Electronic Supplementary Information (ESI)

Water-soluble copper(II) 5-fluorouracil complexes bearing polypyridyl co-ligands: Synthesis, structures and anticancer activity

Ceyda Icsel,*^a Veysel T. Yilmaz,^a Muhittin Aygun,^b Merve Erkisa^c and Engin Ulukaya^c

^aDepartment of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.

^bDepartment of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey

^cMolecular Cancer Research Center (ISUMKAM), Istinye University, 34010 Istanbul, Turkey

Corresponding Author:

Assoc. Prof. Dr. Ceyda Icsel Department of Chemistry Faculty of Sciences Karadeniz Technical University 61080 Trabzon, Turkey.

E-mail: cydyilmaz@ktu.edu.tr

	1	2	3	4	5
empirical formula	$C_{16}H_{16}ClCuFN_4O_3S$	$C_{32}H_{28}CuF_2N_8O_8$	$C_{24}H_{25}CuFN_9O_{7.5}$	$C_{16}H_{17}CuFN_6O_6$	C ₁₉ H ₁₃ ClCuFN ₅ O ₂
formula weight	462.38	700.13	642.07	471.89	461.33
crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
space group	$P2_{1}/n$	I2/a	P2/c	$P\overline{1}$	$P2_{1}/n$
a, Å	8.1412(4)	13.1277(13)	15.6860(11)	7.8385(7)	11.6071(9)
b, Å	21.3384(13)	19.623(3	9.7121(9)	8.4548(9)	13.0317(14)
<i>c</i> , Å	11.1897(6)	24.848(3)	18.3253(18)	15.5138(10)	12.3107(11)
α, deg	90	90	90	84.255(7)	90
β , deg	93.746(4)	95.728(10)	104.091(9)	77.099(7)	91.472(8)
γ, deg	90	90	90	70.084(9)	90
<i>V</i> , Å ³	1939.72(18)	6369.0(14)	2707.7(4)	941.93(16)	1861.5(3)
<i>Т</i> , К	292(2)	293(2)	292(2)	292(2)	295(2)
Ζ	4	8	2	2	4
$\rho_{\rm calc}$ (g cm ⁻³)	1.450	1.460	1.575	1.664	1.646
μ (mm ⁻¹)	1.583	0.752	0.878	1.218	1.354
<i>F</i> (000)	940	2856	1320	482	932
θ(°)	3.151-25.027	3.296-25.027	3.107-25.039	3.129-25.681	3.126-26.370
collected refls	6500	9494	8982	6029	7139
$R_{ m int}$	0.0471	0.0670	0.0614	0.0343	0.0330
data/parameters	3397/250	5577/436	4614/403	3421/293	3800/262
goodness-of-fit	1.006	1.024	0.709	0.865	1.077
$R_1 [I > 2\sigma(I)]$	0.0526	0.1103	0.0466	0.0436	0.0462
R_1 (all data)	0.1130	0.1655	0.1481	0.0745	0.0679
$wR_2 [I > 2\sigma(I)]$	0.0789	0.2640	0.0566	0.0808	0.1032
wR_2 (all data)	0.0968	0.2998	0.0659	0.0851	0.1142

Table S1 Crystallographic data and structure refinement for 1--5

Fig. S1 (continued)

Fig. S1 FTIR spectra of 1–5.

Fig. S2 UV-Vis spectra of 1-5 (10 μ M) in water.

Fig. S3 (continued)

Fig. S3 ESI-MS spectra of 1–5.

Fig. S4 (continued)

Fig. S4 Dose-response curves of complexes 1–5, polypyridyl ligands, 5-FU and cisplatin against cancer and normal cell lines after 48 h treatment. Results are represented as mean \pm standard deviation (n = 3).

Fig. S5 The HPLC chromatograms, showing the time-dependent stability of 2 in a saline solution (0.9% NaCl). The amount of 2 was measured by the reverse phase HPLC at 267 nm, and stability values were expressed as the percentage of the complex remaining in the solution.

Fig. S6 DAPI/PI double staining of HCT116 cells treated with **2** (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12 and 24 h. Cells were stained with DAPI/PI followed by detection using a fluorescence microscope. DAPI stained the live cells with intact plasma membrane (blue fluorescence), while PI stained dead and apoptotic ones (red fluorescence) with disrupted plasma membrane. Magnification: 40×.

Fig. S7 Annexin-V/7-AAD assay of HCT116 cells treated with **2** (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls. The quadrants show populations for HCT116 cells in four stages treated by the compounds.

Fig. S8 Caspase 3/7 activity in HCT116 cells treated with **2** (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls. The quadrants show populations for A549 cells in four stages treated by the compounds.

Fig. S9 Bcl-2 expression levels in HCT116 cells treated with 2 (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls.

Fig. S10 ROS generation in HCT116 cells treated with 2 (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls. M1 and M2 correspond to unstressed and oxidatively stressed cells.

Fig. S11 Mitochondrial membrane depolarization in HCT116 cells treated with 2 (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls.

Fig. S12 H2AX expressions in HCT116 cells treated with 2 (10 μ M), 5-FU (172 μ M) and cisplatin (33.9 μ M), respectively, for 12, 24 and 48 h. 5-FU and cisplatin were used as positive controls.