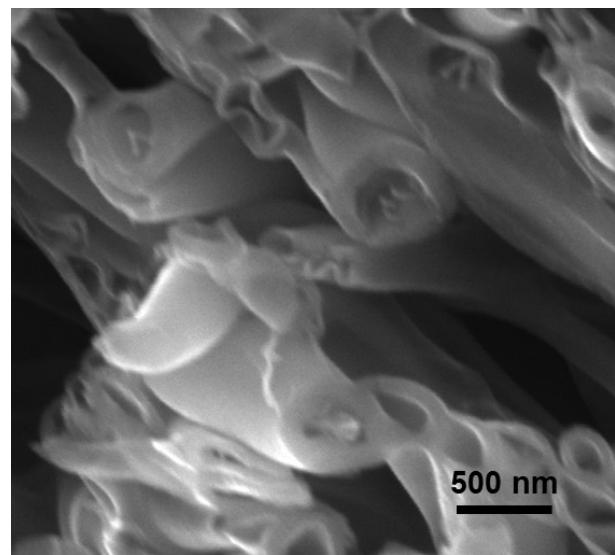
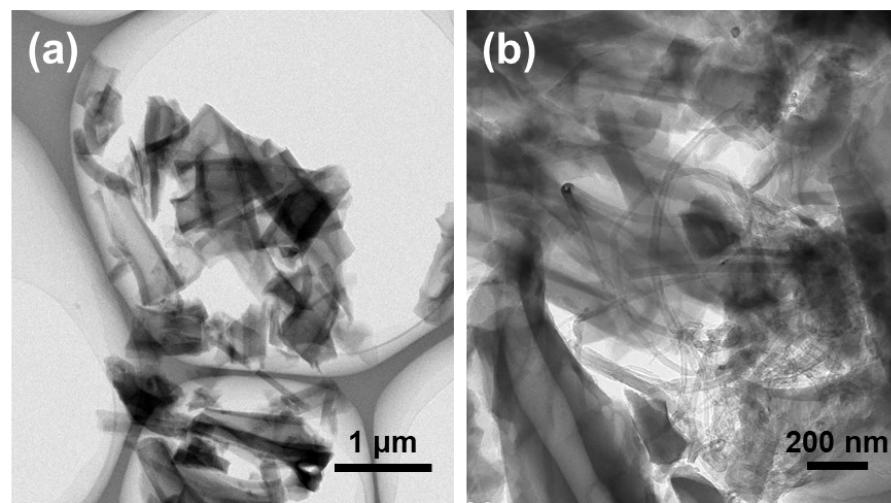


Supporting Information

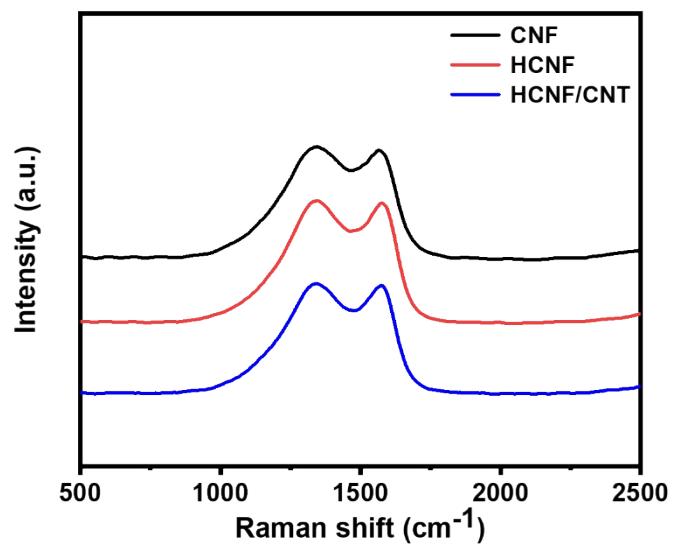
Carbon nanotubes-embedded hollow carbon nanofibers as efficient host for advanced lithium-sulfur batteries

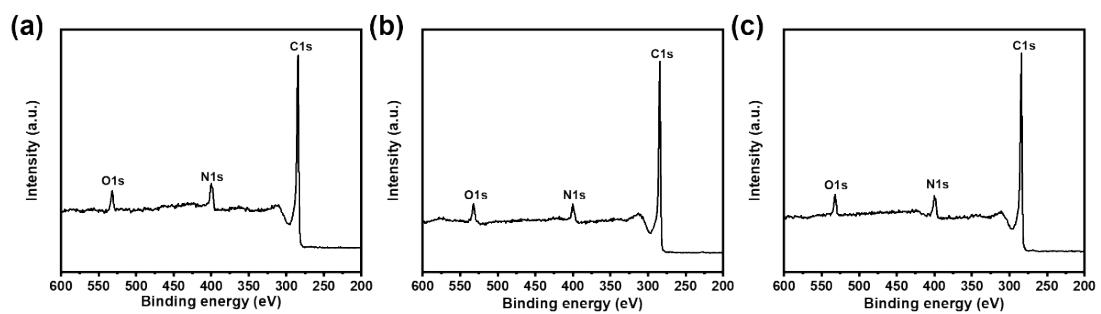

Chenshan Lv,^a Hailiang Cao,^{*a} Wei Deng,^b Min Zhao,^a Yanqin Miao,^{*a} Chunli Guo,^a Peizhi Liua and Yucheng Wu^{*ac}

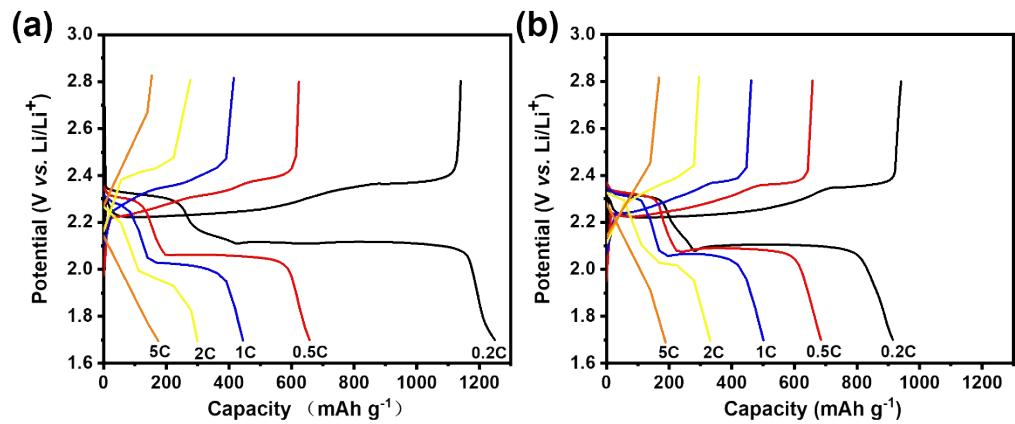
^a *Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.*


^b *Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China.*

^c *School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.*


E-mail: caohailiang@tyut.edu.cn; miaoyanqin@tyut.edu.cn; ycwu@hfut.edu.cn


Fig. S1 SEM image of HCNF/CNT.


Fig. S2 TEM images of HCNF (a) and HCNF/CNT (b).

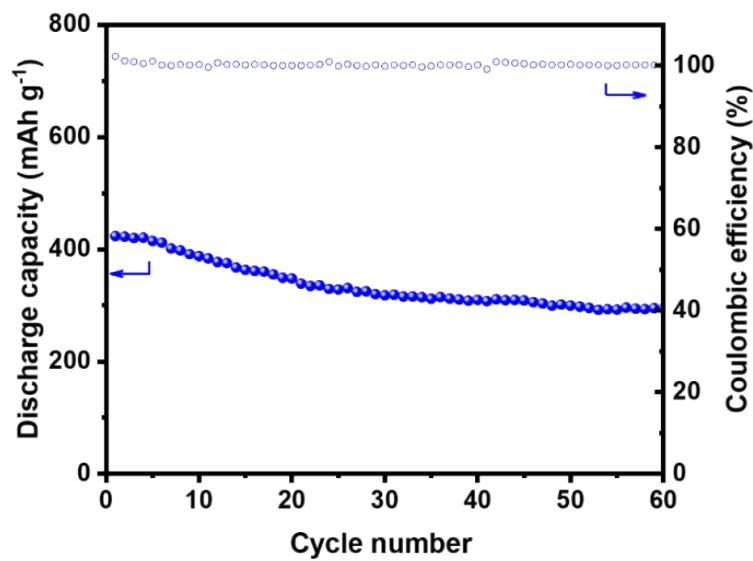

Fig. S3 Raman spectra of CNF, HCNF and HCNF/CNT.

Fig. S4 XPS spectra of CNF (a), HCNF (b) and HCNF/CNT (c).

Fig. S5 Galvanostatic discharge–charge profiles at various current rates of CNF-S (a) and of HCNF-S (b).

Fig. S6 Cycling performance of HCNF/CNT-S with sulfur loading of 3 mg cm^{-2} at 1C.

Table S1 The cycling performance of carbon and sulfur compound materials reported in the literature is compared with this work.

Materials	Sulfur content (wt%)	Current density	Cycle times	Cycle performance (mA h g ⁻¹)
PC@RGO/S[1]	71.2	0.2 A g ⁻¹	100	543
CFS@graphene[2]	33	0.2 A	50	611
N-doped CNT@ highly porous carbon /S[3]	57.5	0.2 C	250	613
phosphorus codoped hierarchically porous carbon /S[4]	73	1 C	200	575
AC-RH/S ₁ [5]	80	0.2 C	100	679
SiCN-S[6]	66	0.2 C	40	310
carbon aerogel /GNs0.1-S[7]	58.86	0.1 C	100	471
HCNF/CNT-S (This work)	67.8	0.2 C 2 C	100 200	679 522

References

- [1] N. Wang, J. Wang, J. Zhao, J. Wang, J. Pan, J. Huang, Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries, *J. Alloys Compd.* 851 (2021) 156832–156841.
<https://doi.org/10.1016/j.jallcom.2020.156832>.
- [2] Z.Z. Yang, H.Y. Wang, X. Bin Zhong, W. Qi, B.Y. Wang, Q.C. Jiang, Assembling sulfur spheres on carbon fiber with graphene coated hybrid bulk electrodes for lithium sulfur batteries, *RSC Adv.* 4 (2014) 50964–50968.
<https://doi.org/10.1039/c4ra09763g>.
- [3] T. Long, F. Meng, B. Xu, Y. Zhao, W. Liu, X. Wei, L. Zheng, J. Liu, Nitrogen-doped carbon nanotubes intertwined with porous carbon with enhanced cathode performance in lithium-sulfur batteries, *Sustain. Energy Fuels.* 4 (2020) 3926–3933. <https://doi.org/10.1039/d0se00583e>.
- [4] W. Ai, W. Zhou, Z. Du, Y. Chen, Z. Sun, C. Wu, C. Zou, C. Li, W. Huang, T. Yu, Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries, *Energy Storage Mater.* 6 (2017) 112–118.
<https://doi.org/10.1016/j.ensm.2016.10.008>.
- [5] D.L. Vu, J.S. Seo, H.Y. Lee, J.W. Lee, Activated carbon with hierarchical micro-mesoporous structure obtained from rice husk and its application for lithium-sulfur batteries, *RSC Adv.* 7 (2017) 4144–4151.
<https://doi.org/10.1039/C6RA26179E>.
- [6] F. Qu, M. Graczyk-Zajac, D. Vrankovic, N. Chai, Z. Yu, R. Riedel, Effect of morphology of C-rich silicon carbonitride ceramic on electrochemical properties of sulfur cathode for Li-S battery, *Electrochim. Acta.* 384 (2021) 138265. <https://doi.org/10.1016/j.electacta.2021.138265>.
- [7] Y. Yan, M. Shi, Y. Zou, Y. Wei, L. Chen, C. Fan, R. Yang, Y. Xu, Tunable hierarchical porous carbon aerogel / graphene composites cathode matrix for Li-S batteries, *J. Alloys Compd.* 791 (2019) 952–961.

<https://doi.org/10.1016/j.jallcom.2019.03.396>.