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Artificial neural networks (ANNs)  

An artificial neural network is a network stimulated by the central nervous system of the 

animals, primarily the brain. ANNs are often employed to guess functions which could rely on 

huge number of unknown inputs. Among the two principal categories of neural networks, viz. 

recurrent (RNN) and feed-forward (FFN), we employed FNN in the present study due to static 

nature of our system.  FNN is the simplest and convenient category of network where the 

information passes into a particular direction, proceeds, from the input nodes, via the hidden 

notes, and finally to the output nodes. Additionally, due to its high efficiency in forecasting static 

system, we implemented advanced feed-forward back propagation network, namely, ANN-

function fitting (ANN-FF) network for deeper understanding and forecasting of the system. 

Artificial neural network model consisting of 2 inputs, 5 hidden layers and 2 output. In 

ANN-FF, the relation between the input and output is assumed to be a function, which is 

approximated using the experimental data. The network diagram of the ANN-FF for the system 

can be found in Fig. S5†. It can fit multidimensional mapping problems arbitrarily well when 

consistent data and enough neurons are designed in the hidden layer. For function fitting of the 

problem, a neural network is needed to map between a data set of numeric inputs and a set of 

numeric targets. Hence, each pattern is assigned a number (e.g., 1, 2, 3, 4, etc.).  

Different training algorithms have been used for prediction of photophysical and 

electrochemical responses of the complex in presence of acid and base. In this work, 

feedforward back propagation neural network is utilized for comparison of three different 

training algorithms, i.e., Levenberg–Marquardt Algorithm (LM), Scaled Conjugate Gradient 

(SCG) and Bayesian Regularization (BR), as regards of their capability to predict the 

photophysical and electrochemical data. The advantages and disadvantages of these three curve 

fitting training algorithms are described below. 

 

Levenberg–Marquardt algorithm  

This algorithm typically requires more memory but less time. Training automatically stops when 

generalization stops improving, as indicated by an increase in the mean square error of the 

validation samples. This method has been applied by researchers to challenging nonlinear least-

squares problems in several different domains. 

 

Scaled conjugate gradient  
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This algorithm requires less memory. Training automatically stops when generalization stops 

improving, as indicated by an increase in the mean square error of the validation samples. 

 

Bayesian regularization  

This algorithm typically requires more time, but can result in good generalization for difficult, 

small or noisy datasets. Training stops according to adaptive weight minimization 

(regularization). 

 In this study, a neural network for function fitting was coded in MATLAB 2018. The 

input data present the network, while the target data define the desired network output. Table 

S2† represents the current intensity outputs upon the action of 40 different combinations of two 

inputs (input 1= H
+ 

and input 2= OAc
-
). Thus, the 40×2 matrix represents the static input data of 

40 samples involving 2 inputs, while 40×5 matrix represents the static output data of five 

elements. Now, the 40 samples are divided into 3 sets of data. For Levenberg–Marquardt and 

Scaled Conjugate Gradient algorithm assisted training process, 70% of the data are conferred for 

the training and the network is corrected according to its error. Now the learning algorithm and 

the number of neurons in the hidden layer were optimized. 15% data are employed to compute 

the network generalization and to halt training. When generalization stops improving, the data 

validation takes place. The remaining 15% data give an independent estimate of the network 

performance during and after the training, called testing data. But for Bayesian Regularization 

algorithm assisted training process, the previously taken 15% data for validation is not needed. 

In this case 70% data was taken for training purpose and rest 30% data was allotted for testing. 

 

Adaptive neuro-fuzzy inference system (ANFIS)  

The network framework of the ANFIS is illustrated in Fig. S6†. It consists of five connected 

layers (excluding input layer) which is common for the two input dimensions, P and Q, both 

of which possess three fuzzy sets, viz. C1C2C3 for P, while D1D2D3 for Q input. We have 

chosen A number of inputs and B number of fuzzy set to represent each input which in turn 

implies A×B number of nodes in Layer1. In Layer 2, all the nodes are interconnected with the 

membership function output of each input node, yielding a total of B^A node in Layer 2. 

Layer 3 and 4 possess the same number of nodes as that of Layer 2. Layer 5, on the other 

hand, possess only one node representing the output of the network. Upon considering each 

input as a node, the total number of nodes in the architecture will be A + A×B + 3×B^A + 1. 

In ANFIS, only the membership function parameters in Layer1 and inputs weight in Layer 4 
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are to be predicted by training. Upon implication of the triangular membership function 

(trimf) which is represented by three parameters, we need to assess 3×B×A premise 

parameters in Layer 1 and A×B^A consequent weight parameters in Layer 4. 

 The structure of the ANFIS is automatically tuned by least-squares estimation and the 

back-propagation algorithm. A fuzzy set A of a universe of discourse X is represented by a 

collection of ordered pairs of generic elements and its membership function μA(x): X tends to [0 

1], which associates a number μA(x) to each element x of X. The fuzzy logic controller works on 

the basis of a set of control rules (called the fuzzy rules) among the linguistic variables. These 

fuzzy rules are represented in the form of conditional statements. 

 The basic structure of the pattern predictor model developed using ANFIS to predict the 

pattern of the flow regime consists of four important parts, namely, the fuzzification, knowledge 

base, artificial neural network, and defuzzification blocks, as shown in Fig. S7†. The inputs to 

the ANFIS are the H
+
 and OAc

-
. These are fed to the fuzzification unit, which converts the 

binary data into linguistic variables. These in turn are given as inputs to the knowledge base 

block. The ANFIS tool in MATLAB 2018 developed 25 rules while training the neural network. 

The knowledge base block is connected to the artificial neural network block. A hybrid 

optimization algorithm is used to train the neural network and to select the proper set of rules for 

the knowledge base. To predict the current intensity values at 0.44V and 0.64V, training is an 

important step in the selection of the proper rule base. Once the proper rule base is selected, the 

ANFIS model is ready to carry out prediction. The trained ANFIS was validated using 15% of 

the data. The output of the artificial neural network unit is given as input to the defuzzification 

unit, where the linguistic variables are converted back into numerical data in crisp form. 

 

Computational details of decision tree regression (DTR)  

We have used decision tree regression for the computational prediction of our chemical data 

using the python programming language. Chemical data followed by its header has been 

imported, using the ‘pandas’ library. Then the datasets are split into two parts train, and test, 

using the ‘scikit-learn’ library function 'train_test_split'. Then we fitted the dataset with 

decision tree regression using the Scikit-learn library function 'DecisionTreeRegressor'. We 

have got an optimized depth of the tree by calculating training accuracy. We have taken one 

less depth from the maximum depth corresponding to maximum accuracy to avoid decision 

tree over fitting. We have plotted the decision tree with the optimized depth of the tree. 
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Python codes for decision tree regression. 
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Tables for electronic supplementary information 

Table S1. Rules for the fuzzy logic system (Mamdani based) by taking H
+
 (input 1) and OAc

-
 

(input 2) as the inputs and current intensity at 0.44V and 0.64V as the outputs. The rules 

consist of the following statements. 
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Table S2. Values of current intensity as a function of nH
+
/n1 and nOAc

-
/n1. 
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Table S3. Rules for the fuzzy logic system (based on Sugeno’s Method) by taking H
+
 as 

input 1 and OAc
- 

as input 2, whereas current intensity at 0.44V as the output. The rules 

consist of the following statements. 

 

 

Table S4. Rules for the fuzzy logic system (based on Sugeno’s method) by taking input 1 

(H
+
) and input 2 (OAc

-
) as the inputs and current intensity at 0.64V the output. The rules 

consist of the following statements. 
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Figures for electronic supplementary information 

 

 

Fig. S1 Change of UV-vis absorption (a) and emission (b) spectrum of 1 in CH2Cl2 upon 

addition of different anions as TBA salts. (c) UV-vis spectra and cyclic voltammograms of 1 

in three different protonated states [(bpy)2Os(H3Imbzim)]
2+

, [(bpy)2Os(H2Imbzim)]
+
, and 

[(bpy)2Os (HImbzim)]. (d) and (e) represent CVs of receptor 1 obtained upon incremental 

addition of TBOAc to its acetonitrile solution (1.0 ×10
-3

 M) and the changes in the current 

intensities as a function of equivalents of OAc
-
 ion added. 
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Fig. S2 Mamdani rule view for 1. 

 

 

 

Fig. S3 The outcomes of ANN models via linear regression (a-c) at 0.44V and 0.64V 

respectively.  
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Fig. S4 Training states of Levenberg-Marquardt (LM) (a), Scaled Conjugate Gradient (SCG) 

(b) and Bayesian-Regularization (BR) (c) algorithms. 

 

 

 Fig. S5 Schematic presentation of ANN consisting of 2 inputs, 5 hidden layers and 2 outputs. 

 

LM
(a) (b) SCG

(c)
BR



S12 

 

 

Fig. S6 Schematic sketch of ANFIS network comprising of two inputs, five layers and one 

output. 

 

 

Fig. S7 Block diagram of the ANFIS for predicting the output in presence of inputs. 
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Fig. S8 (a) Specific dataset for training the ANFIS network. (b) Progressive decrease of error 

in each training steps up to 100 epochs. (c) Data to test the trained model accuracy. (d) 

Comparison of testing data with fuzzy inference system outputs.  

 

 

 

Fig. S9 Sugeno rule view (output at 0.44V) for 1. 
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Fig. S10 Sugeno rule view (output at 0.64V) for 1. 

 

 

Fig. S11 Range of the five triangular membership (trimf) functions of each inputs (H
+
 and 

OAc
-
) and 25 rules based ANFIS generated 25 output (at 0.44V and 0.64V) membership 

functions. 
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Fig. S12 (a) Selected training data to design the ANFIS model (monitoring 0.64V). (b) 

Training error minimization up to 60 epochs. (c) Combination of training and testing data. (d) 

Compilation of testing data and FIS output. 
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Fig. S13 Representation of the decision tree. 
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Fig. S14 Accomplishment of the DTR up to depth 9. 
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