Supplementary Information

Base-free synthesis of benchtop stable Ru(III)-NHC complexes from $RuCl_3 \cdot 3H_2O$ and their use as precursors for Ru(II)-NHC complexes

Nida Shahid, Rahul Kumar Singh, Navdeep Srivastava, Amrendra K. Singh*

Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.

Email: aks@iiti.ac.in

Table of Contents

S. No.	Contents		
1.	Figure S1 . ¹ H NMR of [3-methyl-1-(pyridine-2-yl)imidazolium]I recorded in CDCl ₃ .	S4	
2.	Figure S2. ¹³ C NMR of [3-methyl-1-(pyridine-2-yl)imidazolium]I recorded in CDCl ₃ .	S5	
3.	Figure S3. ¹ H NMR of [3- isopropyl-1-(pyridine-2-yl)imidazolium]I recorded in CDCl ₃ .	S6	
4.	Figure S4. ¹³ C NMR of [3- isopropyl-1-(pyridine-2-yl)imidazolium]I recorded in CDCl ₃ .	S7	
5.	Figure S5. ¹ H NMR of [3-methyl-1-(pyridine-2-yl)benzimidazolium]I recorded in CDCl ₃ .	S8	
6.	Figure S6. ¹³ C NMR of [3-methyl-1-(pyridine-2- yl)benzimidazolium]I recorded in CDCl ₃ .	S9	
7.	Figure S7. LCMS of complex 1a synthesized in presence of base (KOH).	S10	
8.	Figure S8. LCMS of complex 1a synthesized in presence of base K ₂ CO ₃	S11	
9.	Figure S9. LCMS and HRMS of 1a	S12	
10.	Figure S10. UV-Vis spectra of L ¹ ·HI and 1a recorded in MeCN	S13	
11.	Figure S11. IR spectra of L ¹ ·HI and complex 1a in solid state	S14	
12.	Figure S12. Plots of powder XRD patterns (simulated and experimental) of 1a	S15	
13.	Figure S13. Plot of TGA of complex 1a	S16	

14.	Figure S14. LCMS of complex 1b synthesized from L ² ·HBr	S17
15.	Figure S15. LCMS of complex 1b synthesized from L ² ·HI	S18
16.	Figure S16. LCMS and HRMS of complex 1b synthesized from $L^2 \cdot HI$	S19
17.	Figure S17. UV-Vis spectra of L ² ·HI and 1b recorded in MeCN	S20
18.	Figure S18. Comparative plot for UV-Vis spectra of 1b synthesized from L^2 ·HI and L^2 ·HBr, in MeCN	S21
19.	Figure S19. IR spectra of L ² ·HI and complex 1b in solid state	S22
20.	Figure S20. Plots of powder XRD patterns (simulated and experimental) of 1b	S23
21.	Figure S21. Plot of TGA of complex 1b	S24
22.	Figure S22. LCMS and HRMS of 1c	825
23.	Figure S23. UV-Vis spectra of L ³ ·HI and 1c recorded in MeCN	S26
24.	Figure S24. IR spectra of L ³ ·HI and complex 1c in solid state	S27
25.	Figure S25. Plot of TGA of complex 1c	S28
26.	Figure S26. Plot of molar extinction coefficients of complexes 1a–c recorded in MeCN	829
27.	Figure S27. LCMS and HRMS of 2a	S30
28.	Figure S28-29. ¹ H and ³¹ P spectra of 2a in DMSO-d ₆	S31–S32
29.	Figure S30. LCMS and HRMS of 2b	S33
30.	Figure S31-32. ¹ H and ³¹ P NMR spectra of 2b in CD ₃ CN	S34–S35
31.	Figure S33. LCMS and HRMS of 2c	S36
32.	Figure S34-35. ¹ H and ³¹ P NMR spectra of 2c in DMSO-d _{6.}	S37–S38
33.	Figure S36. LCMS and HRMS of complex 3a	839
34.	Figure S37-39. ¹ H, ¹³ C, and ³¹ P NMR spectra of complex 3a in DMSO-d ₆	S40-S42
35.	Figure S40. LCMS and HRMS of complex 3b	S43
36.	Figure S41-43. ¹ H, ¹³ C, and ³¹ P NMR spectra of complex 3b in DMSO-d ₆	S44-S46
37.	Figure S44. LCMS and HRMS of complex 3c	S47

38.	Figure S45-47. ¹ H, ¹³ C, and ³¹ P NMR spectra of complex 3c in	S48-S50
	DMSO-d ₆	
39.	Figure S48. ORTEP diagram for complex 3a	S51
40.	Table S1. Crystallographic parameters of complexes 1a, 1b, 2c, and3a	S52
41.	Table S2. Selected bond lengths and angles for the complexes 1a, 1b,2c, and 3a	S53
42.	XYZ Coordinates for the optimized geometry of H ₂ O and MeCN coordinated isomers of complex 1a	S54–S59

Figure S1. ¹H NMR of [3-methyl-1-(pyridin-2-yl)imidazolium]I recorded in CDCl₃ at RT.

Figure S2. ¹³C NMR of [3-methyl-1-(pyridin-2-yl)imidazolium]I recorded in CDCl₃ at RT.

Figure S3. ¹H NMR of [3- isopropyl-1-(pyridine-2-yl)imidazolium]Br recorded at a fixed concentration (0.02 mol/L) in CDCl₃ at RT.

Figure S4. ¹³C NMR of [3- isopropyl-1-(pyridine-2-yl)imidazolium]Br recorded at a fixed concentration (0.02 mol/L) in CDCl₃ at RT.

Figure S5. ¹H NMR of [3-methyl-1-(pyridin-2-yl)benzimidazolium]I recorded in CDCl₃ at RT.

Figure S6. ¹³C NMR of [3-methyl-1-(pyridin-2-yl)benzimidazolium]I recorded in CDCl₃ at RT.

Figure S7. LCMS of attempted synthesis of 1a in presence of base (KOH) showing no molecular ion peak for the desired parent complex 1a.

Figure S8. LCMS of attempted synthesis of 1a in presence of base (K₂CO₃) showing no molecular ion peak for the desired parent complex 1a.

Figure S9. LCMS and HRMS of complex 1a obtained in absence of base.

Figure S10. UV-Vis spectra of (a) free ligand L^1 ·HI and (b) its respective complex 1a recorded in MeCN

Figure S11. IR spectra of (a) L¹·HI and (b) it's respective complex 1a in solid state.

Figure S12. Plots of powder XRD (a) simulated pattern obtained from molecular structure **1a-MeCN** (b) pattern observed experimentally for complex **1a**. Change in position and intensity of signals from the simulated pattern arise due to the existence of solvent molecule (acetonitrile) in the unit cell.

Figure S13. Plot of TGA for complex 1a. The first derivative curve w.r.t. temperature has revealed that no weight loss was observed up to 300 °C. Whereas the sequential loss of H_2O molecule and three chlorides was found to occur between 200–450 °C. Total weight loss was observed to be 71.99% and 28.72% of the compound was remained as residues after complete analysis.

Figure S14. LCMS of complex 1b synthesized from $L^2 \cdot HBr$ showing the fragments corresponding to $[M-Cl]^+$ and $[M-2Cl+Br]^+$ present in the crude sample.

Figure S15. LCMS of complex 1b synthesized from L^2 ·HI showing the fragments corresponding to [M-Cl]⁺ and [M-2Cl+CH₃CN]⁺ present in the crude sample.

Figure S16. LCMS and HRMS of complex 1b synthesized from L^2 ·HI in absence of base.

Figure S17. UV-vis spectra of (a) free ligand $L^2 \cdot HI$ and (b) its respective complex 1b recorded in MeCN at room temperature.

Figure S18. UV-Vis spectra of complex Ib, synthesized from $L^2 \cdot HI$ and $L^2 \cdot HBr$ respectively, recorded in MeCN at room temperature

Figure S19. IR spectra of (a) $L^2 \cdot HI$ and (b) it's respective complex 1b in solid state.

Figure S20. Plots of powder XRD (a) simulated pattern obtained from molecular structure **1b-MeOH** (b) pattern observed experimentally for complex **1b**. Change in position and intensity of signals from the simulated pattern arise due to the existence of solvent molecule (methanol) in the unit cell.

•

Figure S21. Plot of TGA for complex 1b. The first derivative curve w.r.t. temperature has revealed that no weight loss was observed up to 230 °C. Whereas the sequential loss of H_2O molecule and three chlorides was found to occur between 200–420 °C. Total weight loss was observed to be 69.9% and 31.02% of the compound was remained as residues after complete analysis.

Figure S22. LCMS and HRMS of complex 1c obtained in absence of base.

Figure S23. UV-Vis spectra of (a) free ligand $L^3 \cdot HI$ and (b) its respective complex 1c recorded in MeCN at room temperature.

Figure S24. IR spectra of (a) L³·HI and (b) it's respective complex 1c in solid state.

Figure S25. Plot of TGA for complex **1c**. The first derivative curve w.r.t. temperature has revealed that no weight loss was observed up to 150 °C. Whereas the sequential loss of H_2O molecule and three chlorides was found to occur between 200–420 °C. Total weight loss was observed to be 65.42 % and 35.42% of the compound was remained as residues after complete analysis.

Figure S26. Molar extinction coefficients of complexes 1a–c recorded in MeCN at room temperature.

Figure S27. LCMS and HRMS of complex 2a.

Figure S28. ¹H NMR spectrum of **2a** in DMSO-d₆ Peak assignment is difficult due to poor solubility and existence of two species in solution.

Figure S29. ³¹P NMR spectrum of complex **2a** in DMSO-d₆. OPPh₃ was observed in the spectrum due to the arial oxidation.

Figure S30. LCMS and HRMS of complex 2b.

Figure S31. ¹H NMR of complex 2b in CD₃CN.

Figure S32. ³¹P NMR of complex 2b in CD₃CN.

Generic Display Report

Figure S33. LCMS and HRMS of complex 2c.

Figure S34. ¹H NMR of complex 2c in DMSO-d₆.

Figure S35. ³¹P NMR of complex 2c in DMSO-d₆.

Figure S36. LCMS and HRMS of complex 3a.

Figure S37. ¹H NMR of complex **3a** in DMSO-d₆ showing two distinct species **a** (45%) & **b** (55%) in solution.

Figure S38. ¹³C NMR of complex 3a in DMSO-d₆ showing two distinct species a and b in solution.

Figure S39. ³¹P NMR of complex 3a in DMSO-d₆.

Figure S40. LCMS and HRMS of complex 3b.

Figure S41. ¹H NMR of complex 3b in DMSO-d₆ showing two distinct species a (33%) and b (67%) in solution.

Figure S42. ¹³C NMR of complex 3b in DMSO-d₆ showing two distinct species a and b in solution.

Figure S43. ³¹P NMR of complex 3b in DMSO-d₆.

Figure S44. LCMS and HRMS of complex 3c.

Figure S45. ¹H NMR of complex 3c in DMSO-d₆ showing two distinct species **a** (57%) and **b** (43%) in solution.

Figure S46. ¹³C NMR of complex 3c in DMSO-d₆ showing two distinct species a and b in solution.

Figure S47. ³¹P NMR of complex 3c in DMSO-d₆.

Crystal Structure 3a

Figure S48. ORTEP diagram for complex **3a** obtained from X-ray diffraction. Hydrogen atoms, and one PF_6^- anion present in the lattice are omitted for clarity. Ellipsoids are shown at the 50% probability level.

	1a	1b	2c	3a
Empirical formula	$C_{12.50}H_{14.25}Cl_{3}N_{4.75}Ru$	$C_{13H_{21}Cl_3N_3O_2Ru}$	$C_{55}H_{50}CI_2N_4P_2Ru$	$C_{22}H_{22}IF_{6}PN_{8}Ru$
Fw/g M ⁻¹	438.46	458.75	1028.92	771.41
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P121/n1	P121/c1	P121/c1	P121/c1
a/Å	8.1527(5)	10.9711(2)	11.8605(4)	15.0771(5)
b/Å	17.7460(14)	11.9322(2)	23.0124(7)	10.9379(5)
c/Å	12.1658(7)	14.5760(3)	19.4293(6)	16.8084(6)
α/ °	90	90	90	90
β/ °	104.622(7)	98.992(2)	100.884(4)	104.553(4)
γ/ °	90	90	90	90
<i>V/</i> Å ³	1703.1(2)	1884.68(6)	5207.6(3)	2682.97(19)
Z	4	4	4	4
<i>т,</i> к	293(2)	293(2)	293(2)	293(2)
$ ho_{calcd}/Mg m^{-3}$	1.710	1.617	1.312	1.910
λ/Å (Mo/Cu-Kα)	0.7107	0.7107	0.7107	1.54184
Data/restr./param.	3327/0/174	3713/0/205	11693/0/543	4767/0/355
F(000)	870	924	2120	1504
GOOF	1.069	1.074	0.990	1.039
R (int)	0.0867	0.0611	0.0858	0.1243
$R(F_{o}),^{a} > 2 \sigma(I) [wR(F_{o})^{b}]$	0.0555 [0.1346]	0.0309 [0.0835]	0.0625 [0.1532]	0.1166 [0.3174]
R (all data) [wR (all data)]	0.0988 [0.1509]	0.0363 [0.0868]	0.1083 [0.1844]	0.1579 [0.3690]

Table S1. Crystallographic parameters for complexes 1a, 1b, 2c, and 3a.

Table S2. Selected bond lengths and angles for the complexes 1a, 1b, 2c, and 3a.

Coordinates of optimized geometry of cis/trans isomers of 1a w.r.t solvent molecule (H₂O/MeCN)

Complex	Rond le	engths (Å)	Bond An	ales (°)
19	Ru1-C1	2 002(6)	C1 Ru1 N1	78 1(2)
	Ru1-N1	2.002(0)	C1 Ru1 Cl1	90 26(19)
	Ru1-Cl1	2 3433(19)	C1 Ru1 Cl2	88 38(19)
	Ru1-Cl2	2.3133(19) 2.3234(10)	C1 Ru1 Cl2	172 35(18)
	Ru1-Cl2	2.3234(17)	C1 Ru1 N/	98 1(2)
	Ru1-N/	2.4372(17) 2.043(6)	N1 Ru1 Cl1	90.24(15)
	Kul-IN T	2.045(0)	NI Rul Cl2	90.24(15) 80.20(15)
			NI Rui Ciz	04.20(13)
			C11 Pr 1 C12	94.39(14)
				1/0.03(7)
			CII RUI CIS	91.18(0)
			CI2 RUI CI3	90.15(7)
			N4 Rul NI	176.2(2)
			N4 Rul Cll	89.21(16)
			N4 Ru1 Cl2	91.16(16)
			N4 Ru1 Cl3	89.42(15)
1b	Ru1-C1	1.972(2)	C1 Ru1 N1	78.32(9)
	Ru1-Cl1	2.3399(7)	C1 Ru1 Cl1	89.71(8)
	Ru1-Cl2	2.3441(7)	C1 Ru1 Cl2	93.33(8)
	Ru1-Cl3	2.3501(7)	C1 Ru1 Cl3	103.01(7)
	Ru1-O1	2.2259(18)	C1 Ru1 O1	169.35(9)
	Ru1-N1	2.073(2)	N1 Ru1 Cl1	87.99(6)
			N1 Ru1 Cl2	89.05(6)
			N1 Ru1 Cl3	178.66(6)
			Cl1 Ru1 Cl2	175.25(3)
			Cl1 Ru1 Cl3	92.21(3)
			Cl2 Ru1 Cl3	90.66(3)
			O1 Ru1 N1	92.30(8)
			O1 Ru1 Cl1	84.88(5)
			O1 Ru1 Cl2	91.52(5)
			O1 Ru1 Cl3	86 40(5)
			011101010	00.10(0)
26	Ru1-C1	1 951(4)	C1 Ru1 N1	78 66(16)
20	Ru1-N1	2 079(3)	C1 Ru1 P1	90.89(12)
	Ru1_P1	2.847(11)	C1 Ru1 P2	90.96(12)
	Ru1_P2	2.3017(11)	C1 Ru1 Cl1	170.80(12)
	Ru1-C11	2.4159(11) 2.4853(10)	C1 Ru1 N/	97 25(16)
	Dul NA	2.4035(10)	N1 Du1 D1	01 58(0)
	Kul-N4	2.043(4)	NI Dul D2	91.30(9) 80.20(0)
			NI Rul 12 NI Pul Cll	02 17(0)
				92.17(9)
			CII KUI PI CII Dul D2	90.17(4)
			Cli Kui P2 Cli Dei N4	02.17(0)
			N4 Dec1 N1	92.17(9)
			N4 Rul INI	1/3.01(13)
			N4 Kul Pl	80.87(11)
			N4 Rul P2	92.4/(11)
			N4 Kul Cli	91.93(10)
2	D 1 C10	2.041/12	C10 D 1 11	
	Rul-Clu	2.041(12)	CIU Rul N6	/6.9(5)
	Ru1-C20	2.053(15)	C10 Ru1 C20	154.7(6)
	Rul-Cl	2.001(13)	C10 Ru1 C1	89.7(6)
	Rul-N6	2.002(11)	C10 Ru1 N1	104.3(5)
	Ru1-N1	2.111(12)	C10 Ru1 I1	86.8(3)
	Ru1-I1	2.8185(14)	N6 Ru1 C20	77.8(5)
			N6 Ru1 C1	98.6(6)
			N6 Ru1 I1	87.9(3)
			C20 Ru1 C1	94.6(6)
			C20 Ru1 N1	101.0(6)
			C20 Ru1 I1	91.8(4)
			C1 Ru1 N1	77.5(6)
			C1 Ru1 I1	171.8(5)
			N1 Ru1 I1	96.1(4)
			N1 Ru1 N4	175.8(5)

DFT data of 1a-transH₂O

M06L

GIBBS FREE ENERGY

-----The Gibbs free energy is G = H - T*S
Total enthalpy -2063.55822234 Eh
Total entropy correction -0.06592410 Eh -41.37 kcal/mol
-----Final Gibbs free energy -2063.62414644 Eh

For completeness - the Gibbs free energy minus the electronic energyG-E(el)...0.15272180 Eh95.83 kcal/mol

PBE0

FINAL SINGLE POINT ENERGY -2063.917404824662

XYZ	coordinates		
Ru	-0.71837612082331	-0.21459601135461	-0.25882519044137
Cl	-2.54899603233529	-1.83268568088878	-0.52644359964250
Cl	-1.92569642403652	1.57780558042384	-1.31990324829772
Cl	0.86026867236543	-1.87506052439103	0.36733036205501
Ν	1.80418097989906	1.64475849055771	-0.50609234605528
0	-0.40838030835742	-0.83020221326230	-2.39622431009464
Ν	-1.12048317880486	0.34958667279730	1.66382472231000
Ν	0.71375259851873	1.67884313666868	1.36209211111442
С	0.72560874906069	1.10656986720982	0.10764687124256
С	2.45371667576533	2.53674570588745	0.33931716647388
С	1.77405760930203	2.56379823110582	1.51900344132573
С	2.19528642046651	1.30763433632320	-1.86613589856345
С	-2.37881255670430	0.28703821945718	3.70126301626277
С	-2.14776273971349	-0.13505355007181	2.39803955983990
Н	-2.77545548072180	-0.87794699415896	1.89037871581428
Н	3.34841483723994	3.07874794323081	0.03369682706928
Н	1.96111659207695	3.12704467364483	2.43163676831418

Н	3.17606082541185	1.75067818209133	-2.08628718984262
Н	2.25738630415627	0.21405181698757	-1.97546456873693
Н	1.45490685902275	1.69358666528258	-2.58546363641726
С	-1.52961135668848	1.23852575423752	4.27708693093821
С	-0.29804709431495	1.27259419125793	2.22881326503967
С	-0.46863950194050	1.74334667827710	3.52994592271325
Н	0.21729195752453	2.48833214156932	3.94514209791645
Н	-1.69168448916520	1.58620680351320	5.30301860912568
Н	-3.22220389757170	-0.13302173688943	4.25749446279321
Н	-1.03004232679567	-0.19726844125817	-2.81157817476229
Н	-0.93481757283658	-1.65812993824816	-2.35188268749442

DFT data of **1a-cisH₂O**

M06L

GIBBS FREE ENERGY

The Gibbs free energy is G = H - T*S

Final Gibbs free energy ... -2063.63272303 Eh

For completeness - the Gibbs free energy minus the electronic energyG-E(el)...0.15256295 Eh95.73 kcal/mol

PBEO

-----FINAL SINGLE POINT ENERGY -2063.923842037005

XYZ coordinates

Ru -0.85526421274169	-0.15213323581588	-0.13108387150991
Cl -0.56991369923285	-0.86696981654868	-2.38170587228694
Cl -2.47078120834026	1.51602168266777	-0.71897128102432
Cl 0.32510774954272	-2.01021388289319	0.74627146849665

Ν	1.65056119221117	1.59216397512193	-0.58676066018054
0	-2.75688568495256	-1.54298701223137	-0.32218443875065
Ν	-1.12893863636932	0.45396168272929	1.88163735794808
Ν	0.72667067596543	1.67469401951757	1.37863312935986
С	0.60993084214555	1.07771647908703	0.12390319841249
С	2.38706365448391	2.47606835935774	0.19370527881965
С	1.81825719055024	2.53540867045420	1.42610309938531
С	1.95447862796159	1.26558055109475	-1.97296472865654
С	-2.19256209405049	0.46164409598198	4.02175930228146
С	-2.09827582688875	0.02281194988589	2.70612146816696
Н	-2.80453277190717	-0.69814790823033	2.27716419450347
Н	3.26269167629377	2.99332381980415	-0.19775255594614
Н	2.09665747021637	3.10741455982846	2.30934874659193
Н	2.84511397392343	1.83031086666787	-2.28236256867110
Н	2.14503797377561	0.18733261362705	-2.08348234492063
Н	1.10797607646634	1.52682107448542	-2.62602868267773
С	-1.24575215034035	1.37784934978685	4.49636897668267
С	-0.21307188329231	1.33443592084826	2.34169377208065
С	-0.23612012767279	1.82608622629606	3.65031411185551
Н	0.51966942436319	2.53871120437699	3.99478515573107
Н	-1.29298218170102	1.74181341621115	5.52868021784787
Н	-2.99552444932757	0.08844253134462	4.66414743059392
Н	-3.30900319747222	-0.90621332693457	-0.81560887794157
н	-2.42479840360994	-2.13990786652099	-1.01855102619150

DFT data of **1a-transMeCN**

M06L

GIBBS FREE ENERGY

The Gibbs free energy is $G = H - T^*S$

Total enthalpy...-2119.81574733 EhTotal entropy correction...-0.07095122 Eh-44.52 kcal/mol

Final Gibbs free energy ... -2119.88669854 Eh

For completeness - the Gibbs free energy minus the electronic energy G-E(el) ... 0.17139142 Eh 107.55 kcal/mol

PBEO

-----FINAL SINGLE POINT ENERGY -2120.181937998441

XYZ coordinates

Ru	0.63797233189048	-0.38791521827584	-0.23153380221345
Cl	-2.43637641388630	-2.03141832189905	-0.27473163215507
Cl	-1.93278512200531	1.38908223760102	-1.21091893779213
Cl	1.04678752559797	-1.90180468714474	0.57574746369130
Ν	1.76476325397342	1.64913084254578	-0.53829407846366
Ν	-0.24661564967592	-1.04786661456889	-2.10087822688204
Ν	-1.09621110220906	0.25646901357356	1.71301674167771
С	-0.12510431527409	-2.20288208587972	-4.43025668302539
Ν	0.66668227321204	1.66897655222433	1.32172521093403
С	0.73335500980847	1.04612190356866	0.09580725009326
С	2.33344057486089	2.62953334106921	0.26722020101613
С	1.64598703304460	2.64742837070957	1.44164333181265
С	2.18858705525773	1.29768275330902	-1.88268711328661
С	-0.17814848724894	-1.55293994239440	-3.14258397196305
С	-2.33506696597461	0.24493522067725	3.76286297656971
С	-2.08768005289930	-0.23737937059642	2.48177818163191
Н	-2.67766619039436	-1.04000505605525	2.01921700883664
Н	3.17956838456626	3.23294881659422	-0.06066781270917
Н	1.77656963000580	3.26520628318943	2.32838929642242
Н	3.04955448545224	1.91710582033994	-2.16956015930670
Н	2.47982441752645	0.23582968601140	-1.92151854505142
Н	1.36668393166051	1.46980111105134	-2.59614542098389
Н	-0.59073492301441	-1.57085918023401	-5.20300626194646
н	0.91460056039057	-2.41148036250206	-4.72851759934474

Н	-0.67232528359645	-3.15851084462864	-4.39218606069573
С	-1.53583652779710	1.27161582263391	4.27351607678366
С	-0.32457979176440	1.24878364822180	2.21399829262588
С	-0.50813180800347	1.78723994236530	3.48741112138209
Н	0.13867244764376	2.59052763140272	3.85383932053450
Н	-1.70920383290577	1.67085047965870	5.27895095959171
Н	-3.15113778446074	-0.18620779256819	4.35086287221590

DFT data of 1a-cisMeCN

M06L

GIBBS FREE ENERGY ------The Gibbs free energy is G = H - T*S Total enthalpy ... -2119.81736903 Eh Total entropy correction ... -0.07163203 Eh -44.95 kcal/mol ------Final Gibbs free energy ... -2119.88900106 Eh

For completeness - the Gibbs free energy minus the electronic energyG-E(el)...0.17055597 Eh107.03 kcal/mol

PBEO

-----FINAL SINGLE POINT ENERGY -2120.181137445548

Ru	-0.81394724398615	-0.29273095830890	-0.09791471724466
Cl	-0.38086604663995	-1.00431085136015	-2.32219363572755
Cl	-2.38071912989713	1.39913513953738	-0.74736194577259
Cl	0.48114193099840	-2.03775942381082	0.90933052186057
Ν	1.66204348294775	1.53762667785858	-0.59299430108419
Ν	-2.46454905323057	-1.73961353569940	-0.23944818707897
Ν	-1.13311514163423	0.40373293541905	1.89567068831722
С	-4.17561385283049	-3.55150436851901	-0.99018526873194
Ν	0.69578156311697	1.65701119750959	1.34544883071666

С	0.62587617996321	1.00925934037750	0.11272133470740
С	2.35060731324281	2.47610242476626	0.16762746458515
С	1.75409567931876	2.55926531978722	1.38422313913595
С	2.01549652332359	1.18268682774974	-1.96056142385465
С	-3.23332117913622	-2.54503451335384	-0.56029395704991
С	-2.22491083484546	0.51732166298709	4.02211336774817
С	-2.10115462248219	0.00452028963979	2.73596510795247
Н	-2.79005283454844	-0.75309950910350	2.34516200565746
Н	3.21580824213191	3.00913787228781	-0.22581371078898
Н	1.99339309788337	3.17217114383999	2.25122397522345
Н	2.89353767395274	1.77213789527573	-2.26115607529139
Н	2.24524546883035	0.10941365607960	-2.03408824059516
Н	1.17788206332196	1.39134620540713	-2.64268621467911
Н	-3.79940317764162	-4.55807765632397	-0.74885504814339
Н	-5.15219133194009	-3.41387314481569	-0.50016479079075
Н	-4.32139546362574	-3.48791417635776	-2.08030006194072
С	-1.30633268370115	1.48255845194556	4.45147656365048
С	-0.24840580258687	1.33559465583196	2.31117125628534
С	-0.29989308237944	1.90356311034866	3.58863352997499
Н	0.43174469878897	2.65665234063050	3.89691365606049
Н	-1.37462809187321	1.90738938760440	5.45909874560716
Н	-3.02841434484182	0.16486160276949	4.67559739129096