Supporting Information for

Cyclic Alkyl(amino)iminates (CAAIs) as Strong 2σ , 4π -Electron Donor Ligands for the Stabilisation of Boranes and Diboranes(4): A Synthetic and Computational Study

Silvia Huynh,^{a,b} Merle Arrowsmith,^{a,b} Lukas Meier,^{a,b} Maximilian Dietz,^{a,b} Marcel Härterich,^{a,b} Maximilian Michel,^{a,b} Annalena Gärtner,^{a,b} and Holger Braunschweig^{a,b}

 ^a Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
^b Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Contents

Methods and materials	2
Synthetic Procedures	3
NMR spectra of isolated compounds	11
IR spectra	56
X-ray crystallographic data	58
Computational details	73
Cartesian coordinates	75
References	88

Methods and materials

All manipulations were performed either under an atmosphere of dry argon (Argon 5.0) or *in vacuo* using standard Schlenk line or glovebox techniques. The solvents used were dried over suitable drying agents, distilled under an argon atmosphere, and stored under argon over activated molecular sieves (4 Å). Deuterated solvents were dried over molecular sieves (4 Å or 3 Å) and degassed by three freeze-pump-thaw cycles prior to use. NMR spectra were acquired either on a Bruker Avance 400 (¹¹B:128.5 MHz) or a Bruker Avance 500 (¹H: 500.1 MHz, ¹¹B: 160.5 MHz, ¹³C: 125.8 MHz) spectrometer. Chemical shifts (δ) are listed in ppm, and internally referenced to the carbon nuclei (¹³C{¹H}) or residual protons (¹H) of the solvent. Heteronuclei NMR spectra are referenced to external standards (¹¹B: BF₃·OEt₂). Resonances are given as singlet (s), doublet (d), triplet (t), septet (sept) or multiplet (m). The signals were assigned using standard 2D NMR experiments. High-resolution mass spectrometer. FT-IR spectra (solid-state) were recorded on a Bruker FT-IR spectrometer ALPHA II inside a glovebox.

Solvents and reagents were purchased from Sigma-Aldrich, ABCR or Alfa Aesar. (CAAC)NSiMe₃ (**1**, CAAC = 1-(2,6-diiso propylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene),¹ ClB(NMe₂)₂,² BrB(NMe₂)₂,² DurBCl₂ (Dur = 2,3,5,6-tetramethylphenyl),³ MesBBr₂ (Mes = 2,4,6-trimethylphenyl), ⁴ PhBBr₂ ⁵ BCl₃(SMe₂),⁶ BBr₃(SMe₂),⁶ B₂Cl₂(NMe₂)₂,⁷ B₂Mes₂Cl₂,^{8,9} were synthesized using known literature procedures.

Synthetic Procedures

Synthesis of 2^{C1}-NMe₂

To a solution of **1** (500 mg, 1.34 mmol) in benzene (7 mL) ClB(NMe₂)₂ (271 mg, 2.01 mmol) was added dropwise. After stirring at room temperature overnight, all volatiles were removed *in vacuo*. Extraction with hexane (7 × 5 mL), removal of the solvent and drying *in vacuo* afforded **2**^{Cl}-**NMe₂** (418 mg, 80%). Colourless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated hexane solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.21 (t, 1H, ³*J* = 7.8, 8.4 Hz, *p*-CH^{Dip}), 7.16-7.09 (m, 2H, *m*-CH^{Dip}), 3.12 (sept, 2H, ³*J* = 6.7 Hz, CH(CH₃)₂^{Dip}), 2.79 (br s, 3H, N(CH₃)₂), 2.50 (br s, 3H, N(CH₃)₂), 1.72 (s, 2H, CH₂^{CAAC}), 1.34 (d, 6H, ³*J* = 6.6 Hz, CH(CH₃)₂^{Dip}), 1.30 (s, 6H, CH₃^{CAAC}), 1.25 (d, 6H, ³*J* = 6.9 Hz, CH(CH₃)₂^{Dip}), 100 (s, 6H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 163.6 (C=N^{CAAC}), 149.2 (*o*-C_q^{Dip}), 132.2 (*i*-C_q^{Dip}), 128.2 (*p*-CH^{Dip}), 123.9 (*m*-CH^{Dip}), 60.8 (C_q^{CAAC}), 51.6 (CH₂^{CAAC}), 42.1 (C_q^{CAAC}), 29.4 (CH₃^{CAAC}), 28.8 (CH(CH₃)₂^{Dip}), 28.2 (CH₃^{CAAC}), 27.1 (CH(CH₃)₂^{Dip}), 23.1 (CH(CH₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 26.7 (s) ppm. Elemental analysis for [C₂₂H₃₇BClN₃] (*M_w* = 389.82 g mol⁻¹): calcd. C 67.79, H 9.57, N 10.78%; found C 67.37, H 9.66, N 10.52%. HRMS LIFDI for [C₂₂H₃₇BClN₃] (*m*/z): calcd. 389.2764, found 389.2757.

Synthesis of 2^{Br}-NMe₂

1 (300 mg, 810 μmol) was dissolved in benzene (4 mL) and BrB(NMe₂)₂ (217 mg, 1.22 mmol) was added dropwise at room temperature. The reaction mixture was stirred overnight. After removing all volatiles *in vacuo*, the product was extracted with hexane (7 × 5 mL) and dried *in vacuo* to yield **2^{Br}-NMe**₂ (310 mg, 89%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated hexane solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.20 (t, 1H, ³*J* = 7.6 Hz, *p*-CH^{Dip}), 7.15-7.10 (m, 2H, *m*-CH^{Dip}), 3.18 (sept, 2H, ³*J* = 6.6 Hz, CH(CH₃)₂^{Dip}), 2.27 (s, 6H, N(CH₃)₂), 1.70 (s, 2H, CH₂^{CAAC}), 1.34 (d, 6H, ³*J* = 6.7 Hz, CH(CH₃)₂^{Dip}), 1.32 (s, 6H, CH₃^{CAAC}), 1.25 (d, 6H, ³*J* = 6.7 Hz, CH(CH₃)₂^{Dip}), 0.98 (s, 6H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 163.8 (*C*=N^{CAAC}), 149.6 (*o*-C_q^{Dip}), 132.3 (*i*-C_q^{Dip}), 128.6 (*p*-CH^{Dip}), 124.3 (*m*-CH₁^{Dip}), 61.4 (*C*_q^{CAAC}), 51.9 (CH₂^{CAAC}), 42.6 (*C*_q^{CAAC}), 40.5-39.3 (N(CH₃)₂), 29.7 (CH₃^{CAAC}), 29.1 (CH(CH₃)₂^{Dip}), 28.4 (CH₃^{CAAC}), 27.8 (CH(CH₃)₂^{Dip}), 23.5 (CH(CH₃)₂^{Dip}) ppm.¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 24. (s) ppm. Elemental analysis for [C₂₂H₃₇BBrN₃] (*M_w* = 434.27 g

mol⁻¹): calcd. C 60.85, H 8.59, N 9.68%, found C 60.72, H 8.76, N 9.35%. HRMS LIFDI for [C₂₂H₃₇BBrN₃] (m/z): calcd. 434.2337, found 434.2254.

Synthesis of 2^{Cl}-Cl

2^{Cl}-**NMe**₂ (30.0 mg, 77.0 μmol) and BCl₃(SMe₂) were combined in toluene (0.6 mL). After 1 d at room temperature, the reaction mixture was filtered and dried *in vacuo*. Single crystals of **2**^{Cl}-**Cl** (15 mg, 51%) suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated toluene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): $\delta = 7.14$ (t, 1H, ³*J* = 7.7 Hz, *p*-C*H*^{Dip}, overlaps with the peak of the solvent), 7.06-7.03 (m, 2H, *m*-C*H*^{Dip}), 2.93 (sept, 2H, ³*J* = 6.8 Hz, C*H*(CH₃)₂^{Dip}), 1.58 (s, 2H, C*H*₂^{CAAC}), 1.33 (d, 6H, ³*J* = 6.7 Hz, CH(C*H*₃)₂^{Dip}), 1.20-1.14 (m, 12H, C*H*₃^{CAAC} + CH(C*H*₃)₂^{Dip}), 0.89 (s, 6H, C*H*₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 163.2$ (*C*=N^{CAAC}), 148.8 (*o*-C_q^{Dip}), 130.6 (*i*- C_q^{Dip}), 129.5 (*p*-CH_{Aryl}^{Dip}), 124.6 (*m*-CH_{Aryl}^{Dip}), 63.9 (C_q^{CAAC}), 50.4 (CH₂^{CAAC}), 43.7 (C_q^{CAAC}), 29.4 (CH(CH₃)₂^{Dip}), 29.2 (CH₃^{CAAC}), 28.3 (CH₃^{CAAC}), 26.8 (CH(CH₃)₂^{Dip}), 23.2 (CH(*C*H₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 24.8$ (s) ppm. Elemental analysis for [C₂₀H₃₁BCl₂N₂] (*M_w* = 381.19 g mol⁻¹): calcd. C 63.02, H 8.20, N 7.35%; found C 62.09, H 8.63, N 6.78%. HRMS LIFDI for [C₂₀H₃₁BCl₂N₂] (m/z): calcd. 381.2030, found 381.2027.

Synthesis of 2^{Cl}-Dur

1 (20.0 mg, 50.0 mmol) and DurBCl₂ (11.5 mg, 50.0 μmol) were combined in benzene (0.6 mL). After 1 d at room temperature, all volatiles were removed *in vacuo*, the residue was redissolved in pentane and dried again *in vacuo* for 50 min. Single crystals of **2**^{Cl}-**Dur** (16.0 mg, 62%) suitable for X-ray diffraction analysis were obtained by vapour diffusion of pentane in a saturated benzene solution. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.18 (t, 1H, ³*J* = 7.6 Hz, *p*-C*H*^{Dip}, overlaps with the peak of the solvent), 7.12-7.07 (m, 2H, *m*-C*H*^{Dip}), 6.83 (s, 1H, C*H*^{Dur}), 3.00 (br, 2H, C*H*(CH₃)₂^{Dip}), 2.27-1.93 (m, 12H, CH₃^{Dur}), 1.70 (s, 2H, CH₂^{CAAC}), 1.38 (s, 6H, CH₃^{CAAC}), 1.29-1.01 (m, 12H, CH(CH₃)₂^{Dip}), 0.98 (s, 6H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 161.3 (*C*=N^{CAAC}), 148.8 (*o*-C_q^{Dip}), 134.1 (C_q^{Dur}), 132.8 (*i*-C_q^{Dur}), 132.3 (*i*-C_q^{Dip}), 131.0 (CH_{Aryl}^{Dur}), 129.1 (*p*-CH_{Aryl}^{Dip}), 124.9 (*m*-CH_{Aryl}^{Dip}), 63.3 (C_q^{CAAC}), 51.2 (CH₂^{CAAC}), 43.0 (C_q^{CAAC}), 29.4 (CH₃^{CAAC}), 29.1 (CH(CH₃)₂^{Dip}), 28.9 (CH₃^{CAAC}), 24.2 (CH(CH₃)₂^{Dip}), 19.9 (CH₃^{Dur}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 30.4 (s) ppm. Elemental analysis for [C₃₀H₄₄BClN₂] (*M_w* = 478.96 g mol⁻¹): calcd. C 75.23, H 9.26,

N 5.85%, found C 75.14, H 9.25, N 5.75%. HRMS LIFDI for [C₃₀H₄₄BClN₂] (m/z): calcd. 478.3281, found 478.3276

Synthesis of 2^{Br}-Mes

To a solution of 1 (225 mg, 604 µmol) in 4 mL benzene MesBBr₂ (175 mg, 604 mmol) dissolved in 2 mL benzene was added dropwise. After heating at 60 °C for 1 d all volatiles were removed in vacuo, the residue was extracted with benzene (2×10 mL) and dried in vacuo. Colourless single crystals of 2^{Br}-Mes (231 mg, 75%) suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated benzene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): $\delta = 7.19-7.16$ (m, 1H, *p*-CH^{Dip}, overlaps with the peak of the solvent), 7.14-7.05 (m, 2H, m-CH^{Dip}), 6.70 (s, 2H, CH_{Aryl}^{Mes}), 2.98 (br, 2H, CH(CH₃)₂^{Dip}), 2.54-1.99 (m, 9 H, CH₃^{Mes}), 1.67 (s, 2H, CH₂^{CAAC}), 1.50-1.27 (m, 9 H, $CH(CH_3)_2^{Dip} + CH_3^{CAAC}$, 1.32-1.01 (m, 9 H, $CH(CH_3)_2^{Dip} + CH_3^{CAAC}$), 0.96 (br s, 6H, CH_3^{CAAC}) ppm.¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 162.0$ (C=N^{CAAC}), 149.1 (o-C_q^{Dip}), 138.0 (*i*-C_q^{Mes}), 136.7 (C_q^{Mes}), 132.1 (*i*-C_q^{Dip}), 129.2 (*p*-CH^{Dip}), 127.5 (CH^{Mes}), 125.0 $(m-CH^{Dip}), 63.7 (C_q^{CAAC}), 51.5 (CH_2^{CAAC}), 43.0 (C_q^{CAAC}), 29.1 (CH(CH_3)_2^{Dip} + CH_3^{CAAC}), 28.6$ (CH_3^{CAAC}) , 24.1 (CH $(CH_3)_2^{Dip}$), 21.4 (CH $_3^{Mes}$) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta =$ 26.2 (br s) ppm. Elemental analysis for $[C_{29}H_{42}BBrN_2]$ ($M_w = 509.38 \text{ g mol}^{-1}$): calcd. C 68.38, H 8.31, N 5.50%; found C 68.31, H 8.14, N 5.18%. HRMS LIFDI for [C₂₉H₄₂BBrN₂] (m/z): calcd. 509.2697; found 509.2695.

Synthesis of 2^{Br}-Ph

1 (100 mg, 270 μmol) and PhBBr₂ (66.5 mg, 270 μmol) were combined in benzene (2 mL) and was stirred at room temperature overnight. All volatiles were removed *in vacuo*. Colourless single crystals of **2^{Br}-Ph** (101 mg, 81%) were obtained by vapour diffusion of pentane in a saturated benzene solution. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 8.12-8.05 (m, 2H, CH^{Ph}), 7.27-7.17 (m, 3H, CH^{Ph}, overlaps with the peak of the solvent), 7.10 (dd, 1H, ³*J* = 7.8 Hz, *p*-CH^{Dip}), 7.03-6.99 (m, 2H, *m*-CH^{Dip}), 3.11 (sept, 2H, CH(CH₃)₂^{Dip}), 1.68 (s, 2H, CH₂^{CAAC}), 1.31 (d, 6H, ³*J* = 6.5 Hz, CH(CH₃)₂^{Dip}), 1.26 (s, 6H, CH₃^{CAAC}), 1.22 (d, 6H, ³*J* = 7.0 Hz, CH(CH₃)₂^{Dip}), 0.96 (s, 6H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 162.2 (*C*=N^{CAAC}), 149.1 (*o*-C_q^{Dip}), 136.3 (*o*-CH_{Aryl}^{Ph}), 131. 0 (*i*-C_q^{Dip}), 130.6 (*p*-CH^{Ph}), 129.2 (*p*-CH^{Dip}), 127.5 (*m*-CH^{Ph}), 124.6 (*m*-CH^{Dip}), 63.5 (C_q^{CAAC}), 50.8 (CH₂^{CAAC}), 44.0 (C_q^{CAAC}), 29.5 (CH₃^{CAAC}), 29.3 (CH(CH₃)₂^{Dip}), 28.6 (CH₃^{CAAC}), 27.8 (CH(CH₃)₂^{Dip}), 23.6 (CH(CH₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 29.8 (s) ppm. Elemental analysis for

 $[C_{26}H_{36}BBrN_2]$ ($M_w = 467.30 \text{ g mol}^{-1}$): calcd. C 66.89, H 7.77, N 5.99%; found C 66.72, H 8.03, N 5.93%. HRMS LIFDI for $[C_{26}H_{36}BBrN_2]$ (m/z): calcd. 467.2228, found 467.2224.

Synthesis of 3-NMe₂

1 (143 mg, 390 μ mol) and 2^{CI}-NMe₂ (150 mg, 390 μ mol) were combined in benzene (4 mL) and the reaction mixture was heated to 80 °C for 2 d. After removal of all volatiles in vacuo, the product was recrystallised from benzene (1.5 mL) leading to the formation of a large crop of colourless crystals, which were washed with benzene $(3 \times 0.5 \text{ mL})$ and dried in vacuo affording 3-NMe₂ (164 mg, 65%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated benzene solution at room temperature. ${}^{1}H{}^{11}B{}$ NMR (500.1 MHz, C₆D₆, 297 K): $\delta = 7.23$ (t, 2H, ${}^{3}J = 7.3$ Hz, p-CH^{Dip}), 7.20-7,17 (m, 4H, *m*-CH^{Dip}, overlaps with the solvent peak), 3.27 (sept, 4H, ${}^{3}J = 6.8$ Hz, CH(CH₃)₂^{Dip}), 2.73 (s, 6H, N(CH₃)₂), 1.72 (s, 4H, CH₂^{CAAC}), 1.36 (d, 12H, ${}^{3}J = 6.7$ Hz, CH(CH₃)₂^{Dip}), 1.30 (d, 12H, ${}^{3}J = 6.7$ Hz, CH(CH₃)₂^{Dip}), 1.19 (br s, 12H, CH₃^{CAAC}), 1.04 (s, 12H, CH₃^{CAAC}) ppm. ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 160.9 (C=N^{CAAC})$, 150.2 (*o*-C_q^{Dip}), 134.6 (*i*-C_q^{Dip}), 127.8 $(p-CH^{Dip})$, detected by HSQC, overlaps with the solvent peak), 124.1 (*m*-CH^{Dip}), 59.7 (C_q^{CAAC}), 53.6 (CH2^{CAAC}), 41.8 (C_q^{CAAC}), 40.0 (N(CH3)2), 30.2 (CH3^{CAAC}), 29.0 (CH(CH3)2^{Dip}), 28.3 $(CH(CH_3)_2^{Dip})$, 24.0 (CH_3^{CAAC}) ppm. Note: the ¹³C resonance for one CH_3^{CAAC} could not be detected, presumably due to broadening. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 27.3$ (s) ppm. Elemental analysis for $[C_{42}H_{68}BN_5]$ ($M_w = 653.85 \text{ g mol}^{-1}$): calcd. C 77.15, H 10.48, N 10.71%, found C 76.89, H 10.70, N 10.42% HRMS LIFDI for [C₄₂H₆₈BN₅] (m/z): calcd. 653.5562, found 653.5554.

Synthesis of 3-Ph

A solution of PhBBr₂ (59.0 mg, 240 µmol) in 1 mL benzene was treated with 1 (177 mg, 480 µmol) dissolved in 1 mL benzene. After stirring for 1 d at room temperature, the reaction mixture turned orange. All volatiles were removed *in vacuo*. Colourless single crystals of **3-Ph** (105 mg, 64%) were obtained by slow evaporation of a saturated benzene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.92 (d, 2H, ³*J* = 7.2 Hz, *o*-C*H*^{Ph}), 7.25 (t, 2H, ³*J* = 7.4 Hz, *m*-C*H*^{Ph}), 7.28 (t, 1H, ³*J* = 7.4 Hz, *p*-C*H*_{Aryl}^{Ph}), 7.22 (t, 2H, ³*J* = 7.6 Hz, *p*-C*H*^{Dip}), 7.19-7.14 (m, 4H, *m*- C*H*^{Dip}, overlaps with the solvent peak), 3.37 (br s, 4H, C*H*(CH₃)₂^{Dip}), 1.72 (s, 4H, C*H*₂^{CAAC}), 1.46-1.35 (m, 12H, CH(C*H*₃)₂^{Dip}), 1.33 (d, 12H, ³*J* = 6.7 Hz), 1.12-1.01 (m, 24H, C*H*₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 159.7 (*C*=N^{CAAC}), 150.3 (*o*-C_q^{Dip}), 141.7 (*C*_q^{Ph}), 135.9 (*o*-C*H*^{Ph}), 134.3 (*i*- C_q^{Dip}), 128.7 (*p*-C*H*^{Ph}),

128.1 (*p*-*C*H^{Dip}), 126.6 (*m*-*C*H^{Ph}), 124.4 (*m*-*C*H^{Dip}), 60.4 (C_q^{CAAC}), 52.9 (*C*H₂^{CAAC}), 43.0 (C_q^{CAAC}), 30.1 (*C*H₃^{CAAC}), 29.1 (*C*H(CH₃)₂^{Dip}), 28.3 (CH(*C*H₃)₂^{Dip}), 24.0 (CH(*C*H₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 29.7$ (br s) ppm. Elemental analysis for [C₄₆H₆₇BN₄] ($M_w = 686.88$ g mol⁻¹): calcd. C 80.44, H 9.83, N 8.16%; found C 81.12, H 9.79, N 7.72%. HRMS LIFDI for [C₄₆H₆₇BN₄] (m/z): calcd. 686.5453; found 686.5445.

Synthesis of 3-Cl

1 (200 mg, 537 μmol) and BCl₃·SMe₂ (48.0 mg, 268 μmol) were combined in benzene (4 mL) and the reaction mixture was heated at 60 °C for 2 d. After filtration, all volatiles were removed *in vacuo*. The product was collected by recrystallisation from hexane (2 mL), yielding **3-Cl** (105 mg, 61%) as a colourless solid. Colourless crystals of **3-Cl** suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated toluene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.21 (t, 2H, ³*J* = 6.5 Hz, *p*-CH^{Dip}), 7.16-7.13 (m, 4H, *m*-CH^{Dip}), 3.17 (sept, 4H, ³*J* = 6.7 Hz, CH(CH₃)₂^{Dip}), 1.67 (s, 4H, CH₂^{CAAC}), 1.43 (d, 12H, ³*J* = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.27 (d, 12H, ³*J* = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.20 (br s, 12H, CH₃^{CAAC}), 0.99 (s, 12H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 162.1 (*C*=N^{CAAC}), 149.7 (*o*-C_q^{Dip}), 133.3 (*i*-C_q^{Dip}), 128.0 (*p*-CH^{Dip}), 124.1 (*m*-CH^{Dip}), 61.0 (*C*_q^{CAAC}), 52.5 (CH₂^{CAAC}), 43.3 (*C*_q^{CAAC}), 29.6 (CH₃^{CAAC}), 29.2 (CH(CH₃)₂^{Dip}), 29.1 (CH₃^{CAAC}), 27.2 (CH(CH₃)₂^{Dip}), 23.5 (CH(*C*H₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 23.9 (s) ppm. Elemental analysis for [C₄₀H₆₂BClN₄] (*M*_w = 645.22 g mol⁻¹): calcd. C 76.38, H 9.48, N 7.75%, found C 75.37, H 9.69, N 7.82%. HRMS LIFDI for [C₄₀H₆₂BClN₄] (m/z): calcd. 644.4751, found 644.4743.

Synthesis of 3-Br

1 (1.00 g, 2.68 mmol) was dissolved in benzene (3 mL) and BBr₃(SMe₂) (420 mg, 1.34 mmol) in benzene (3 mL) was added, and the reaction mixture was heated to 60 °C overnight, whereupon the colour changed from colourless to pink. All volatiles were removed *in vacuo*, and the reaction mixture was filtrated and extracted with benzene (4 × 5 mL) and dried again *in vacuo* to afford **3-Br** as a colourless solid (800 mg, 86%). Colourless crystals were obtained by slow evaporation of a saturated benzene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.23-7.18 (m, 2H, *p*-CH^{Dip}), 7.16-7.13 (m, 4H, *m*-CH^{Dip}, overlaps with the solvent peak), 3.14 (sept, 4H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.65 (s, 4H, CH₂^{CAAC}), 1.44 (d, 12H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.26 (d, 12H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.22 (br s, 12H, CH₃^{CAAC}), 0.98 (s, 12H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 162.1

 $(C=N^{CAAC})$, 149.6 ($o-C_q^{Dip}$), 133.1 ($i-C_q^{Dip}$), 128.5 ($p-CH^{Dip}$), 124.2 ($m-CH^{Dip}$), 61.3 (C_q^{CAAC}), 52.4 (CH_2^{CAAC}), 43.4 (C_q^{CAAC}), 29.6 (CH_3^{CAAC}), 29.2 ($CH(CH_3)_2^{Dip}$), 29.0 (CH_3^{CAAC}), 27.9 ($CH(CH_3)_2^{Dip}$), 23.5 ($CH(CH_3)_2^{Dip}$) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 21.0$ (s) ppm. Elemental analysis for [$C_{40}H_{62}BBrN_4$] ($M_w = 689.68$ g mol⁻¹): calcd. C 69.66, H 9.06, N 8.12%, found C 69.40, H 9.27, N 8.05%. HRMS LIFDI for [$C_{40}H_{62}BBrN_4$] (m/z): calcd. 689.4324, found 689.4310.

Synthesis of 3-N₃

3-Br (200 mg, 290 µmol) was dissolved in dichloromethane (3.5 mL) and TMSN₃ (50.0 mg, 435 µmol) was added. After 1 d at room temperature, all volatiles were removed *in vacuo*. Colourless crystals of **3-N**₃ (153 mg, 81%) suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated benzene solution at room temperature. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.20 (t, 2H, ³*J* = 6.4 Hz, *p*-C*H*^{Dip}), 7.16-7.13 (m, 4H, *m*-C*H*^{Dip}), 3.18 (sept, 4H, ³*J* = 6.8 Hz, C*H*(CH₃)₂^{Dip}), 1.66 (s, 4H, C*H*₂^{CAAC}), 1.40 (d, 12H, ³*J* = 6.6Hz, CH(C*H*₃)₂^{Dip}), 1.27 (d, 12H, ³*J* = 6.8 Hz, CH(C*H*₃)₂^{Dip}), 1.14 (s, 12H, C*H*₃^{CAAC}), 0.99 (s, 12H, C*H*₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): δ = 163.1 (*C*=N^{CAAC}), 149.8 (*o*-C_q^{Dip}), 133.5 (*i*-C_q^{Dip}), 128.3 (*p*-C*H*^{Dip}), 124.1 (*m*-C*H*^{Dip}), 60.7 (C_q^{CAAC}), 52.4 (C*H*₂^{CAAC}), 42.3 (C_q^{CAAC}), 29.6 (C*H*₃^{CAAC}), 29.2 (C*H*(C*H*₃)₂^{Dip}), 29.0 (C*H*₃^{CAAC}), 27.6 (C*H*(C*H*₃)₂^{Dip}), 23.5 (C*H*(C*H*₃)₂^{Dip}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 24.3 ppm. FT-IR (solid-state): $\tilde{\nu}$ = 2139, 2109 2036, 2027 (N=N=N), 1670, 1614, 1591, 1577 (N=C_{CAAI}) cm⁻¹. Elemental analysis for [C₄₀H₆₂BN₇] (*M*_w = 651,80 g/mol): calcd. C 73.71, H 9.59, N 15.04%, found C 73.69, H 9.81, N 15.04%. HRMS LIFDI for [C₄₀H₆₂BN₇] (m/z): calcd. 651.5154, found 651.5140.

Synthesis of 3-NCS

To a solution of **3-Br** (20.0 mg, 30.0 µmol) dissolved in benzene (0.6 mL) TMSNCS (4.00 mg, 30.0 µmol) was added. After 1 d at room temperature, all volatiles were removed *in vacuo*. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated benzene solution, yielding **3-NCS** (18 mg, 93%). ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): $\delta = 7.18$ (t, 2H, ³J = 6.7 Hz, p-CH^{Dip}, overlaps with the solvent peak), 7.13-7.10 13 (m, 4H, *m*-CH^{Dip}), 3.09 (sept, 4H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.61 (s, 4H, CH₂^{CAAC}), 1.39 44 (d, 12H, ³J = 6.7 Hz, CH(CH₃)₂^{Dip}), 1.24 (d, 12H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 1.07 (s, 12H, CH₃^{CAAC}), 0.95 (s, 12H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 163.7$ (*C*=N^{CAAC}), 149.5 (o-C_q^{Dip}), 133.1 (*i*-C_q^{Dip}), 128.5 (p-CH^{Dip}), 124.1 (*m*-CH^{Dip}), 61.2 (C_q^{CAAC}),

52.1 (CH_2^{CAAC}), 42.8 (C_q^{CAAC}), 29.5 (CH_3^{CAAC}), 29.2 ($CH(CH_3)_2^{Dip}$), 28.8 (CH_3^{CAAC}), 27.0 ($CH(CH_3)_2^{Dip}$), 23.3 ($CH(CH_3)_2^{Dip}$) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 17.5$ (s) ppm. FT-IR (solid-state): $\tilde{\nu} = 2105$ (br, N=C_{NCS}), 1744, 1688 (N=C_{CAAI}) cm⁻¹. Elemental analysis for [$C_{41}H_{62}BN_5S$] ($M_w = 667.85$ g mol⁻¹): calcd. C 73.74, H 9.36, N 10.49, S 4.80%; found C 72.28, H 9.27, N 10.10, S 4.35%. HRMS LIFDI for [$C_{41}H_{62}BN_5S$] (m/z): calcd. 667.4813, found 667.4802.

Synthesis of 4

To a solution of 1 (159 mg, 430 µmol) dissolved in benzene (1.5 mL) B₂Cl₂(NMe₂)₂ (100 mg, 550 µmol) dissolved in benzene (1 mL) was added dropwise and stirred at room temperature overnight. All volatiles were removed *in vacuo* and the product was washed with hexane (4 \times 4 mL). The product was dried again in vacuo, yielding 4 (146 mg, 77%) as a colourless solid. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated hexane solution at room temperature. ${}^{1}H{}^{11}B{}$ NMR (500.1 MHz, C₆D₆, 297 K): $\delta =$ 7.18 (t, 1H, ${}^{3}J = 6.6$ Hz, $p-CH^{Dip}$), 7.12 (m, 2H, $m-CH^{Dip}$), 3.22 (sept, 2H, ${}^{3}J = 6.6$ Hz, CH(CH₃)₂^{Dip}), 2.75 (s, 3H, N(CH₃)₂), 2.66 (s, 3H, N(CH₃)₂), 2.59 (s, 3H, N(CH₃)₂), 2.35 (s, 3H, N(CH₃)₂), 1.78 (s, 2H, CH₂^{CAAC}), 1.38 (br s, 6H, CH₃^{CAAC}), 1.27 (d, 6H, ${}^{3}J = 6.9$ Hz, CH(CH₃)₂^{Dip}), 1.18 (br s, 6H, CH(CH₃)₂^{Dip}), 1.06 (s, 6H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 157.3$ (C=N^{CAAC}), 150.2 (o-C_a^{Dip}), 134.1 (i-C_a^{Dip}), 128.1 (p-CH^{Dip}), 123.8 (*m*-CH^{Dip}), 59.8 (C_a^{CAAC}), 52.3 (CH₂^{CAAC}), 41.8 (N(CH₃)₂), 41.2 (N(CH₃)₂), 40.7 (C_q^{CAAC}), 37.9 (N(CH₃)₂), 37.4 (N(CH₃)₂, 29.0 (CH(CH₃)₂^{Dip}), 29.0 (CH₃^{CAAC}), 26.3 $(CH(CH_3)_2^{Dip})$, 23.5 (CH_3^{CAAC}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 40.8$, 30.0 ppm. Elemental analysis for $[C_{24}H_{43}B_2CIN_4]$ ($M_w = 444.71 \text{ g mol}^{-1}$): calcd. C 64.82, H 9.75, N 12.60%, found C 64.74, H 9.92, N 12.47%. HRMS LIFDI for [C₂₂H₃₇BBrN₃] (m/z): calcd. 444.3355, found 444.3357.

Synthesis of 5-NMe₂

1 (100 mg, 270 µmol) and B₂Br₂(NMe₂)₂ (36 mg, 130 µmol) were combined in benzene (2.5 mL) and stirred at room temperature for 3 days. All volatiles were removed *in vacuo* and **5-NMe**₂ was recrystallised from benzene (2 mL) leading to the formation colourless single crystals (58 mg, 61%), which were suitable for X-ray diffraction analysis. ¹H{¹¹B} NMR (500.1 MHz, C₆D₆, 297 K): δ = 7.19-7.12 (m, 6H, *p*-CH^{Dip} + *m*-CH^{Dip}), 3.28 (sept, 4H, ³J = 6.8 Hz, CH(CH₃)₂^{Dip}), 2.47 (s, 6H, N(CH₃)₂), 2.16 (s, 6H, N(CH₃)₂, 1.88 (br s, 4H, CH₂^{CAAC}), 1.30-1.28 (m, 36H, CH(CH₃)₂^{Dip} + CH₃^{CAAC}), 1.20-1.01 (m, 12H, CH₃^{CAAC}) ppm. ¹³C{¹H} NMR (125.8

MHz, C₆D₆, 297 K): $\delta = 153.4 \ (C=N^{CAAC})$, 150.6 $(o-C_q^{Dip})$, 149.8 $(o-C_q^{Dip})$, 135.0 $(i-C_q^{Dip})$, 127.9 $(p-CH^{Dip})$, 124.1 $(m-CH^{Dip})$, 59.0 (C_q^{CAAC}) , 52.8 (CH_2^{CAAC}) , 40.5 $(N(CH_3)_2)$, 39.8 (C_q^{CAAC}) , 38.4 $(N(CH_3)_2)$, 31.8 (CH_3^{CAAC}) , 31.1 (CH_3^{CAAC}) , 29.1 $(CH(CH_3)_2^{Dip})$, 28.3 (CH_3^{CAAC}) , 26.3 $(CH(CH_3)_2^{Dip})$, 24.8 $(CH(CH_3)_2^{Dip})$, 23.3 $(CH(CH_3)_2^{Dip})$ ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): $\delta = 30.8$ (br s) ppm. Elemental analysis for $[C_{24}H_{43}B_2CIN_4]$ $(M_w = 708.74 \ \text{g mol}^{-1})$: calcd. C 74.57, H 10.52, N 11.86%, found C 74.91, H 10.78, N 11.92%. HRMS LIFDI for $[C_{24}H_{43}B_2CIN_4]$ (m/z): calcd. 708.6144, found 708.6156.

Synthesis of 5-Mes

1 (20 mg, 54 µmol) and B₂Mes₂Cl₂ (9.0 mg, 27 µmol) were dissolved in benzene and the reaction mixture was heated to 80 °C for 3 days. All volatiles were removed in vacuo and small amount of yellow single crystals of 5-Mes suitable for X-ray diffraction analysis could be obtained by slow evaporation of a saturated benzene solution (5.0 mg, 21%). ¹H{¹¹B} NMR $(500.1 \text{ MHz}, C_6D_6, 297 \text{ K}): \delta = 7.08 \text{ (t, 2H, }^3J = 7.8 \text{ Hz}, p-CH^{\text{Dip}}), 6.98-6.94 \text{ (m, 2H, }m-CH^{\text{Dip}}), 6.98-6.94 \text{ (m$ 6.94-6.89 (m, 2H, m-CH^{Dip}), 6.78 (s, 2H, m-CH^{Mes}), 6.53 (s, 2H, m-CH^{Mes}), 3.34 (sept, 2H, ${}^{3}J = 6.9$ Hz, $CH(CH_{3})_{2}^{Dip}$), 2.76 (sept, 2H, ${}^{3}J = 6.9$ Hz, $CH(CH_{3})_{2}^{Dip}$), 2.70 (s, 6H, CH_{3}^{Mes}), 2.26 (s, 6H, CH_3^{Mes}), 1.88 (d, 2H, $^2J = 12.7$ Hz, CH_2^{CAAC}), 1.76 (d, 2H, $^2J = 12.6$ Hz, CH_2^{CAAC}), 1.72 (s, 6H, CH₃^{CAAC}), 1.46 (s, 6H, CH₃^{CAAC}), 1.44 (s, 6H, CH₃^{CAAC}), 1.27 (s, 6H, CH₃^{Mes}), 1.17 (d, 6H, ${}^{3}J = 6.7$ Hz, CH(CH₃)2^{Dip}), 0.93 (d, 6H, ${}^{3}J = 6.9$ Hz, CH(CH₃)2^{Dip}), 0.75 (s, 6H, CH₃^{CAAC}), 0.72 (d, 6H, ${}^{3}J = 6.7$ Hz, CH(CH₃)₂^{Dip}), 0.38 (d, 6H, ${}^{3}J = 6.9$ Hz, CH(CH₃)₂^{Dip}) ppm. ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, C₆D₆, 297 K): $\delta = 152.8$ (C=N^{CAAC}), 150.7 2 (o-C_g^{Dip}), 149.2 2 (o-C_g^{Dip}), 144.4 (C_q^{Mes}), 139.0 (C_q^{Mes}), 136.8 (C_q^{Mes}), 136.3 ($i-C_q^{Dip}$), 133.6 ($i-C_q^{Mes}$), 127.2 (CH^{Mes}) 125.3 $(p-CH^{Dip})$, 124.8 $(m-CH^{Dip})$, 124.4 $(m-CH^{Dip})$, 60.8 (C_q^{CAAC}) , 53.0 (CH_2^{CAAC}) , 42.1 (C_q^{CAAC}) , 32.5 (CH3^{CAAC}), 30.5 (CH3^{CAAC}), 29.1 (CH3^{CAAC}), 29.0 (CH(CH3)2^{Dip}), 28.6 (CH(CH3)2^{Dip}), 26.9 (CH3^{CAAC}), 26.5 (CH(CH3)2^{Dip}), 25.4 (CH(CH3)2^{Dip}), 24.8 (CH3^{Mes}), 24.5 (CH(CH3)2^{Dip}), 23.6 (CH(*C*H₃)₂^{Dip}), 21.6 (*C*H₃^{Mes}) ppm. ¹¹B NMR (160.5 MHz, C₆D₆, 297 K): δ = 35.8 ppm. Elemental analysis for $[C_{18}H_{22}B_2Cl_2]$ ($M_w = 858.96 \text{ g mol}^{-1}$): calcd. C 81.10, H 9.86, N 6.52%, found C 79.34, H 9.86, N 6.32%). HRMS LIFDI for [C₁₈H₂₂B₂Cl₂] (m/z): calcd. 857.6798, found 857.6783.

NMR spectra of isolated compounds

Figure S1. ${}^{1}H{}^{11}B{}$ NMR spectrum of **2**^{C1}-**NMe**₂ in C₆D₆.

Figure S2. ¹³C{¹H} NMR spectrum of 2^{Cl} -NMe₂ in C₆D₆.

Figure S3. ¹¹B NMR spectrum of 2^{Cl} -NMe₂ in C₆D₆.

Figure S4. ${}^{1}H{}^{11}B{}$ NMR spectrum of 2^{Br} -NMe₂ in C₆D₆.

Figure S5. ¹³C{¹H} NMR spectrum of 2^{Br} -NMe₂ in C₆D₆.

Figure S6. ¹¹B NMR spectrum of 2^{Br} -NMe₂ in C₆D₆.

Figure S7. ${}^{1}H{}^{11}B{}$ NMR spectrum of 2^{Cl}-Cl in C₆D₆.

Figure S9. ¹¹B NMR spectrum of 2^{Cl} -Cl in C₆D₆.

Figure S10. ${}^{1}H{}^{11}B{}$ NMR spectrum of **2**^{Cl}-**Dur** in C₆D₆.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of 2^{CI}-Dur in C₆D₆.

Figure S12. ¹¹B NMR spectrum of 2^{Cl} -Dur in C₆D₆.

Figure S13. ${}^{1}H{}^{11}B{}$ NMR spectrum of **2^{Br}-Mes** in C₆D₆.

Figure S14. ¹³C{¹H} NMR spectrum of 2^{Br} -Mes in C₆D₆.

Figure S15. ¹¹B NMR spectrum of 2^{Br} -Mes in C₆D₆.

Figure S16. ${}^{1}H{}^{11}B{}$ NMR spectrum of 2^{Br} -Ph in C₆D₆.

Figure S17. ¹³C{¹H} NMR spectrum of 2^{Br} -Ph in C₆D₆.

Figure S18. ¹¹B NMR spectrum of 2^{Br} -Ph in C₆D₆.

Figure S19. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-NMe₂ in C₆D₆.

Figure S20. ¹³C{¹H} NMR spectrum of 3-NMe₂ in C₆D₆.

Figure S21. ¹¹B NMR spectrum of **3-NMe**₂ in C_6D_6 .

Figure S22. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-Ph in C₆D₆.

Figure S24. ¹¹B NMR spectrum of **3-Ph** in C_6D_6 .

Figure S25. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-Cl in C₆D₆.

Figure S27. ¹¹B NMR spectrum of **3-Cl** in C_6D_6 .

Figure S28. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-Br in C₆D₆.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of 3-Br in C₆D₆.

Figure S30. ¹¹B NMR spectrum of **3-Br** in C_6D_6 .

Figure S31. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-N₃ in C₆D₆.

Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum of 3-N₃ in C₆D₆.

Figure S33. ¹¹B NMR spectrum of $3-N_3$ in C₆D₆.

Figure S34. ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-NCS in C₆D₆.

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum of 3-NCS in C₆D₆.

Figure S36. ¹¹B NMR spectrum of 3-NCS in C_6D_6 .

Figure S37. ${}^{1}H{}^{11}B{}$ NMR spectrum of 4 in C₆D₆.

Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum of 4 in C₆D₆.

Figure S39. ¹¹B NMR spectrum of **4** in C_6D_6 .

Figure S40. ${}^{1}H{}^{11}B{}$ NMR spectrum of **5-NMe**₂ in C₆D₆.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of 5-NMe₂ in C₆D₆.

Figure S42. ¹¹B NMR spectrum of $5-NMe_2$ in C_6D_6 .

Figure S43. ${}^{1}H{}^{11}B{}$ NMR spectrum of 5-Mes in C₆D₆.

Figure S44. ¹³C{¹H} NMR spectrum of 5-Mes in C_6D_6 .

Figure S45. ¹¹B NMR spectrum of 5-Mes in C₆D₆.

IR spectra

Figure S46. Solid-state IR spectrum of 3-N₃.

Figure S47. Solid-state IR spectrum of 3-NCS.

X-ray crystallographic data

The crystal data of 2^{Br} -NMe₂, 2^{Br} -Mes, 2^{Br} -Ph, 3-Br, 3-N₃ and 5-NMe₂ were collected on a RIGAKU XTALAB SYNERGY-S diffractometer with a HPA area detector and multi-layer mirror monochromated Cu_{Ka} radiation. The crystal data of 2^{Cl} -NMe₂ and 2^{Cl} -Cl were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The crystal data of 2^{Cl} -Dur, 3-NMe₂, 3-Ph, 4 and 5-Mes were collected on a Bruker D8 Quest diffractometer with a CMOS area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using intrinsic phasing method,⁷ refined with the SHELXL program, and expanded using Fourier techniques.¹¹ All non-hydrogen atoms were refined anisotropically.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-2237053-2237066. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	CCDC		CCDC
2 ^{Cl} -NMe ₂	2237055	3-Ph	2237056
2 ^{Br} -NMe ₂	2237066	3-Br	2237065
2 ^{CI} -Cl	2237054	3-N ₃	2237058
2 ^{Cl} -Dur	2237061	3-NCS	2237063
2 ^{Br} -Mes	2237053	4	2237057
2 ^{Br} -Ph	2237064	5-NMe ₂	2237059
3-NMe ₂	2237062	5-Mes	2237060

Table S1. CCDC numbers of structurally characterised compounds.

Crystal data for 2^{Cl}-NMe2: C₂₂H₃₇BClN₃, $M_r = 389.80$, colourless block, 0.36×0.321×0.21 mm³, monoclinic space group $P2_1/c$, a = 17.943(10) Å, b = 9.057(4) Å, c = 14.529(8) Å, $\beta = 105.28(3)^\circ$, V = 2278(2) Å³, Z = 4, $\rho_{calcd} = 1.137$ g·cm⁻³, $\mu = 0.179$ mm⁻¹, F(000) = 848, T = 100(2) K, $R_1 = 0.0587$, $wR_2 = 0.1038$, 4476 independent reflections $[2\theta \le 52.04^\circ]$ and 254 parameters.

Figure S48. Solid-state structures of **2^{C1}-NMe**₂. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 2^{Br}-NMe₂: The BBrNMe₂ fragment (B1 > C6) was modelled as twofold flip-disordered in a 85:15 ratio. 1,2- and 1,3-distances were restrained to similarity with SAME, ADPs with SIMU 0.002.

Crystal data for 2^{Br}-NMe2: C₂₂H₃₇BBrN₃, $M_r = 434.26$, colourless plate, 0.410×0.110×0.070 mm³, monoclinic space group $P2_1/c$, a = 18.0177(2) Å, b = 9.08810(10) Å, c = 14.5514(2) Å, $\beta = 104.9120(10)^\circ$, V = 2302.50(5) Å³, Z = 4, $\rho_{calcd} = 1.253$ g·cm⁻³, $\mu = 2.495$ mm⁻¹, F(000) = 920, T = 100(2) K, $R_I = 0.0475$, $wR_2 = 0.1250$, 4836 independent reflections [2 $\theta \le 154.638^\circ$] and 302 parameters.

Figure S49. Solid-state structures of **2^{Br}-NMe**₂. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 2^{Cl}-Cl: The BCl₂ unit was modelled as twofold rotationally disordered in a 94:6 ratio. ADPs within the disorder were restrained with SIMU 0.005.

Crystal data for 2^{CI}-CI: C₂₀H₃₁BCl₂N₂, $M_r = 381.18$, colourless block, 0.488×0.298×0.270 mm³, monoclinic space group $P2_1/n$, a = 14.270(6) Å, b = 10.149(4) Å, c = 14.806(6) Å, $\beta = 97.11(2)^\circ$, V = 2127.9(15) Å³, Z = 4, $\rho_{calcd} = 1.190$ g·cm⁻³, $\mu = 0.310$ mm⁻¹, F(000) = 816, T = 100(2) K, $R_I = 0.0436$, $wR_2 = 0.1004$, 4202 independent reflections [2 $\theta \le 52.038^\circ$] and 253 parameters.

Figure S50. Solid-state structures of 2^{Cl} -Cl. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Crystal data for 2^{CI}-Dur: C₃₀H₄₄BClN₂, $M_r = 478.93$, colourless block, 0.405×0.275×0.199 mm³, monoclinic space group $P2_1/n$, a = 10.300(2) Å, b = 16.861(3) Å, c = 16.843(5) Å, $\beta = 103.065(16)^\circ$, V = 2849.4(12) Å³, Z = 4, $\rho_{calcd} = 1.116$ g·cm⁻³, $\mu =$ 0.154 mm⁻¹, F(000) = 1040, T = 100(2) K, $R_1 = 0.0534$, $wR_2 = 0.1182$, 6076 independent reflections [2 $\theta \le 53.766^\circ$] and 319 parameters.

Figure S51. Solid-state structures of **2^{Cl}-Dur**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Crystal data for 2^{Br}-Mes: C₂₉H₄₂BBrN₂, $M_r = 509.36$, colourless block, 0.289×0.230×0.063 mm³, monoclinic space group $P1_21/n1$, a = 10.0184(3) Å, b = 16.7493(4) Å, c = 17.4941(5) Å, $\beta = 106.480(3)^\circ$, V = 2814.92(15) Å³, Z = 4, $\rho_{calcd} = 1.202 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.479 \text{ mm}^{-1}$, F(000) = 1080, T = 99.98(12) K, $R_I = 0.0549$, $wR_2 = 0.0811$, 7292 independent reflections [$2\theta \le 62.2058^\circ$] and 309 parameters.

Figure S52. Solid-state structures of **2^{Br}-Mes**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 2^{\text{Br}}-Ph: Refined as a 2-component twin. Component 2 rotated by – 179.9271° around [0.00 0.00 1.00] (reciprocal) or [-0.16 -0.06 0.98] (direct) The BASF parameter was refined to 30.6%. Some reflections were removed from refinement as outliers, these likely belong to a third twin component, which could not be modelled adequately.

Crystal data for 2^{Br}-Ph: C₂₆H₃₆BBrN₂, $M_r = 467.29$, colourless plate, 0.149×0.038×0.006 mm³, triclinic space group $P\overline{1}$, a = 9.3778(3) Å, b = 13.0392(3) Å, c = 20.8478(6) Å, $\alpha = 86.673(2)^{\circ}$, $\beta = 85.097(2)^{\circ}$, $\gamma = 75.815(2)^{\circ}$, V = 2460.66(12) Å³, Z = 4, $\rho_{calcd} = 1.261$ g·cm⁻³, $\mu = 2.365$ mm⁻¹, F(000) = 984, T = 100(2) K, $R_I = 0.0884$, $wR_2 = 0.2428$, 14301 independent reflections [2 $\theta \le 140.15^{\circ}$] and 558 parameters.

Figure S53. Solid-state structures of 2^{Br} -Ph. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Crystal data for 3-NMe₂: C₄₂H₆₈BN₅, $M_r = 653.82$, colourless block, 0.604×0.285×0.212 mm³, triclinic space group P $\overline{1}$, a = 9.654(3) Å, b = 14.571(4) Å, c = 16.429(10) Å, $\alpha = 65.392(11)^\circ$, $\beta = 79.27(2)^\circ$, $\gamma = 70.736(12)^\circ$, V = 1980.4(15) Å³, Z = 2, $\rho_{calcd} = 1.096$ g·cm⁻³, $\mu = 0.064$ mm⁻¹, F(000) = 720, T = 100 K, $R_I = 0.0609$, $wR^2 = 0.1018$, 7781 independent reflections [$2\theta \le 52.044^\circ$] and 451 parameters.

Figure S54. Solid-state structures of **3-NMe**₂. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 3-Ph: The asymmetric unit contains half a toluene molecules positioned on an inversion centre and modelled as twofold rotational disordered in an 11:39 ratio with PARTs -1 and -2. The phenyl rings within this disorder were idealized with AFIX 66. 1,2- and 1,3-distances were restrained to similarity with SAME 0.005 and ADPs with SIMU 0.01 and ISOR 0.005.

Crystal data for 3-Ph: C_{49.50}H₇₁BN₄, $M_r = 732.91$, colourless block, $0.492 \times 0.456 \times 0.343 \text{ mm}^3$, triclinic space group P $\overline{1}$, a = 9.261(15) Å, b = 11.923(19) Å, c = 20.48(3) Å, $a = 91.46(3)^\circ$, $\beta = 91.08(5)^\circ$, $\gamma = 96.36(3)^\circ$, V = 2246(6) Å³, Z = 2, $\rho_{calcd} = 1.084 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.062 \text{ mm}^{-1}$, F(000) = 802, T = 100(2) K, $R_1 = 0.0978$, $wR_2 = 0.1490$, 8867 independent reflections $[2\theta \le 52.044^\circ]$ and 581 parameters.

Figure S55. Solid-state structures of **3-Ph**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Crystal data for 3-Br: C₄₀H₆₂BBrN₄, $M_r = 689.65$, colourless block, $0.289 \times 0.169 \times 0.164 \text{ mm}^3$, monoclinic space group $P2_1$, a = 9.55970(10) Å, b = 9.60350(10) Å, c = 21.56940(10) Å, $\beta = 94.2800(10)^\circ$, V = 1974.69(3) Å³, Z = 2, $\rho_{calcd} = 1.160 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.638 \text{ mm}^{-1}$, F(000) = 740, T = 100.00(10) K, $R_1 = 0.0229$, $wR_2 = 0.0614$, Flack parameter = -0.019(6), 7493 independent reflections [$2\theta \le 140.136^\circ$] and 431 parameters.

Figure S56. Solid-state structures of **3-Br**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 3-N₃: The ADPs of the azide nitrogen atoms N5 > N7 were restrained with SIMU 0.001 to avoid a Hirshfeld test alert.

Crystal data for 3-N₃: C₄₀H₆₂BN₇, $M_r = 651.77$, colourless block, $0.271 \times 0.194 \times 0.115 \text{ mm}^3$, monoclinic space group $P2_1/c$, a = 9.52340(10) Å, b = 12.29820(10) Å, c = 33.6499(2) Å, $\beta = 96.8590(10)^\circ$, V = 3912.89(6) Å³, Z = 4, $\rho_{calcd} = 1.106 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.500 \text{ mm}^{-1}$, F(000) = 1424, T = 99.99(10) K, $R_1 = 0.0395$, $wR_2 = 0.0963$, 8054 independent reflections $[2\theta \le 150.644^\circ]$ and 449 parameters.

Figure S57. Solid-state structures of **3-N**₃. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 3-NCS: The CAAC backbone was modelled with a twofold flipdisorder in C3 > C9 in a 57:43 ratio. 1,2- and 1,3-distances within the disorder were restrained with SAME, ADPs with SIMU 0.002.

Crystal data for 3-NCS: C₄₁H₆₂BN₅S, $M_r = 667.82$, colourless plate, 0.383×0.181×0.047 mm³, monoclinic space group $P2_1/c$, a = 9.53740(10) Å, b = 19.8419(2) Å, c = 21.4198(2) Å, $\beta = 97.1630(10)^\circ$, V = 4021.85(7) Å³, Z = 4, $\rho_{calcd} = 1.103$ g·cm⁻³, $\mu = 0.955$ mm⁻¹, F(000) = 1456, T = 100.00(10) K, $R_I = 0.0472$, $wR_2 = 0.1059$, 7646 independent reflections $[2\theta \le 140.144^\circ]$ and 517 parameters.

Figure S58. Solid-state structures of **3-NCS**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Crystal data for 4: C₄₈H₈₆B₄Cl₂N₈, $M_r = 889.38$, colourless plate, $0.317 \times 0.252 \times 0.100 \text{ mm}^3$, triclinic space group P $\overline{1}$, a = 10.834(3) Å, b = 16.640(5) Å, c = 16.947(6) Å, $a = 65.006(8)^\circ$, $\beta = 89.810(8)^\circ$, $\gamma = 78.779(12)^\circ$, V = 2705.3(16) Å³, Z = 2, $\rho_{calcd} = 1.092 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.159 \text{ mm}^{-1}$, F(000) = 968, T = 100(2) K, $R_I = 0.0536$, $wR^2 = 0.0923$, 10646 independent reflections $[2\theta \le 52.04^\circ]$ and 583 parameters.

Figure S59. Solid-state structures of **4**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 5-NMe₂: The CAAC backbone was modelled as twofold flipdisordered in C4 > C9 in a87:13 ratio. ADPs within the disorder were restrained with SIMU 0.005. One reflection affected by the beamstop was omitted (11 3 10).

Crystal data for 5-NMe2: C₄₄H₇₄B₂N₆, $M_r = 708.71$, colourless block, 0.360×0.230×0.190 mm³, monoclinic space group C2/c, a = 10.63470(10) Å, b = 16.5638(3) Å, c = 25.4585(3) Å, $\beta = 100.6440(10)^\circ$, V = 4407.38(10) Å³, Z = 4, $r_{calcd} = 1.068$ g·cm⁻³, $\mu = 0.465$ mm⁻¹, F(000) = 1560, T = 100(2) K, $R_I = 0.0592$, $wR_2 = 0.1509$, 4554 independent reflections [2 $\theta \le 154.926^\circ$] and 304 parameters.

Figure S60. Solid-state structures of **5-NMe**₂. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.

Refinement details for 5-Mes: The benzene molecule was modelled as twofold rotationally disordered in a 7:3 ratio. The rings within this disorder were idealized with AFIX 6 and ADPs restrained with SIMU 0.005.

Crystal data for 5-Mes: C₆₄H₉₀B₂N₄, $M_r = 937.01$, colourless block, $0.327 \times 0.262 \times 0.253$ mm³, triclinic space group P_1 , a = 10.897(2) Å, b = 13.450(3) Å, c = 20.469(4) Å, $a = 88.759(12)^\circ$, $\beta = 74.992(10)^\circ$, $\gamma = 82.039(7)^\circ$, V = 2869.4(10) Å³, Z = 2, $\rho_{calcd} = 1.085$ g·cm⁻³, $\mu = 0.062$ mm⁻¹, F(000) = 1024, T = 100(2) K, $R_I = 0.0483$, $wR_2 = 0.1067$, 11289 independent reflections $[2\theta \le 52.044^\circ]$ and 684 parameters.

Figure S61. Solid-state structures of **5-Mes**. Atomic displacement ellipsoids shown at 50%. Ellipsoids of ligand periphery and hydrogen atoms omitted for clarity.
Computational details

Density functional theory (DFT) calculations were carried out using the program Turbomole V7.2¹² implemented in the user interface TmoleX2022.¹³ Geometry optimisations were carried out at the B3LYP¹⁴-D3(BJ)¹⁵/Def2-SVP¹⁶ level of theory and minima were confirmed by the absence of negative frequencies. Wiberg bond indices (WBIs)¹⁷ and partial charges, obtained by natural population analysis (NPA),¹⁸ were calculated using TmoleX2022. Molecular orbital plots were generated within the TmoleX2022 orbital viewer.

NMR shielding calculations were performed on the structures of 2^{Cl} -**Y** (**Y** = Cl, NMe₂, Dur) and **3-Y** (**Y** = Cl, NMe₂, Dur) optimised at the B3LYP-D3(BJ)/Def2-SVP level of theory (see structural data in Table S2), using BF₃(OEt₂) ($\delta_{11B} = 0$ ppm) as a reference and various levels of theory (functionals: B3LYP, ω B97X-D,¹⁹ LC²⁰-TPSS;²¹ basis sets: Def2-SVP, pcSseg-1/2;²² solvent model: PCM(benzene)).²³ These calculations were carried out using Gaussian 16.²⁴ The results are summarised in Table S3 and show that the calculated ¹¹B NMR shifts and their relative order are highly dependent upon the level of theory used. The experimentally observed chemical shift order of **Y** = Dur > NMe₂ > Cl could only be reproduced for the **3-Y** series when using the pcsseg-1 basis set (highlighted in green in Table S3), albeit with a large upfield-shift of ca. 4 ppm for **3-NMe₂** compared to the experimental value.

	C=N		B-N _{CAAI}		C-N-B	
	exp.	calcd.	exp.	calcd.	exp.	calcd.
2 ^{Cl} -Dur	1.270(2)	1.262	1.344(2)	1.357	168.51(15)	169.87
2 ^{Cl} -NMe ₂	1.271(2)	1.271	1.406(3)	1.403	139.30(15)	138.33
2 ^{C1} -Cl	1.276(2)	1.268	1.332(2)	1.356	155.78(15)	154.06
3-Ph	1.275(3)		1.444(3)		132.57(19)	
	1.266(3)		1.402(3)		154.0(2)	
3-NMe ₂	1.2636(18)	1.259	1.427(2)	1.421	146.81(13)	150.85
	1.2694(19)	1.270	1.455(2)	1.446	131.18(12)	132.63

Table S2. Comparison of selected experimental and calculated (B3LYP-D3(BJ)/Def2-SVP) structural parameters for 2^{Cl} -Y (Y = Cl, NMe₂, Dur) and 3-Y (Y = NMe₂, Dur).

Table S3. Experimental and calculated ¹¹B NMR shifts (ppm) of 2^{Cl} -Y (Y = Cl, NMe₂, Dur) and **3-Y** (Y = Cl, NMe₂, Dur) optimised at the B3LYP-D3(BJ)-Def2-SVP level of theory. Highlighted in green are the results which reflect the experimental order of the NMR shifts.

	2 ^{CI} -Dur	2 ^{Cl} -NMe ₂	2 ^{CI} -Cl	3-Ph	3-NMe ₂	3-Cl
exp.	30.4	26.7	24.8	29.7	27.3	23.9
B3LYP/Def2-SVP	30.99	26.24	28.67	27.86	23.14	24.40
ωB97X-D/Def2-SVP	30.25	26.21	28.28	30.95	23.66	25.08
ω B97X-D/Def2-SVP/PCM(benzene)	29.81	26.20	27.78	31.04	23.85	24.95
ωB97X-D/pcSseg-1	28.70	26.12	27.05	29.27	23.49	23.28
ω B97X-D/pcSseg-1/PCM(benzene)	28.24	26.11	26.50	29.39	23.71	23.16
ωB97X-D/pcSseg-2	29.73	26.42	28.27	29.78	23.15	23.78
ω B97X-D/pcSseg-2/PCM(benzene)	29.24	26.37	27.68	29.86	23.34	23.60
LC-TPSS/pcSseg-1	30.59	28.16	28.94	32.30	25.76	25.51
LC-TPSS/ pcSseg-1/PCM(benzene)	30.11	28.19	28.40	32.42	25.99	25.42

Cartesian coordinates

Table S4. Cartesian coordinates (Å) of compounds optimized at the B3LYP-D3(BJ)/Def2-SVP level of theory, with SCF energies and lowest calculated IR frequencies.

CAAI anion A

Е_{SCF} = -889.1654531288 На Lowest IR frequency = 48.07 cm^{-1} N 2.2406851 6.1742059 8.2312879 C 2.2304541 7.3979903 8.1504200 N 3.4043082 8.3287913 7.8728623 C 3.1010768 9.7510528 7.8599343 C 1.6609098 9.7848357 8.4591321 H 1.0735122 10.6131230 8.0233793 H 1.7415949 9.9847375 9.5404515 C 1.0245110 8.4050888 8.2539237 C 3.1351287 10.3761551 6.4434742 H 2.9021152 11.4548027 6.4860669 H 2.4063166 9.9016926 5.7727996 H 4.1356315 10.2614392 5.9962381 C 4.0585645 10.5861253 8.7349419 H 3.7615344 11.6498159 8.7249946 H 5.0946023 10.5174209 8.3651156 H 4.0468062 10.2417260 9.7785476 C 0.2201215 8.3050556 6.9484348 H -0.6773193 8.9531198 6.9660171 H -0.0942746 7.2590508 6.8043031 H 0.8246932 8.5874911 6.0726673 C 0.1385322 7.9666111 9.4198440 H -0.8268451 8.5064670 9.4463252 H 0.6513357 8.1231182 10.3838823 H -0.0347032 6.8826980 9.3150366 $C \quad 4.6792419 \ 7.8141556 \ 7.5824878$ C 5.6062764 7.5733673 8.6315948 C 6.9015444 7.1369745 8.3230050

Η	7.6205598	6.9677611	9.1297186
С	7.2777274	6.8798810	7.0042689
Η	8.2953378	6.5474007	6.7754478
С	6.3298851	6.9940227	5.9874801
Η	6.6013580	6.7139079	4.9655840
С	5.0257551	7.4303594	6.2598816
С	5.1435498	7.6343548	10.0782310
Η	4.2151167	8.2186342	10.0856.969
С	6.1443460	8.3021592	11.0269055
Η	5.7170827	8.3860371	12.0409358
Η	6.4115403	9.3157075	10.6842847
Η	7.0789309	7.7221461	11.1183684
С	4.7603686	6.2143575	10.5341611
Η	4.3499167	6.2323286	11.5601254
Η	5.6430382	5.5493574	10.5298500
Η	3.9961848	5.8110144	9.8469456
С	3.9544274	7.3433909	5.1852115
Η	3.1026297	7.9325650	5.5411295
С	3.4624111	5.8877194	5.0892439
Η	2.6299376	5.8054954	4.3672391
Η	3.1091103	5.5632172	6.0830691
Η	4.2753620	5.2193794	4.7520240
С	4.3875095	7.9006244	3.8249053
Η	3.5428668	7.8818936	3.1149650
Η	5.2012567	7.3066857	3.3742340
Η	4.7393569	8.9423447	3.9072412

NHI anion B

$$\begin{split} E_{SCF} &= -1212.596915069 \mbox{ Ha} \\ Lowest IR \mbox{ frequency} &= 37.93 \mbox{ cm}^{-1} \\ N \ 1.8862490 \ 6.2993632 \ 7.6020850 \end{split}$$

С	2.0747409	7.4707964	7.8972556
N	3.3053094	8.3093601	7.8322035
С	3.0818133	9.5973757	8.2903317
С	1.7761903	9.7238414	8.6215452
N	1.1459231	8.5049465	8.4320716
С	4.5686475	7.7674961	7.5649620
С	5.4565185	7.5055404	8.6335741
С	6.7289013	7.0076048	8.3467574
Η	7.4299767	6.8081990	9.1610229
С	7.1059143	6.7270185	7.0347779
Η	8.1027986	6.3281068	6.8255331
С	6.2050456	6.9332348	5.9966123
Н	6.4971420	6.6868865	4.9718832
С	4.9300783	7.4557979	6.2387594
С	4.9534486	7.6397274	10.0568248
Η	4.2538937	8.4907917	10.0806692
С	6.0457580	7.9161445	11.0830071
Η	5.5982071	8.0948553	12.0735510
Η	6.6453729	8.8007166	10.8146337
Н	6.7353081	7.0626042	11.1929695
С	4.1502995	6.3840582	10.4154093
Η	3.6506023	6.5029955	11.3918700
Н	4.8198176	5.5093576	10.4776775
Η	3.3878593	6.1679904	9.6483758
С	3.9443302	7.6517571	5.1077542
Η	3.1342475	8.2761046	5.5143721
С	3.3227953	6.3102121	4.7159625
Η	2.5563626	6.4524028	3.9351665
Η	2.8456289	5.8730814	5.6122541
Η	4.0904087	5.6217523	4.3199698
С	4.5515979	8.3825341	3.9125727
Η	3.7756890	8.5883942	3.1573737
Η	5.3344762	7.7842386	3.4169453
Η	5.0019449	9.3431101	4.2101667
С	-0.2366072	8.3006147	8.5178744
С	-1.0843268	8.8464313	7.5265725
С	-2.4642138	8.6727897	7.6483581
С	-2.9995680	7.9331317	8.7013997
С	-2.1538594	7.3510088	9.6383561
С	-0.7671770	7.5245383	9.5678665
С	-0.4631779	9.4786544	6.2968969

H -3.1328672 9.0969690 6.8953415
H -4.0820371 7.7960058 8.7789016
H -2.5775590 6.7496645 10.4477561
C 0.1484100 6.8675413 10.5773785
Н 1.1368508 7.3320007 10.4404783
C -0.2915709 7.1077406 12.0193614
C 0.3034602 5.3805495 10.2557668
C -0.0365125 8.3651232 5.3330833
C -1.3513625 10.5059860 5.6054165
H 0.4535467 9.9976248 6.6205136
H -0.9257809 7.8611610 4.9182877
H 0.5481612 8.7759266 4.4924705
Н 0.5701119 7.6023977 5.8495685
H -0.6632691 4.8547916 10.3479912
H 0.6912153 5.2879889 9.2249921
H 1.0178646 4.9064736 10.9502452
H -0.4045644 8.1821135 12.2359401
H -1.2536835 6.6175963 12.2449350
H 0.4534920 6.6948832 12.7188410
H -1.6868246 11.2913874 6.3016103
H -2.2485035 10.0434499 5.1613489
H -0.8010321 10.9906661 4.7834804
H 1.2462338 10.5945373 9.0029572
H 3.8744807 10.3420962 8.3281042

SNHI anion C

$$\begin{split} & E_{SCF} = -1214.492310168 \text{ Ha} \\ & \text{Lowest IR frequency} = 38.78 \text{ cm}^{-1} \\ & \text{N} & 1.8850060 & 6.3406618 & 7.5993208 \\ & \text{C} & 2.0741197 & 7.5151403 & 7.8822094 \\ & \text{N} & 3.3439282 & 8.2402300 & 8.1827169 \\ & \text{C} & 3.1724081 & 9.6686723 & 8.2304487 \\ & \text{C} & 1.6914744 & 9.8130936 & 8.6146951 \\ & \text{N} & 1.1012361 & 8.6384706 & 8.0278351 \\ & \text{C} & 4.5801795 & 7.7126404 & 7.7474856 \\ & \text{C} & 5.5029500 & 7.2747504 & 8.7298497 \\ & \text{C} & 6.7571872 & 6.8007642 & 8.3295660 \\ \end{split}$$

Η	7.4790492	6.4666380	9.0785575
С	7.0910563	6.7297625	6.9744679
Η	8.0736308	6.3551739	6.6706828
С	6.1611722	7.1139934	6.0107858
Η	6.4155995	7.0220935	4.9509828
С	4.8980104	7.6064663	6.3747929
С	5.0462220	7.2316276	10.1793603
Η	4.3946535	8.1057151	10.3302934
С	6.1813530	7.2985425	11.2045148
Η	5.7691563	7.3623312	12.2255258
Η	6.8301269	8.1754425	11.0420641
Η	6.8187286	6.3983376	11.1717221
С	4.1685091	5.9822926	10.3866459
Η	3.6900904	5.9982517	11.3815613
Η	4.7866935	5.0696343	10.3183770
Η	3.3870994	5.9184607	9.6108122
С	3.8769514	7.9445081	5.2982171
Η	3.0260505	8.4333956	5.7894727
С	3.3351910	6.6488140	4.6729184
Η	2.5575708	6.8745653	3.9235680
Η	2.8898393	6.0358636	5.4736705
Η	4.1415699	6.0842054	4.1712657
С	4.4248082	8.9147801	4.2426092
Η	3.6312846	9.1911274	3.5277462
Η	5.2490957	8.4688223	3.6597348
Η	4.8065573	9.8404102	4.7052158
С	-0.2635556	8.3650507	8.2701880
С	-1.2021576	8.7077949	7.2655207
С	-2.5657530	8.5021030	7.5024879
С	-3.0014319	7.9375407	8.7043459
С	-2.0705071	7.5546172	9.6675544
С	-0.6953594	7.7565582	9.4702027
С	-0.6772915	9.1814704	5.9196739
Η	-3.2989719	8.7681932	6.7374693
Η	-4.0701640	7.7784091	8.8794395
Η	-2.4158941	7.0795216	10.5903040
С	0.3008114	7.2558397	10.5053893
Η	1.2918166	7.6318987	10.2210156
С	-0.0032790	7.7682046	11.9200461
С	0.3829823	5.7220045	10.4458227
С	-0.2004955	7.9578746	5.1141062

C -1.6651981 10.0327966 5.1175524
Н 0.2144282 9.7923036 6.1272835
H -1.0657366 7.3397267 4.8155410
H 0.3282946 8.2721839 4.1971308
Н 0.4706339 7.3271995 5.7204597
H -0.5894334 5.2629334 10.6995450
H 0.6813796 5.4293799 9.4258770
H 1.1362614 5.3454537 11.1586847
H -0.0525421 8.8697347 11.9475923
H -0.9636738 7.3810714 12.3013350
Н 0.7826558 7.4434362 12.6231127
H -2.0325314 10.8945061 5.6998529
H -2.5432068 9.4483286 4.7926974
H -1.1815917 10.4181926 4.2043039
H 1.5810354 9.8486263 9.7237209
H 3.8355685 10.1526078 8.9732365
Н 3.3680297 10.1640518 7.2509097
H 1.2571225 10.7510502 8.2185452

CAAI-BH₂, D

 Н 3.838879 11.582486 8.612904 Н 5.104175 10.384023 8.248554 H 4.090619 10.202487 9.704254 C 0.119801 8.268530 7.069680 Н -0.755517 8.929450 7.176070 Н -0.237413 7.235374 6.943423 Н 0.652341 8.553049 6.150467 C 0.238125 7.937212 9.556214 Н -0.622929 8.605014 9.720289 Н 0.873091 7.964137 10.455806 Н -0.137200 6.909424 9.438882 C 4.635891 7.688451 7.581328 C 5.519832 7.456165 8.662145 C 6.798165 6.955285 8.383267 Н 7.495455 6.775970 9.204775 C 7.187155 6.661316 7.078140 H 8.190540 6.275854 6.879173 C 6.281696 6.824771 6.032866 Н 6.575012 6.543728 5.018934 C 4.990864 7.321056 6.262090 C 5.095165 7.638941 10.112623 H 4.124069 8.150840 10.110333 C 6.080380 8.495045 10.920995 Н 5.685458 8.682873 11.932669 Н 6.266814 9.467505 10.440232 Н 7.052668 7.990377 11.039644 C 4.877206 6.269680 10.779219 H 4.514854 6.396601 11.812958 Н 5.817779 5.696412 10.819597 Н 4.139158 5.672715 10.225538 C 3.995485 7.346249 5.110943 Н 3.087097 7.844573 5.468829 C 3.594612 5.912687 4.721904 Н 2.827606 5.929137 3.929723 Н 3.186606 5.367776 5.584317 H 4.460681 5.348478 4.338584 C 4.511554 8.120404 3.889663 Н 3.727091 8.190198 3.118451 Н 5.377924 7.618073 3.430352 Н 4.822107 9.143222 4.152330 B 2.146784 4.861762 8.234118

- Н 2.341554 4.297942 9.293216
- Н 1.878083 4.203393 7.248272

NHI-BH₂, D

Esc	$c_{\rm F} = -1239.2$	349164150) Ha
Lowest IR frequency = 35.37 cm^{-1}			
N	1.886954	6.323435	7.599673
С	2.083358	7.531066	7.908955
N	3.298425	8.214783	7.951938
С	3.085471	9.543406	8.339015
С	1.758543	9.704703	8.547836
N	1.132918	8.479928	8.285430
С	4.551274	7.627419	7.604716
С	5.381386	7.138102	8.636556
С	6.602614	6.559760	8.270061
Н	7.271198	6.172513	9.040667
С	6.975084	6.463033	6.927849
Н	7.928610	5.999727	6.661340
С	6.136317	6.948854	5.926970
Η	6.438533	6.864755	4.880551
С	4.906818	7.543075	6.244955
С	4.926661	7.188550	10.089191
Η	4.248182	8.049821	10.191227
С	6.076324	7.397388	11.081253
Η	5.676042	7.550832	12.095901
Η	6.688091	8.274618	10.817540
Η	6.743024	6.521177	11.128106
С	4.116880	5.926621	10.439023
Η	3.728472	5.988102	11.468906
Η	4.752292	5.028607	10.366877
Η	3.267470	5.788365	9.756468
С	3.995343	8.066258	5.144942
Η	3.114799	8.514627	5.626591
С	3.492930	6.924980	4.248136
Н	2.783893	7.308881	3.496773
Н	2.978744	6.155159	4.840747

Η	4.325855	6.444053	3.709374
С	4.678023	9.172400	4.326679
Η	3.981251	9.584698	3.578655
Η	5.558532	8.790607	3.784287
Η	5.014362	9.998391	4.973178
С	-0.259753	8.199090	8.416424
С	-1.121521	8.523420	7.346442
С	-2.483107	8.234318	7.496703
С	-2.964088	7.637936	8.664121
С	-2.092268	7.318830	9.703067
С	-0.721065	7.593875	9.601119
С	-0.567852	9.105196	6.052442
Η	-3.178540	8.469340	6.689330
Η	-4.030431	7.417933	8.761278
Η	-2.480923	6.848291	10.609254
С	0.224145	7.233772	10.737312
Η	1.233433	7.556838	10.445871
С	-0.137135	7.983265	12.028508
С	0.277639	5.714498	10.958200
С	-0.150183	7.972973	5.096068
С	-1.526953	10.083067	5.363962
Η	0.343022	9.668341	6.309032
Η	-1.028826	7.379156	4.794957
Η	0.311654	8.386156	4.184324
Η	0.567663	7.287766	5.568124
Η	-0.700464	5.321871	11.281933
Η	0.568644	5.192789	10.035143
Η	1.013997	5.465037	11.739019
Η	-0.147954	9.073212	11.869202
Η	-1.131690	7.689092	12.401770
Η	0.594995	7.760149	12.821609
Η	-1.865603	10.873774	4 6.052194
Η	-2.420402	9.573629	4.967828
Η	-1.025772	10.563972	2 4.509110
Η	1.185375	10.571707	8.860843
Η	3.911643	10.242210	8.424150
В	1.680804	5.018089	7.268810
Η	1.709388	4.146963	8.120853
Η	1.462974	4.694489	6.114440

 $E_{SCF} = -1240.559419284$ Ha Lowest IR frequency = 42.18 cm^{-1} N 1.886639 6.373508 7.598561 C 2.084913 7.579523 7.895975 N 3.318933 8.195271 8.067634 C 3.166978 9.638717 8.202235 C 1.701428 9.771733 8.639355 N 1.110787 8.546492 8.114854 C 4.544480 7.595091 7.654103 C 5.414603 7.101399 8.651768 C 6.622910 6.522086 8.247327 Н 7.314109 6.129467 8.994946 C 6.953971 6.432390 6.893915 H 7.900267 5.974236 6.594631 C 6.082024 6.921454 5.923744 H 6.351098 6.842034 4.867795 C 4.862417 7.513243 6.283046 C 5.002214 7.150972 10.116312 H 4.361144 8.038010 10.239539 C 6.181635 7.294607 11.083640 H 5.812700 7.451800 12.109695 H 6.826918 8.146537 10.816845 H 6.808416 6.388453 11.103096 C 4.143344 5.923131 10.468817 Н 3.779611 5.986440 11.507752 H 4.734958 4.998062 10.370186 Н 3.274670 5.835796 9.802457 C 3.926979 8.041512 5.204194 Н 3.027039 8.434795 5.696502 C 3.462890 6.922335 4.260667 Н 2.735959 7.312097 3.529865 H 2.980344 6.110201 4.822077 H 4.308911 6.496354 3.697350 C 4.567576 9.203241 4.428409 Н 3.857046 9.618187 3.694755 H 5.461716 8.872473 3.875049

SNHI-BH₂, F

H 4.877329 10.015847 5.104633 C -0.266261 8.226677 8.301281 C -1.167518 8.527835 7.255778 C -2.521276 8.225495 7.442750 C -2.964650 7.638752 8.629664 C -2.060983 7.345305 9.648429 C -0.695971 7.634061 9.506291 C -0.651517 9.108025 5.946266 H -3.240629 8.444280 6.651953 Н -4.025129 7.406623 8.758288 H -2.420306 6.882127 10.570533 C 0.272352 7.304651 10.633926 1.283635 7.581389 10.305670 Н C -0.038807 8.124950 11.895761 C 0.299332 5.798691 10.934132 C -0.178995 7.978794 5.013095 C -1.657312 10.022732 5.239473 0.234363 9.714637 6.191730 Н H -1.026907 7.335012 4.727119 0.261584 8.393205 4.091206 Η 0.571961 7.342250 5.500290 Н Н -0.675843 5.445342 11.307298 Н 0.550692 5.223156 10.032013 1.053965 5.574111 11.704948 Η H -0.034092 9.206379 11.684893 H -1.030527 7.871658 12.304844 0.707175 7.924531 12.682130 Н H -2.035064 10.810079 5.911180 Н -2.524552 9.461123 4.855682 H -1.181874 10.509829 4.373329 1.610168 9.822096 9.741395 Η 3.870366 10.046400 8.944229 Н 3.350571 10.153698 7.239792 Η 1.211798 10.662925 8.217937 Н 1.660952 5.068779 7.276272 B 1.598866 4.218609 8.144202 Η 1.519510 4.734102 6.115576 Н

E_{SCF} = -1834.17565305554 Ha Lowest IR frequency = 37.84 cm^{-1} N 2.269053 6.231719 8.150483 1.686328 5.013097 8.270466 R 2.262328 7.499223 8.100691 С N 3.349497 8.274135 7.838636 3.065102 9.739918 7.821368 С 1.653123 9.786693 8.458043 C 1.031793 10.574131 8.006800 Η 1.752200 10.021901 9.528520 Η С 1.028301 8.382921 8.301564 3.078586 10.301321 6.391666 С Η 2.851554 11.377969 6.417124 2.336265 9.813737 5.746656 Η H 4.070160 10.176294 5.933691 С 4.083943 10.525557 8.652864 3.835694 11.597136 8.613397 Н H 5.102986 10.397797 8.258394 H 4.076782 10.215686 9.705339 0.131862 8.255561 7.055019 С H -0.760162 8.892862 7.163596 Н -0.196077 7.213825 6.921953 H 0.658035 8.558894 6.138141 С 0.248635 7.949821 9.547914 H -0.599285 8.631515 9.720914 H 0.889398 7.958340 10.443425 H -0.150352 6.931222 9.430704 4.640177 7.702722 7.580898 С 5.517243 7.474879 8.666978 C 6.798641 6.979939 8.391857 C H 7.493310 6.802413 9.215778 7.193312 6.688461 7.087835 C H 8.199320 6.308187 6.892488 6.290440 6.844994 6.039258 C 6.587610 6.562209 5.027086 Η

2^{Cl}-Cl

С	4.996075	7.334304	6.263340
С	5.084030	7.648981	10.116055
Н	4.112314	8.160076	10.114502
С	6.064045	8.501809	10.934286
Н	5.663123	8.683270	11.944632
Н	6.252982	9.477166	10.460218
Н	7.035788	7.997009	11.056004
С	4.864728	6.274787	10.772558
Η	4.502148	6.395457	11.806847
Η	5.805572	5.701845	10.809442
Η	4.123873	5.681225	10.219934
С	4.000192	7.341677	5.112370
Н	3.086474	7.835771	5.463341
С	3.612216	5.900125	4.740353
Η	2.840541	5.899627	3.952901
Η	3.207967	5.361351	5.607331
Н	4.482747	5.341013	4.359963
С	4.509460	8.107263	3.883008
Н	3.724714	8.159800	3.110867
Н	5.380769	7.608126	3.429837
Н	4.809776	9.136243	4.133524
Cl	0.895909	4.205079	6.871646
Cl	1.715623	4.099082	9.813836

2^{Cl}-NMe₂

E_{SCF} = -1508.559911158 Ha Lowest IR frequency = 39.31 cm⁻¹ B 14.987309 3.617760 2.696297 Cl 16.078369 2.168043 2.936988 N 15.506454 4.723735 1.978751 C 16.814434 4.795007 1.360730 H 16.729319 4.996076 0.275656 H 17.358023 3.853580 1.498585 H 17.417982 5.613857 1.798246 C 14.731775 5.939260 1.826936

Η	14.590964 6.194623 0.759551
Н	15.237298 6.799388 2.307542
Н	13.743253 5.819095 2.283248
N	11.731891 3.340551 4.460301
С	13.054835 3.656198 4.280932
С	13.626907 4.156496 5.616989
С	12.352459 4.485322 6.420682
Η	12.470907 4.289526 7.496672
Η	12.119822 5.555373 6.307345
С	11.196272 3.652433 5.814268
С	14.451715 3.021972 6.256066
Η	13.848206 2.117723 6.418491
Η	14.844853 3.348278 7.232526
Η	15.297400 2.744374 5.610838
С	14.516249 5.388350 5.423131
Η	15.409000 5.145148 4.828441
Η	14.853683 5.770532 6.400014
Η	13.975302 6.195752 4.905942
С	10.902137 2.380441 6.623985
Η	10.151475 1.760791 6.112774
Η	10.499387 2.655453 7.611011
Η	11.800251 1.770397 6.784883
С	9.904910 4.475253 5.736568
Η	10.061433 5.423925 5.206116
Η	9.557711 4.709107 6.754920
Η	9.106910 3.917224 5.224392
N	13.673600 3.522892 3.178595
С	10.952332 2.677636 3.456655
С	10.179336 3.443368 2.553666
С	9.326521 2.773251 1.666316
Η	8.715248 3.351516 0.969796
С	9.266101 1.381790 1.640517
Η	8.589987 0.874411 0.947560
С	10.103177 0.638770 2.469773
Η	10.097735 -0.451194 2.402073
С	10.970697 1.265094 3.375278
С	10.347640 4.949941 2.424641
Η	10.970015 5.286147 3.264900
С	11.978992 0.418723 4.139217
Η	12.472364 1.066683 4.872764
С	11.124393 5.260989 1.132643

H 10.532612 4.990784 0.242609
H 12.063904 4.692332 1.103942
H 11.360568 6.336158 1.066773
C 9.022038 5.721743 2.470214
H 9.209085 6.807495 2.442677
H 8.447956 5.496809 3.381436
H 8.383882 5.478873 1.605672
C 13.072140 -0.075507 3.175836
H 12.652755 -0.763206 2.422507
H 13.859753 -0.613949 3.727565
H 13.543511 0.767785 2.654637
C 11.341872 -0.752391 4.898587
H 10.901762 -1.490939 4.209484
H 10.546147 -0.416941 5.580865
H 12.103570 -1.279278 5.495875

2^{Cl}-Dur

 $E_{SCF} = -1762.55593278544$ Ha Lowest IR frequency = 35.52 cm^{-1} N 5.474528 9.392200 3.440038 C 3.261972 10.640513 3.945431 B 4.118031 9.414028 3.449668 Cl 3.228476 7.913105 2.896830 N 7.674704 9.070790 4.155255 C 6.714078 9.324894 3.214370 C 9.044372 8.916577 3.584296 C 8.870152 9.577736 2.193963 Н 9.186852 10.629938 2.258333 H 9.499367 9.092690 1.433489 C 7.366877 9.518083 1.841699 C 10.103631 9.628379 4.429425 H 10.135876 9.221511 5.451309 H 9.921984 10.708223 4.491930 H 11.093823 9.478537 3.972479

9.440524 7.435813 3.461381
9.532333 6.969906 4.451700
10.416460 7.354693 2.958273
8.708453 6.861606 2.877705
6.995018 8.326697 0.940608
5.902383 8.258258 0.829636
7.345690 7.371297 1.356897
7.443689 8.450254 -0.058016
6.869172 10.821823 1.205679
7.061916 11.684230 1.862739
5.787009 10.773787 1.020576
7.378457 10.996828 0.244150
7.352945 9.052022 5.552503
7.348818 10.280869 6.258490
7.058049 10.259696 7.628109
7.055231 11.196446 8.189249
6.752483 9.067380 8.282045
6.528232 9.070965 9.351703
6.702513 7.877187 7.562284
6.422314 6.952195 8.071241
6.986314 7.845453 6.189056
6.824939 6.532940 5.436255
7.101304 6.715022 4.390648
7.574951 11.622220 5.571910
7.936470 11.419501 4.555071
7.744231 5.433802 5.991628
7.446972 5.142963 7.012139
8.795051 5.758883 6.035839
7.690933 4.530491 5.362633
5.359678 6.067031 5.439377
5.003374 5.871438 6.463935
5.256210 5.132291 4.864724
4.696967 6.811644 4.979297
6.251402 12.391746 5.427851
5.816048 12.623055 6.413959
5.508326 11.814361 4.863746
6.415679 13.347210 4.902769
8.634482 12.477170 6.282360
9.576162 11.925636 6.428111
8.287262 12.810462 7.273180
8.853193 13.382591 5.693410

С	2.749513	11.574530 3.021191
С	2.051581	12.708723 3.483601
С	1.872780	12.873023 4.861101
Н	1.332046	13.754041 5.221870
С	2.355283	11.949365 5.793850
С	3.058639	10.818815 5.330947
С	2.944158	11.379488 1.536021
Н	3.399137	10.406414 1.306698
Н	3.587253	12.165873 1.102837
Н	1.985369	11.425709 0.993643
С	1.507219	13.730343 2.517305
Н	1.012762	14.558039 3.046996
Н	0.769890	13.286309 1.825992
Н	2.303554	14.162002 1.886618
С	2.133585	12.168318 7.268948
Н	3.089429	12.237109 7.816718
Н	1.575320	11.333450 7.726188
Н	1.569167	13.093830 7.456153
С	3.583098	9.817162 6.330827
Η	2.759756	9.344702 6.893596
Н	4.243993	10.292459 7.073062
Н	4.165046	9.017897 5.856124

3-Cl

E_{SCF} = -2263.37993891577 Ha Lowest IR frequency = 31.91 cm⁻¹ B 10.504509 8.734680 4.769188 N 9.581847 7.717258 4.933925 N 10.410633 9.774757 3.835632 C 8.724887 7.074493 5.603017 N 8.231109 5.849633 5.226772 C 7.239746 5.268163 6.171210 C 6.914573 6.493428 7.064644 H 6.724964 6.194118 8.106120

Н	5.996870 6.973301 6.690655
С	8.092008 7.483600 6.938354
С	7.832822 4.101166 6.976774
Η	8.125412 3.278926 6.308560
Η	7.078256 3.713936 7.678882
Η	8.712545 4.402578 7.559601
С	5.989503 4.755508 5.447807
Η	5.469503 5.560598 4.913139
Η	5.288720 4.332126 6.183822
Η	6.243832 3.963895 4.727106
С	9.149208 7.303933 8.045588
Η	9.509158 6.266585 8.104667
Η	8.719786 7.572707 9.024234
Η	10.021408 7.945702 7.853547
С	7.629768 8.942976 6.902776
Η	8.481547 9.618362 6.733649
Η	7.158247 9.218049 7.860143
Η	6.900792 9.112019 6.096275
С	10.842760 11.154126 0.523762
С	11.252517 9.672983 0.313163
Η	10.406332 9.125485 -0.129321
Η	12.100351 9.582537 -0.382428
С	10.749612 9.989598 2.631865
N	10.482906 11.162280 1.966636
С	11.562163 9.075235 1.700920
С	9.638095 11.524028 -0.351011
Η	9.921812 11.474423 -1.413946
Η	9.292451 12.547045 -0.138366
Η	8.799004 10.834150 -0.189235
С	13.049430 9.212412 2.088830
Η	13.669431 8.587118 1.425992
Η	13.205384 8.885486 3.127423
Η	13.405950 10.249014 2.008824
С	11.157667 7.601877 1.797723
Η	10.089489 7.455296 1.595787
Η	11.360197 7.189881 2.795633
Η	11.730396 7.008337 1.067306
С	11.985691 12.129924 0.201659
Η	12.190040 12.114003 -0.879834
Η	12.915433 11.870078 0.723360
Η	11.709891 13.158031 0.479349

С	8.702064 5.216189 4.030721
С	8.030721 5.461702 2.809239
С	8.490912 4.820047 1.651801
Η	7.979118 4.995025 0.702781
С	9.604436 3.984270 1.684979
Η	9.947979 3.490505 0.772274
С	10.298404 3.808135 2.879175
Η	11.200089 3.191709 2.891029
С	9.875821 4.427125 4.063982
С	6.890510 6.463467 2.684575
Η	6.623497 6.794110 3.696806
С	5.638747 5.855036 2.035197
Η	4.805576 6.576310 2.055860
Η	5.313173 4.940519 2.553171
Η	5.818486 5.593463 0.979996
С	7.352700 7.714598 1.918706
Η	7.708112 7.454627 0.908240
Η	8.166439 8.220436 2.455508
Η	6.520121 8.426387 1.804552
С	10.745769 4.296702 5.306221
Η	10.229933 4.804334 6.129313
С	12.086984 5.021867 5.106993
Η	12.668286 4.568774 4.287175
Η	12.694314 4.962624 6.024529
Η	11.933811 6.084636 4.881179
С	10.971408 2.833880 5.716469
Η	11.564706 2.291373 4.962664
Η	10.022132 2.291929 5.843556
Η	11.525335 2.782513 6.667778
С	9.957457 12.314724 2.635891
С	8.560534 12.516168 2.705619
С	8.083075 13.710478 3.263319
Η	7.005932 13.885330 3.313282
С	8.956979 14.662942 3.781815
Η	8.567236 15.591300 4.207648
С	10.326321 14.406831 3.797300
Η	11.003288 15.126328 4.262810
С	10.849458 13.229749 3.245558
С	7.567525 11.425137 2.333800
Η	8.121779 10.628855 1.820937
С	6.998059 10.814055 3.626538

6.464454	11.573685	4.220994
7.812659	10.403374	4.238297
6.287970	10.003766	3.399095
6.449408	11.903955	1.399682
6.852652	12.363352	0.484413
5.799203	12.647307	1.888811
5.809397	11.056838	1.103476
12.326827	12.916357	3.428252
12.563308	12.056787	2.792620
12.591247	12.479697	4.880184
13.646804	12.188227	5.009480
11.968044	11.616813	5.151778
12.376266	13.301031	5.583786
13.250877	14.069265	3.016005
13.056570	14.400046	1.983875
14.305259	13.755107	3.080633
		0 (75(10
13.132402	14.944061	3.675612
	7.812659 6.287970 6.449408 6.852652 5.799203 5.809397 12.326827 12.563308 12.591247 13.646804 11.968044 12.376266 13.250877 13.056570 14.305259	7.81265910.4033746.28797010.0037666.44940811.9039556.85265212.3633525.79920312.6473075.80939711.05683812.32682712.91635712.56330812.05678712.59124712.47969713.64680412.18822711.96804411.61681312.37626613.30103113.25087714.06926513.05657014.40004614.30525913.755107

3-NMe₂

 C 8.837794 7.056496 5.618021 N 8.300013 5.847589 5.196424 С 7.335984 5.250608 6.153325 C 6.905472 6.497601 6.959725 H 6.649665 6.240915 7.998721 H 6.001069 6.920932 6.496350 C 8.055765 7.524210 6.866646 C 8.010158 4.197610 7.050161 Н 8.345574 3.337771 6.454077 Н 7.296269 3.828446 7.803291 Н 8.880860 4.607625 7.579364 C 6.144748 4.587794 5.455773 H 5.565113 5.306474 4.863045 Н 5.472227 4.157331 6.213805 Н 6.472865 3.774033 4.791471 C 8.961773 7.513982 8.107875 H 9.420878 6.530644 8.284873 Н 8.375902 7.781743 9.002079 H 9.771453 8.248881 7.998954 C 7.530301 8.946692 6.648531 H 8.360238 9.649529 6.482962 Н 6.958892 9.284292 7.529077 H 6.869781 8.994266 5.771571 C 10.869498 11.067536 0.668690 C 11.195631 9.572333 0.470395 H 10.303118 9.062382 0.076304 H 12.005083 9.424630 -0.260477 C 10.795548 9.946774 2.817405 N 10.500919 11.105719 2.109882 C 11.530909 8.984306 1.852641 C 9.709608 11.496638 -0.239155 H 10.022129 11.416507 -1.292230 Н 9.414621 12.539788 -0.051402 Н 8.830002 10.855262 -0.097940 C 13.040409 9.036719 2.161041 H 13.599418 8.472701 1.396662 H 13.244577 8.579898 3.138973 H 13.432072 10.064120 2.179856 C 11.062421 7.530416 1.955793 Н 9.986559 7.434299 1.769091 H 11.253393 7.106040 2.947564

Η	11.594288 6.916837 1.210570
С	12.071990 11.973177 0.359675
Η	12.332182 11.896317 -0.707394
Η	12.958291 11.699428 0.946093
Η	11.828101 13.024133 0.571821
С	8.713560 5.233236 3.972430
С	7.970071 5.497240 2.795647
С	8.343863 4.863860 1.603518
Н	7.774385 5.057924 0.691865
С	9.441389 4.008188 1.555893
Н	9.717592 3.518681 0.618384
С	10.203135 3.805302 2.702751
Н	11.089628 3.168872 2.652113
С	9.868664 4.418950 3.918562
С	6.835914 6.512191 2.756361
Н	6.606211 6.794915 3.792098
С	5.556375 5.950628 2.119314
Н	4.728866 6.671385 2.221380
Η	5.247444 5.004604 2.589221
Η	5.690297 5.758171 1.042675
С	7.288923 7.793040 2.036929
Η	7.627815 7.574608 1.010993
Η	8.113832 8.274455 2.579167
Η	6.457156 8.510705 1.966068
С	10.812127 4.242898 5.098927
Η	10.385463 4.789889 5.948827
С	12.182481 4.868982 4.790350
Η	12.670841 4.358661 3.944644
Η	12.849706 4.784598 5.662680
Н	12.080668 5.932454 4.538205
С	10.974113 2.770566 5.507314
Η	11.480609 2.190169 4.719200
Η	10.003972 2.288293 5.699404
Η	11.584543 2.687530 6.421306
С	9.958639 12.301600 2.684801
С	8.560934 12.522550 2.644145
С	8.060380 13.776472 3.018677
Η	6.983932 13.956509 2.980271
С	8.909948 14.789358 3.456614
Η	8.506022 15.767509 3.730528
С	10.271675 14.531909 3.585369

Η	10.928833	15.305263 3.989249
С	10.815744	13.290345 3.226017
С	7.582099	11.398474 2.346460
Η	8.148543	10.571422 1.899971
С	7.024703	10.890265 3.685717
Η	6.494921	11.694283 4.222583
Η	7.848774	10.536243 4.318469
Η	6.316512	10.061288 3.533124
С	6.458343	11.786551 1.378414
Η	6.854277	12.199116 0.437984
Η	5.781132	12.538444 1.815116
Η	5.845348	10.904081 1.132814
С	12.274367	13.017782 3.562362
Η	12.532118	12.030944 3.156110
С	12.420119	12.944581 5.093408
Η	13.442164	12.646881 5.377612
Η	11.714028	12.215861 5.514574
Η	12.215684	13.925930 5.551680
С	13.252637	14.047639 2.980708
Η	13.159271	14.137113 1.889024
Η	14.291459	13.759751 3.210961
Η	13.089020	15.048130 3.412787

3-Ph

С	7.762487 4.069430 6.900868
Н	8.052216 3.245434 6.233211
Н	6.968123 3.699570 7.567574
Н	8.627906 4.331230 7.522699
С	6.003262 4.799806 5.313378
Н	5.521818 5.627220 4.777423
Н	5.267238 4.381403 6.017184
Н	6.261799 4.014800 4.587054
С	9.126294 7.173736 8.083590
Н	9.473840 6.130895 8.096436
Н	8.655149 7.388848 9.056478
Н	10.012283 7.815020 7.975859
С	7.707558 8.906053 6.951705
Н	8.576898 9.561475 6.795951
Н	7.249628 9.167942 7.919389
Η	6.980453 9.120873 6.155885
С	10.686753 11.069164 0.518453
С	11.116195 9.595522 0.291882
Η	10.244608 9.016666 -0.051216
Η	11.890728 9.513062 -0.485809
С	10.790843 9.917887 2.639017
N	10.440112 11.085463 1.984416
С	11.581400 9.038585 1.651937
С	9.412689 11.394138 -0.273382
Η	9.625912 11.348797 -1.352823
Η	9.048901 12.406723 -0.041701
Η	8.609412 10.677950 -0.055083
С	13.087164 9.273301 1.890020
Н	13.677651 8.669350 1.181928
Η	13.365695 8.981498 2.912319
Η	13.374103 10.324691 1.757618
С	11.285505 7.545774 1.809523
Η	10.217579 7.322365 1.704360
Η	11.595096 7.178718 2.797899
Η	11.835861 6.968948 1.049090
С	11.770947 12.075135 0.096601
Н	11.892501 12.052542 -0.997267
Н	12.746478 11.855633 0.547398
Н	11.482415 13.097135 0.384310
С	8.744799 5.210635 3.994485
С	8.110367 5.509473 2.764424

C 8.560246 4.865177 1.604004 H 8.076834 5.083329 0.649046 C 9.625749 3.969128 1.642245 H 9.961246 3.475042 0.726719 C 10.280092 3.728556 2.847646 H 11.143167 3.059215 2.866981 C 9.865120 4.347839 4.034748 C 7.013226 6.557810 2.636437 H 6.742101 6.881800 3.649878 C 5.751368 6.008631 1.953631 Н 4.942863 6.757386 1.981039 Н 5.387012 5.092690 2.441760 H 5.938588 5.769124 0.894424 C 7.531725 7.803122 1.899018 Н 7.901245 7.546294 0.892751 Н 8.347969 8.276740 2.460035 Н 6.723527 8.540633 1.776552 C 10.695389 4.151019 5.294258 Н 10.164674 4.637754 6.119792 C 12.042414 4.874895 5.150480 H 12.651570 4.434153 4.343911 H 12.621531 4.818169 6.086098 H 11.876061 5.933569 4.920538 C 10.891553 2.673875 5.660819 H 11.493818 2.144908 4.904525 Н 9.931109 2.143717 5.750480 H 11.423184 2.584682 6.622090 C 9.960166 12.239530 2.683510 C 8.570802 12.448529 2.839808 C 8.131111 13.638437 3.436279 Н 7.059379 13.814605 3.553265 C 9.037352 14.585223 3.907155 Н 8.677125 15.510167 4.365268 C 10.404388 14.328990 3.828417 H 11.111469 15.047003 4.249619 C 10.889480 13.156064 3.234558

С	7.555110 11.366843 2.509850
Η	8.075376 10.592105 1.935898
С	7.086098 10.708545 3.817875
Η	6.594270 11.442272 4.477789
Н	7.946588 10.283147 4.350967
Н	6.365721 9.899788 3.615820
С	6.371212 11.865772 1.673270
Н	6.706246 12.357451 0.747247
H	5.751417 12.586375 2.230798
Н	5.716892 11.023323 1.394575
С	12.378299 12.853021 3.303373
Н	12.567986 11.993479 2.653129
С	12.758162 12.421565 4.730267
Н	13.816211 12.115589 4.777042
Н	12.145992 11.571205 5.057878
Η	12.610826 13.247571 5.445727
С	13.259996 14.009339 2.814937
Н	12.985485 14.330555 1.798228
Н	14.318600 13.702810 2.802291
Η	13.184726 14.888339 3.475304
С	11.910032 8.825968 5.854163
С	11.786841 9.610513 7.016423
С	12.860309 9.801752 7.891119
С	14.096276 9.206042 7.622810
С	14.244996 8.425261 6.473334
С	13.164999 8.244718 5.603266
Н	10.833490 10.100561 7.235773
Н	12.733511 10.421911 8.783095
H	14.938934 9.352518 8.303897
H	15.207726 7.956553 6.250533
Н	13.310058 7.634147 4.708477

References

- J. T. Goettel, H. Gao, S. Dotzauer and H. Braunschweig, *Chem. Eur. J.*, 2020, 26, 1136– 1143.
- R. J. Brotherton, A. L. McCloskey, L. L. Petterson, H. Steinberg, J. Am. Chem. Soc. 1960, 62, 6042.
- 3. A. Eckert, H. Pritzkow and W. Siebert, Eur. J. Inorg. Chem., 2002, 2064.
- 4. H. Braunschweig, Q. Ye and K. Radacki, Chem. Commun., 2012, 48, 2701.
- 5. D. Kaufmann, Chem. Ber. 1987, 120, 853–854.
- 6. H. C. Brown and N. Ravindran, Inorg. Chem., 1977, 16, 2938-2940
- M. Arrowsmith, J. Böhnke, H. Braunschweig, A. Deißenberger, R. D. Dewhurst, W. C. Ewing, C. Hörl, J. Mies, J. H. Muessig, *Chem. Commun.* 2017, 53, 8265-8267.
- H. Hommer, H. Nöth, J. Knizek, W. Ponikwar, H. Schwenk-Kircher, *Eur. J. Inorg. Chem.* 1998, 1519–1527.
- 9. R. Hunold, *Dissertation*, Philipps-Universität Marburg, **1988**.
- 10. G. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- 11. G. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- TURBOMOLE V7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from <u>http://www.turbomole.com</u>.
- TmoleX2022, Dassault Systèmes C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner and A. Schroer, *J. Comput. Chem.*, 2010, **31**, 2967–2970.
- a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648–5652; b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev.* 1988, **37B**, 785–789; c) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200–1211; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.
- 15. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 16. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- 17. K. B. Wiberg, Tetrahedron, 1968, 24, 1083–1096.
- 18. A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735–746.
- 19. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
- 20. H. Iikura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys., 2001, 115, 3540-3544.
- J. M. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.

22. F. Jensen, J. Chem. Theory Comput., 2015, 11, 132–138.

- 23. G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.
- Gaussian 16, Revision C.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.