)	0.9900
N(2)-C(4)	1.465(16)	C(3A)-H(3AB)	0.9900
N(2)-C(3A)	1.55(4)	C(3B)-H(3BA)	0.9900

C(3B)-H(3BB)	0.9900	N(1)-Sm(1)-N(2)	65.8(3)
C(4)-H(4A)	0.9800	O(1)-Sm(1)-I(2)	94.5(2)
C(4)-H(4B)	0.9800	N(3)-Sm(1)-I(2)	101.9(2)
C(4)-H(4C)	0.9800	N(1)-Sm(1)-I(2)	157.4(2)
C(5)-C(6A)	1.31(3)	N(2)-Sm(1)-I(2)	91.9(2)
C(5)-C(6B)	1.53(3)	O(1)-Sm(1)-I(1)	93.0(2)
C(5)-H(5A)	0.9900	N(3)-Sm(1)-I(1)	94.6(2)
C(5)-H(5B)	0.9900	N(1)-Sm(1)-I(1)	93.8(2)
C(6A)-H(6AA)	0.9900	N(2)-Sm(1)-I(1)	156.3(2)
C(6A)-H(6AB)	0.9900	I(2)-Sm(1)-I(1)	106.95(3)
C(6B)-H(6BA)	0.9900	C(10)-O(1)-C(13)	109.4(10)
C(6B)-H(6BB)	0.9900	C(10)-O(1)-Sm(1)	132.5(8)
C(7)-H(7A)	0.9800	C(13)-O(1)-Sm(1)	113.2(8)
C(7)-H(7B)	0.9800	C(2)-N(1)-C(1)	110.2(12)
C(7)-H(7C)	0.9800	C(2)-N(1)-C(9)	112.9(13)
C(8A)-C(9)	1.53(3)	C(1)-N(1)-C(9)	110.1(11)
C(8A)-H(8AA)	0.9900	C(2)-N(1)-Sm(1)	110.6(8)
C(8A)-H(8AB)	0.9900	C(1)-N(1)-Sm(1)	104.2(8)
C(8B)-C(9)	1.33(3)	C(9)-N(1)-Sm(1)	108.6(9)
C(8B)-H(8BA)	0.9900	C(5)-N(2)-C(3B)	126.8(15)
C(8B)-H(8BB)	0.9900	C(5)-N(2)-C(4)	109.2(11)
C(9)-H(9A)	0.9900	C(3B)-N(2)-C(4)	101.8(13)
C(9)-H(9B)	0.9900	C(5)-N(2)-C(3A)	95.4(17)
C(10)-C(11)	1.477(19)	C(4)-N(2)-C(3A)	120.7(17)
C(10)-H(10A)	0.9900	C(5)-N(2)-Sm(1)	106.8(8)
C(10)-H(10B)	0.9900	C(3B)-N(2)-Sm(1)	103.4(11)
C(11)-C(12)	1.54(2)	C(4)-N(2)-Sm(1)	107.5(8)
C(11)-H(11A)	0.9900	C(3A)-N(2)-Sm(1)	115.6(14)
C(11)-H(11B)	0.9900	C(8A)-N(3)-C(7)	119.0(15)
C(12)-C(13)	1.45(2)	C(6B)-N(3)-C(7)	117.9(14)
C(12)-H(12A)	0.9900	C(6B)-N(3)-C(8B)	110.4(17)
C(12)-H(12B)	0.9900	C(7)-N(3)-C(8B)	102.7(13)
C(13)-H(13A)	0.9900	C(8A)-N(3)-C(6A)	109.1(17)
C(13)-H(13B)	0.9900	C(7)-N(3)-C(6A)	102.8(12)
		C(8A)-N(3)-Sm(1)	118.1(13)
O(1)-Sm(1)-N(3)	159.0(3)	C(6B)-N(3)-Sm(1)	117.5(12)
O(1)-Sm(1)-N(1)	93.1(3)	C(7)-N(3)-Sm(1)	105.0(7)
N(3)-Sm(1)-N(1)	66.9(3)	C(8B)-N(3)-Sm(1)	101.1(12)
O(1)-Sm(1)-N(2)	99.8(3)	C(6A)-N(3)-Sm(1)	100.2(11)
N(3)-Sm(1)-N(2)	66.9(3)	N(1)-C(1)-H(1A)	109.5

N(1)-C(1)-H(1B)	109.5	C(5)-C(6A)-H(6AB)	107.8
H(1A)-C(1)-H(1B)	109.5	N(3)-C(6A)-H(6AB)	107.8
N(1)-C(1)-H(1C)	109.5	H(6AA)-C(6A)-H(6AB)	107.1
H(1A)-C(1)-H(1C)	109.5	N(3)-C(6B)-C(5)	113.5(19)
H(1B)-C(1)-H(1C)	109.5	N(3)-C(6B)-H(6BA)	108.9
C(3B)-C(2)-N(1)	119.8(16)	C(5)-C(6B)-H(6BA)	108.9
C(3A)-C(2)-N(1)	120(2)	N(3)-C(6B)-H(6BB)	108.9
C(3B)-C(2)-H(2A)	107.4	C(5)-C(6B)-H(6BB)	108.9
N(1)-C(2)-H(2A)	107.4	H(6BA)-C(6B)-H(6BB)	107.7
C(3B)-C(2)-H(2B)	107.4	N(3)-C(7)-H(7A)	109.5
N(1)-C(2)-H(2B)	107.4	N(3)-C(7)-H(7B)	109.5
H(2A)-C(2)-H(2B)	106.9	H(7A)-C(7)-H(7B)	109.5
C(2)-C(3A)-N(2)	111(2)	N(3)-C(7)-H(7C)	109.5
C(2)-C(3A)-H(3AA)	109.5	H(7A)-C(7)-H(7C)	109.5
N(2)-C(3A)-H(3AA)	109.5	H(7B)-C(7)-H(7C)	109.5
C(2)-C(3A)-H(3AB)	109.5	N(3)-C(8A)-C(9)	114(2)
N(2)-C(3A)-H(3AB)	109.5	N(3)-C(8A)-H(8AA)	108.8
H(3AA)-C(3A)-H(3AB)	108.1	C(9)-C(8A)-H(8AA)	108.8
C(2)-C(3B)-N(2)	120.4(19)	N(3)-C(8A)-H(8AB)	108.8
C(2)-C(3B)-H(3BA)	107.2	C(9)-C(8A)-H(8AB)	108.8
N(2)-C(3B)-H(3BA)	107.2	H(8AA)-C(8A)-H(8AB)	107.7
C(2)-C(3B)-H(3BB)	107.2	C(9)-C(8B)-N(3)	117(2)
N(2)-C(3B)-H(3BB)	107.2	C(9)-C(8B)-H(8BA)	108.0
H(3BA)-C(3B)-H(3BB)	106.9	N(3)-C(8B)-H(8BA)	108.0
N(2)-C(4)-H(4A)	109.5	C(9)-C(8B)-H(8BB)	108.0
N(2)-C(4)-H(4B)	109.5	N(3)-C(8B)-H(8BB)	108.0
H(4A)-C(4)-H(4B)	109.5	H(8BA)-C(8B)-H(8BB)	107.2
N(2)-C(4)-H(4C)	109.5	C(8B)-C(9)-N(1)	120.7(18)
H(4A)-C(4)-H(4C)	109.5	N(1)-C(9)-C(8A)	117.4(15)
H(4B)-C(4)-H(4C)	109.5	C(8B)-C(9)-H(9A)	107.2
C(6A)-C(5)-N(2)	123.3(17)	N(1)-C(9)-H(9A)	107.2
N(2)-C(5)-C(6B)	119.2(15)	C(8B)-C(9)-H(9B)	107.2
C(6A)-C(5)-H(5A)	106.5	N(1)-C(9)-H(9B)	107.2
N(2)-C(5)-H(5A)	106.5	H(9A)-C(9)-H(9B)	106.8
C(6A)-C(5)-H(5B)	106.5	O(1)-C(10)-C(11)	109.9(12)
N(2)-C(5)-H(5B)	106.5	O(1)-C(10)-H(10A)	109.7
H(5A)-C(5)-H(5B)	106.5	C(11)-C(10)-H(10A)	109.7
C(5)-C(6A)-N(3)	118(2)	O(1)-C(10)-H(10B)	109.7
C(5)-C(6A)-H(6AA)	107.8	C(11)-C(10)-H(10B)	109.7
N(3)-C(6A)-H(6AA)	107.8	H(10A)-C(10)-H(10B)	108.2

102.1(12)	C(13)-C(12)-H(12B)	110.5
111.3	C(11)-C(12)-H(12B)	110.5
111.3	H(12A)-C(12)-H(12B)	108.7
111.3	C(12)-C(13)-O(1)	105.4(13)
111.3	C(12)-C(13)-H(13A)	110.7
109.2	O(1)-C(13)-H(13A)	110.7
106.0(13)	C(12)-C(13)-H(13B)	110.7
110.5	O(1)-C(13)-H(13B)	110.7
110.5	H(13A)-C(13)-H(13B)	108.8
	102.1(12) 111.3 111.3 111.3 111.3 109.2 106.0(13) 110.5 110.5	102.1(12) $C(13)-C(12)-H(12B)$ 111.3 $C(11)-C(12)-H(12B)$ 111.3 $H(12A)-C(12)-H(12B)$ 111.3 $C(12)-C(13)-O(1)$ 111.3 $C(12)-C(13)-H(13A)$ 109.2 $O(1)-C(13)-H(13A)$ $106.0(13)$ $C(12)-C(13)-H(13B)$ 110.5 $O(1)-C(13)-H(13B)$ 110.5 $H(13A)-C(13)-H(13B)$

X-ray Data Collection, Structure Solution and Refinement for [HMe₃tach][Br].

A colorless crystal of approximate dimensions $0.150 \times 0.114 \times 0.083$ mm was mounted in a cryoloop and transferred to a Bruker X8 Prospector diffractometer system. The APEX3³¹ program package was used to determine the unit-cell parameters and for data collection (10 sec/frame scan time). The raw frame data was processed using SAINT²⁴ and SADABS²⁵ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL²⁶ program package. The diffraction symmetry was 2/*m* and the systematic absences were consistent with the monoclinic space group *P*2₁/*n* that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors²⁷ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}).

Least-squares analysis yielded wR2 = 0.0700 and Goof = 1.033 for 155 variables refined against 1723 data (0.83 Å), R1 = 0.0290 for those 1453 data with I > 2.0σ (I).

Figure S1: Molecular structure of [HMe₃tach][Br] with selective atom labelling. Ellipsoids are

drawn at the 35% probability level.

 Table S15:
 Bond lengths [Å] and angles [°] for [HMe₃tach][Br].

N(1)-C(3)	1.489(4)	C(6)-H(6A) 1.02(4	4)
N(1)-C(4)	1.498(4)	C(6)-H(6B) 1.03(4	4)
N(1)-C(1)	1.523(4)	C(6)-H(6C) 0.91(4	1)
N(1)-H(1)	0.93(3)	., . , . ,	
N(2)-C(1)	1.430(4)	C(3)-N(1)-C(4)	110.9(3)
N(2)-C(2)	1.455(4)	C(3)-N(1)-C(1)	109.2(2)
N(2)-C(5)	1.467(5)	C(4)-N(1)-C(1)	111.9(3)
N(3)-C(3)	1.446(4)	C(3)-N(1)-H(1)	109(2)
N(3)-C(2)	1.471(4)	C(4)-N(1)-H(1)	108(2)
N(3)-C(6)	1.474(4)	C(1)-N(1)-H(1)	108(2)
C(1)-H(1A)	0.97(4)	C(1)-N(2)-C(2)	109.5(3)
C(1)-H(1B)	1.00(4)	C(1)-N(2)-C(5)	114.6(3)
C(2)-H(2A)	0.95(3)	C(2)-N(2)-C(5)	113.5(3)
C(2)-H(2B)	0.99(3)	C(3)-N(3)-C(2)	109.4(2)
C(3)-H(3A)	0.92(4)	C(3)-N(3)-C(6)	109.7(2)
C(3)-H(3B)	0.99(3)	C(2)-N(3)-C(6)	110.1(2)
C(4)-H(4A)	1.02(4)	N(2)-C(1)-N(1)	112.7(3)
C(4)-H(4B)	1.01(4)	N(2)-C(1)-H(1A)	110(2)
C(4)-H(4C)	0.96(4)	N(1)-C(1)-H(1A)	107(2)
C(5)-H(5A)	0.99(4)	N(2)-C(1)-H(1B)	107(2)
C(5)-H(5B)	1.02(4)	N(1)-C(1)-H(1B)	107(2)
C(5)-H(5C)	0.87(4)	H(1A)-C(1)-H(1B)	113(3)

N(2)-C(2)-N(3)	111.0(2)	N(1)-C(4)-H(4C)	111(2)
N(2)-C(2)-H(2A)	108(2)	H(4A)-C(4)-H(4C)	111(3)
N(3)-C(2)-H(2A)	108(2)	H(4B)-C(4)-H(4C)	112(3)
N(2)-C(2)-H(2B)	109.2(19)	N(2)-C(5)-H(5A)	109(2)
N(3)-C(2)-H(2B)	110.7(19)	N(2)-C(5)-H(5B)	113(2)
H(2A)-C(2)-H(2B)	110(3)	H(5A)-C(5)-H(5B)	109(3)
N(3)-C(3)-N(1)	108.8(2)	N(2)-C(5)-H(5C)	108(3)
N(3)-C(3)-H(3A)	113(2)	H(5A)-C(5)-H(5C)	110(3)
N(1)-C(3)-H(3A)	107(2)	H(5B)-C(5)-H(5C)	108(3)
N(3)-C(3)-H(3B)	114.4(19)	N(3)-C(6)-H(6A)	109(2)
N(1)-C(3)-H(3B)	106.0(19)	N(3)-C(6)-H(6B)	111.8(19)
H(3A)-C(3)-H(3B)	107(3)	H(6A)-C(6)-H(6B)	108(3)
N(1)-C(4)-H(4A)	108(2)	N(3)-C(6)-H(6C)	108(2)
N(1)-C(4)-H(4B)	105(2)	H(6A)-C(6)-H(6C)	110(3)
H(4A)-C(4)-H(4B)	110(3)	H(6B)-C(6)-H(6C)	111(3)

Figure S2: Connectivity plot of [HMe₃tach][I] with selective atom labelling.

Figure S3: Connectivity plot of [HMe₃tacn][OTf] with selective atom labelling.

References

- 1 F. Ortu, *Chem. Rev.*, 2022, **122**, 6040–6116.
- 2 P. Girard, J. L. Namy and B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693–2698.
- 3 C. J. Windorff, M. T. Dumas, J. W. Ziller, A. J. Gaunt, S. A. Kozimor and W. J. Evans, *Inorg. Chem.*, 2017, 56, 11981–11989.
- 4 R. D. Shannon, *Acta Crystallogr. Sect. A*, 1976, **32**, 751–767.
- 5 A. A. Vinogradov, K. A. Lysenko, I. V. Anan'ev, I. E. Nifant'ev and D. M. Roitershtein, *Russ. J. Coord. Chem.*, 2020, **46**, 308–316.
- D. Bojer, B. Neumann, H. Stammler and N. W. Mitzel, *Eur. J. Inorg. Chem.*, 2011, 2011, 3791–3796.
- A. Venugopal, I. Kamps, D. Bojer, R. J. F. Berger, A. Mix, A. Willner, B. Neumann, H.-G. Stammler and N. W. Mitzel, *Dalton Trans.*, 2009, 5755.
- M. Niemeyer, J. Christoffers and M. Rössle, *Acta Crystallogr. Sect. E Struct. Reports* Online, 2005, 61, m1207–m1209.
- R. D. Köhn, Z. Pan, G. Kociok-Köhn and M. F. Mahon, *J. Chem. Soc., Dalton Trans.*,
 2002, 2344–2347.
- 10 D. A. Bardonov, P. D. Komarov, V. I. Ovchinnikova, L. N. Puntus, M. E. Minyaev, I. E. Nifant'ev, K. A. Lyssenko, V. M. Korshunov, I. V. Taidakov and D. M. Roitershtein, *Organometallics*, 2021, 40, 1235–1243.
- D. Bojer, B. Neumann, H. Stammler and N. W. Mitzel, *Chem. Eur. J.*, 2011, 17, 6239–6247.
- D. Bojer, A. Venugopal, B. Neumann, H.-G. Stammler and N. W. Mitzel, *Angew. Chem. Int. Ed.*, 2010, 49, 2611–2614.

- A. Nieland, J.-H. Lamm, A. Mix, B. Neumann, H.-G. Stammler and N. W. Mitzel, Z.
 Anorg. Allg. Chem., 2014, 640, 2484–2491.
- D. Bojer, A. Venugopal, A. Mix, B. Neumann, H. Stammler and N. W. Mitzel, *Chem. Eur. J.*, 2011, **17**, 6248–6255.
- 15 C. S. Tredget, S. C. Lawrence, B. D. Ward, R. G. Howe, A. R. Cowley and P. Mountford, Organometallics, 2005, 24, 3136–3148.
- S. Bambirra, A. Meetsma and B. Hessen, *Acta Crystallogr. Sect. E Struct. Reports Online*, 2007, 63, m2891–m2891.
- H. L. Buckley, M. R. Anstey, D. T. Gryko and J. Arnold, *Chem. Commun.*, 2013, 49, 3104.
- E. Curnock, W. Levason, M. E. Light, S. K. Luthra, G. McRobbie, F. M. Monzittu, G.
 Reid and R. N. Williams, *Dalton Trans.*, 2018, 47, 6059–6068.
- 19 A. Mortis, C. Maichle-Mössmer and R. Anwander, *Dalton Trans.*, 2022, **51**, 1070–1085.
- S. Bambirra, A. Meetsma and B. Hessen, *Acta Crystallogr. Sect. E Struct. Reports Online*, 2006, 62, m314–m316.
- 21 S. Hajela, W. P. Schaefer and J. E. Bercaw, J. Organomet. Chem., 1997, 532, 45–53.
- D. Barisic, D. Diether, C. Maichle-Mössmer and R. Anwander, *J. Am. Chem. Soc.*, 2019, 141, 13931–13940.
- 23 APEX2. Bruker AXS, Inc: Madison, WI 2014.
- 24 SAINT Version 8.38a, Bruker AXS, Inc.; Madison, WI 2013.
- 25 Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI 2014.
- 26 Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI 2014

- 27 International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht, 1992.
- (a) Spek, A.L. SQUEEZE, Acta Cryst. 2015, C71, 9-19., (b) Spek, A. L. PLATON, Acta.
 Cryst. 2009, D65, 148-155
- 29 Spek, A. L. PLATON, Acta. Cryst., **D65**, 148-155, 2009.
- 30 Parsons, S.; Flack, H. D.; Wagner, T. Use of Intensity Quotients and Differences in Absolute

Structure Refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2013, 69, 249–259, DOI: 10.1107/S2052519213010014.

31 APEX3 Version 2017.3-0, Bruker AXS, Inc.; Madison, WI 2017.

Figure S4: ¹H NMR spectrum of 1-La in THF- d_8 . Unlabeled peaks are due to residual THF and hexane.

Figure S5: ¹³C NMR spectrum of 1-La in THF- d_8 .

Figure S6: ¹H NMR spectrum of **1-Ce** in THF-*d*₈. Unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S7: ¹³C NMR spectrum of 1-Ce in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S8: ¹H NMR spectrum of **3-La** in THF- d_8 . All other unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S9: ¹H NMR spectrum of 4-Y in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S10: ¹³C NMR spectrum of 4-Y in THF- d_8 .

Figure S11: ¹H NMR spectrum of 7-Sm in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S12: ¹H NMR spectrum of 8-La in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.

Figure S13: ¹³C NMR spectrum of 8-La in THF- d_8 .

Figure S14: ¹H NMR spectrum of 9-Y in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.

S51

Figure S15: ¹³C NMR spectrum of 9-Y in THF- d_8 . Unlabeled peaks are due to residual THF and hexane.

Figure S16: ¹H NMR spectrum of 10-Sm in THF- d_8 . Unlabeled peaks are due to residual THF, hexane, and toluene.