Supporting Information

A new polar alkaline earth-rare earth-iodate, Ba₂Ce(IO₃)₈(H₂O)

Xue-Ying Zhang,^{a,b} Xiao-Han Zhang,^a Bing-Ping Yang,^{*,a,b} and Jiang-Gao Mao^{*,a,b}

- a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- b. University of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: ybp@fjirsm.ac.cn; mjg@fjirsm.ac.cn; <a href="mailto:mjg@fjirsm.ac.cn"/mjg@fjirsm.ac.cn"/mjg@fjirsm.ac.cn; <a h

Supporting Information

Table S1. Crystal data and structure refinement of Ba₂Ce(IO₃)₈(H₂O).

Table S2. Fractional atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and calculated bond valence sums (BVS) for Ba₂Ce(IO₃)₈(H₂O).

Ueq is defined as one-third of the trace of the orthogonalised Uij tensor.

Table S3. Bond lengths of $Ba_2Ce(IO_3)_8(H_2O)$.

Table S4. Calculation of the dipole moments of the IO_3 and CeO_9 polyhedrons and the net dipole moment of a unit cell of $Ba_2Ce(IO_3)_8(H_2O)$.

Table S5. Classification of existing cerium iodates.

Figure S1. Experimental and simulated powder X-ray diffraction (PXRD) patterns of $Ba_2Ce(IO_3)_8(H_2O)$.

Figure S2. Energy dispersive spectroscopy analyses for Ba₂Ce(IO₃)₈(H₂O).

Figure S3. Coordination environment of $Ba(1)^{2+}$ (a) and $Ba(2)^{2+}$ (b).

Figure S4. Infrared spectrum of Ba₂Ce(IO₃)₈(H₂O).

Figure S5. Calculated band structures of Ba₂Ce(IO₃)₈(H₂O).

Figure S6. Photograph of Ba₂Ce(IO₃)₈(H₂O) crystals.

Figure S7. Comparison of the dipole moment density and the SHG effect of the reported cerium iodate NLO materials.

Figure S8. Plot of particle size versus SHG intensity of $Ba_2Ce(IO_3)_8(H_2O)$ under laser irradiation at $\lambda = 1064$ nm.

Formula	$Ba_2Ce(IO_3)_8(H_2O)$		
Formula weight	1832.02		
Temperature/K	150.00(10)		
Crystal system	orthorhombic		
Space group	$Pna2_1$		
a/Å	15.5042(5)		
b/Å	7.8841(3)		
c/Å	19.5359(8)		
$\alpha^{\prime \circ}$	90		
β/°	90		
$\gamma^{\prime\circ}$	90		
Volume/Å ³	2388.00(15)		
Z	4		
$\rho_{calc}g/cm^3$	5.096		
μ/mm ⁻¹	15.587		
F(000)	3184.0		
Radiation	Mo Ka ($\lambda = 0.71073$)		
Independent reflections	$4016 [R_{int} = 0.0407, R_{sigma} = 0.0359]$		
Goodness-of-fit on F ²	1.053		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0246, wR_2 = 0.0528$		
Final R indexes [all data]	$R_1 = 0.0277, wR_2 = 0.0548$		
Flack parameter	0.01(3)		
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; \text{ and } wR_{2} = \{\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]\}^{1/2}$			

Table S1. Crystal data and structure refinement of $Ba_2Ce(IO_3)_8(H_2O)$.

Atom	Х	у	Z	U(eq)	BVS
Cel	5557.4(6)	2557.6(8)	4462.5(5)	5.53(18)	3.457
Ba1	6710.6(6)	2546.3(10)	7572.3(5)	6.5(2)	2.228
Ba2	7806.0(6)	7624.7(10)	6280.8(5)	7.2(2)	2.156
I1	3830.1(6)	2467.0(10)	3057.0(5)	6.6(2)	4.840
I2	3828.2(6)	5892.3(11)	4556.6(5)	5.8(2)	5.009
I3	4911.3(6)	764.1(11)	6184.7(5)	7.2(2)	4.916
I4	6331.3(6)	924.0(10)	2828.6(5)	7.0(2)	4.899
15	7392.2(6)	2488.6(10)	5729.1(5)	6.0(2)	4.772
I6	5506.8(6)	5988.8(11)	5984.5(5)	6.6(2)	5.055
I7	5629.1(6)	6077.6(11)	2934.4(5)	7.1(2)	4.907
I8	7325.5(6)	5942.6(11)	4301.6(5)	6.4(2)	4.998
01	3762(7)	1144(14)	2299(6)	17(3)	1.794
O2	4261(6)	4365(12)	2654(6)	12(2)	2.070
O3	4833(6)	1608(12)	3431(6)	8(2)	2.047
O4	5426(8)	-611(12)	4484(7)	21(3)	1.726
05	4186(6)	3793(12)	4250(5)	8(2)	1.920
06	3147(7)	5158(12)	5240(5)	12(2)	2.251
O7	3035(7)	6258(13)	3902(5)	10(2)	2.201
08	4600(6)	1711(14)	5367(5)	12(3)	1.969
09	3837(6)	375(12)	6516(6)	13(3)	1.866
O10	5189(7)	2610(11)	6699(6)	11(2)	1.824
011	7445(6)	648(12)	2554(6)	9(2)	2.063
O12	6543(6)	1502(13)	3723(5)	12(2)	2.106
O13	6196(7)	2982(12)	2434(5)	12(2)	1.975
O14	7488(7)	1113(12)	6466(5)	7(2)	2.235
015	6929(6)	4303(11)	6187(5)	6(2)	1.742
016	6383(6)	1538(12)	5398(5)	8(2)	1.899
O17	4534(7)	7236(12)	5945(6)	10(2)	1.998
O18	5336(7)	4894(12)	5176(5)	9(2)	2.080
O19	6247(7)	7570(12)	5660(6)	13(3)	2.011
O20	5807(7)	4895(13)	3727(6)	12(2)	2.003
O21	6581(7)	7407(12)	2998(6)	12(2)	1.930
O22	4856(7)	7570(12)	3294(6)	11(3)	1.877
O23	6949(6)	3931(11)	4654(5)	8(2)	1.944
O24	8144(7)	6287(12)	4954(6)	12(2)	1.853
O25	7971(6)	5169(12)	3603(5)	10(2)	1.988

Table S2. Fractional atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and calculated bond valence sums (BVS) for Ba₂Ce(IO₃)₈(H₂O). Ueq is defined as one-third of the trace of the orthogonalised Uij tensor.

Bond	Length/Å	Bond	Length/Å
Cel-O3	2.426(10)	Ba2-O19	2.704(11)
Cel-O4	2.507(10)	Ba2-O24	2.846(11)
Cel-O5	2.375(10)	I1-01	1.815(10)
Cel-O8	2.402(10)	I1-O2	1.818(9)
Ce1-O12	2.262(10)	I1-O3	1.846(10)
Ce1-O16	2.371(11)	I2-O5	1.845(9)
Ce1-O18	2.335(10)	I2-06	1.798(10)
Ce1-O20	2.369(11)	I2-07	1.797(10)
Ce1-O23	2.443(10)	I3-O8	1.829(10)
Ba1-O1 ²	3.048(11)	I3-09	1.814(10)
Ba1-O2 ¹	2.867(10)	I3-O10	1.820(10)
Ba1-O7 ¹	2.791(11)	I4-O11	1.822(10)
Ba1-O10	2.912(11)	I4-O12	1.836(10)
Ba1-O11 ³	2.774(10)	I4-O13	1.809(10)
Ba1-O14	2.720(10)	I5-O14	1.809(10)
Ba1-O15	3.059(10)	I5-O15	1.834(9)
Ba1-O21 ⁴	2.779(11)	I5-O16	1.852(10)
Ba1-O22 ¹	2.809(11)	I5-O23	2.485(10)
Ba1-O25 ⁴	2.794(10)	I6-O17	1.803(10)
Ba2-O1 ¹	3.287(11)	I6-O18	1.820(10)
Ba2-O6 ⁵	2.733(10)	I6-O19	1.810(10)
Ba2-O9 ⁶	2.891(10)	I7-O20	1.829(11)
Ba2-O11 ³	2.960(11)	I7-O21	1.814(10)
Ba2-O13 ³	2.747(10)	I7-O22	1.821(10)
Ba2-O147	2.817(9)	I8-O23	1.825(9)
Ba2-O15	2.957(9)	I8-O24	1.819(11)
Ba2-O17 ⁵	2.760(10)	I8-O25	1.799(10)

Table S3. Bond lengths of Ba₂Ce(IO₃)₈(H₂O).

Symmetry transformations used to generate equivalent atoms:¹1-X,1-Y,1/2+Z; ²1-X, -Y,1/2+Z; ³3/2-X,1/2+Y,1/2+Z; ⁴3/2-X, -1/2+Y,1/2+Z; ⁵1/2+X,3/2-Y, +Z; ⁶1/2+X,1/2-Y, +Z; ⁷+X,1+Y, +Z.

$Ba_2Ce(IO_3)_8(H_2O)$					
Polar unit (a unit coll)	Dipole moment (D)				
i olar unit (a unit cen)	x y		Ζ	total	
I(1)O ₃	2×(±10.91)	2×(±1.05)	4×(-8.50)	13.87	
I(2)O ₃	2×(±10.39)	2×(±10.55)	4×(-2.89)	15.09	
I(3)O ₃	2×(±9.21)	2×(±9.99)	4×(0.46)	13.59	
I(4)O ₃	2×(±10.00)	2×(±10.30)	4×(2.05)	14.50	
I(5)O ₃	2×(±11.07)	2×(±2.30)	4×(9.48)	14.75	
I(6)O ₃	2×(±3.78)	2×(±8.24)	4×(-13.36)	16.14	
I(7)O ₃	2×(±3.19)	2×(±7.42)	4×(13.26)	15.53	
I(8)O ₃	2×(±9.59)	2×(±10.71)	4×(2.99)	14.68	
CeO ₉	2×(±1.20)	2×(±1.42)	4×(-0.95)	2.09	
Net dipole moment	0	0	10.2020	/	
Net dipole moment (IO ₃)	0	0	14.0202	/	
Cell Volume	2388.00 Å ³				
Dipole moment density	10.2020/2388.00=0.0043 D Å ⁻³				
Dipole moment density (IO ₃)	14.0202/2388.00=0.0059 D Å ⁻³				

Table S4. Calculation of the dipole moments of the IO_3 and CeO_9 polyhedrons and the net dipole moment of a unit cell of $Ba_2Ce(IO_3)_8(H_2O)$.

	Compound	Space	SHG	Band	Ref
		group		gap	
Ce(III)	$Ce(IO_3)_3$	$P2_1/n$	N/A	N/A	1
	$Ce(VO_3)_2(IO_3)$	Pbcm	N/A	1.64 eV	2
	NaCe(IO ₃) ₄	Сс	50 ×	2.97 eV	3
			α -SiO ₂		
	$Ce(MoO_2)(IO_3)_4(OH)$	$P2_1$	negligible	2.41 eV	4
	$Ce_3Pb_3(IO_3)_{13}O$	R3cH	very weak	2.4 eV	5
	Ce ₂ I ₆ O ₁₈	<i>P</i> 2 ₁	$9 \times \text{KDP}$	2.5 eV	6
Ce(IV)	Ce(IO ₃) ₄ ·H ₂ O	$P2_1/n$	N/A	N/A	7
	Ce(IO ₃) ₄	P4 ₂ /n	N/A	N/A	8
	$Ce_2(IO_3)_8(H_2O)$	R3c	$1.3 \times \text{KDP}$	2.43 eV	9
	Ce(IO ₃) ₂ F ₂ ·H ₂ O	Ima2	$3 \times \text{KDP}$	2.6 eV	10
	$Ce_2(IO_3)_6(O)$	Pnma	N/A	N/A	11
	K ₈ Ce ₂ I ₁₈ O ₅₃	C2/c	N/A	2.34 eV	12
	$Ce(IO_3)_2(SO_4)$	P212121	$3.5 \times \text{KDP}$	2.42 eV	13
	$Ce(IO_3)_2F_2$	$Pna2_1$	$5.5 \times \text{KDP}$	2.70 eV	14
	CaCe(IO ₃) ₃ (IO ₃ F)F	$Pna2_1$	$5 \times \text{KDP}$	2.72 eV	15
intermedi ate-valent Ce(III)/Ce (IV)	La _{0.3} Ce ₉ (IO ₃) ₃₆	R3c	$1.1 \times \text{KDP}$	2.30 eV	16
	K ₃ Ce ₉ (IO ₃) ₃₆	R3c	$0.4 \times \text{KDP}$	2.30 eV	16
	$Ce_2(IO_3)_6(OH_{0.44})$	Pnma	N/A	N/A	11

 Table S5. Classification of existing cerium iodates.

N/A: stands for not applicable or not available

Figure S1. Experimental and simulated powder X-ray diffraction (PXRD) patterns of Ba₂Ce(IO₃)₈(H₂O).

Figure S2. Energy dispersive spectroscopy analyses for Ba₂Ce(IO₃)₈(H₂O).

Figure S3. Coordination environment of $Ba(1)^{2+}$ (a) and $Ba(2)^{2+}$ (b).

Figure S4. Infrared spectrum of Ba₂Ce(IO₃)₈(H₂O).

Figure S5. Calculated band structures of Ba₂Ce(IO₃)₈(H₂O).

Figure S6. Photograph of Ba₂Ce(IO₃)₈(H₂O) crystals.

Figure S7. Comparison of the dipole moment density and the SHG effect of the reported cerium iodate NLO materials.

Figure S8. Plot of particle size versus SHG intensity of $Ba_2Ce(IO_3)_8(H_2O)$ under laser irradiation at $\lambda = 1064$ nm.

References

- 1. X. A. Chen, L. Zhang, X. A. Chang, H. G. Zang and W. Q. Xiao, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2005, **61**, 161-162.
- T. Eaton, J. Lin, J. N. Cross, J. T. Stritzinger and T. E. Albrecht-Schmitt, *Chem. Commun.*, 2014, 50, 3668-3670.
- 3. S.-J. Oh, Hyung-Gu Kim, H. Jo, T. G. Lim, J. S. Yoo and K. M. Ok, *Inorg. Chem.*, 2017, **56**, 6973-6981.
- 4. J. Lin, Q. Liu, Z. Yue, K. Diefenbach, L. Cheng, Y. Lin and J. Q. Wang, *Dalton Trans*, 2019, **48**, 4823-4829.
- 5. T. Hu, L. Qin, F. Kong, Y. Zhou and J. G. Mao, *Inorg. Chem.*, 2009, **48**, 2193-2199.
- 6. L. Xiao, Z. B. Cao, J. Y. Yao, Z. S. Lin and Z. G. Hu, *J. Mater. Chem. C*, 2017, **5**, 2130-2134.
- 7. J. A. Ibers and D. T. Cromer, *Acta Crystallogr*, 1958, **11**, 794-798.
- 8. D. T. Cromer and A. C. Larson, *Acta Crystallogr*, 1956, **9**, 1015-1018.
- Y. Wang, T. Duan, Z. Weng, J. Ling, X. Yin, L. Chen, D. Sheng, J. Diwu, Z. Chai, N. Liu and S. Wang, *Inorg. Chem.*, 2017, 56, 13041-13050.
- 10. T. Abudouwufu, M. Zhang, S. C. Cheng, Z. H. Yang and S. L. Pan, *Chemistry*, 2019, **25**, 1221-1226.
- 11. R. E. Sykora, L. Deakin, A. Mar, S. Skanthakumar, L. Soderholm and T. E. Albrecht-Schmitt, *Chem. Mater.*, 2004, **16**, 1343-1349.
- 12. R. Wu, X. Jiang, M. Xia, L. Liu, X. Wang, Z. Lin and C. Chen, *Dalton Trans*, 2017, **46**, 4170-4173.
- T. H. Wu, X. X. Jiang, Y. R. Zhang, Z. J. Wang, H. Y. Sha, C. Wu, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey and C. Zhang, *Chem. Mater.*, 2021, **33**, 9317-9325.
- 14. X. H. Zhang, B. P. Yang, C. L. Hu, J. Chen, Q. M. Huang and J. G. Mao, *Chem. Mater.*, 2021, **33**, 2894-2900.
- 15. N. Ma, C.-L. Hu, J Chen, Z Fang, Y. Huang, B.-X. Li and J.-G. Mao, *Inorg. Chem. Front.*, 2022, **9**, 5478-5485.
- H. X. Tang, C. Zhuo, Y. X. Zhang, Q. R. Shui, R. B. Fu, Z. J. Ma and X. T. Wu, *Dalton Trans*, 2020, 49, 3672-3675.