Supplementary Information

Luminescent and magnetic [TbEu] 2D Metal-Organic Frameworks

E. Bartolomé^{a*}, A. Arauzo^b, S. Fuertes^c, L. Navarro-Spreafica^d, P. Sevilla^a, H. Fernández Cortés,^d N. Settineri,^e S. J. Teat,^e E. C. Sañudo^{d,f*}

S1. Infrared spectra of Ln 2D MOFs	p. 2
S2. PXRD	p. 3
S3. Tb/Eu ratio analysis	p. 4
S4. Color emission under UV light	p. 4
S5. Luminescence lifetime measurements	p. 5
S6. Emission of mixed compound Tb _{0.9} Eu _{0.1}	p. 6
S7. Ac susceptibility ox mixed compound Tb _{0.9} Eu _{0.1}	p. 7
S8. Bottleneck effect	p. 8

^a Escola Universitària Salesiana de Sarrià (EUSS), Passeig Sant Joan Bosco 74, 08017 Barcelona, Spain

^b Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, and Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain

^c Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catalisis, Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

^d Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028 Barcelona, Spain

e ALS Berkeley USA

^f Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, IN2UB. C/Martí i Franquès, 1-11, 08028 Barcelona, Spain

Figure S1. Infrared spectra of homometallic Ln 2DMOFs (Ln= Tb, Eu).

Figure S2. PXRD spectra of the studied mixed compounds (the rest are shown in Fig. 2 of the main paper).

S2. PXRD

S3. Tb/Eu ratio analysis

Sample name	ICP		SEM-EDS		TEM-EDX		Fluorescence	
Tb _x Eu _{1-x}	Tb	Eu	Tb	Eu			Tb	Eu
Tb _{0.2} Eu _{0.8}	0.17	0.83	0.25	0.75				
Tb _{0.3} Eu _{0.7}	0.28	0.72	0.36	0.64				
Tb _{0.4} Eu _{0.6}	0.42	0.58			0.42	0.58		
Tb _{0.7} Eu _{0.3}	0.71	0.29					0.73	0.27
Tb _{0.9} Eu _{0.1}	0.86	0.14					0.88	0.13

 Table S3 Tb/Eu ratios determined for the heteronuclear samples by ICP (standard error <2%), SEM-EDS, TEM-EDX and Fluorescence.</th>

Figure S3. TEM images showing exfoliated flakes of $Tb_{0.4}Eu_{0.6}$ and EDX analysis.

S4. Color emission under UV light

Figure S4. Visible color emission of (left) homonuclear Tb, Eu compounds, and (right) heteronuclear [TbEu] compounds, under UV light.

S5. Luminescence lifetime measurements

Figure S5. Lifetime measurements for homonuclear Tb and Eu compounds, and heterodinuclear Tb_xEu_{1-x} compounds, excited at λ_{exc} =280 nm. The decay of either the Eu³⁺ main peak at 620 nm peak, or the Tb³⁺ peak at 544 nm were monitored. For **Tb**_{0.9}Eu_{0.1} the lifetime data were fit to a biexponential law with two time constants (τ_1 and τ_2): I(t)= A₁.exp(-t/ τ_1)+ A₂.exp(-t/ τ_2)+I₀, with A₁=1022±16, τ_1 =29.3±0.6 µs, A₂=80±2, τ_2 =0.82±0.05 µs), I₀=46.5±0.8. For all other compounds the data were fit to an exponential decay law with a single time constant (τ).

Figure S6. Lifetime measurements for heterodinuclear $Tb_{0.9}Eu_{0.1}$ compound, monitored at (a) the Tb^{3+} main peak at 544 nm and (b) the Eu^{3+} main peak at 620 nm peak at, at (left) room temperature (RT), and (right) liquid nitrogen temperature (LNT).

S6. Emission of mixed compound Tb_{0.9}Eu_{0.1}

Figure S7. Emission spectra of complex $Tb_{0.9}Eu_{0.1}$ excited at λ_{exc} =280 nm, measured in. Fluorolog FL-1057, Jobin Ybon HORIBA. The characteristic emission bands for Tb³⁺ and Eu³⁺ are visible.

S7. Ac susceptibility ox mixed compound $Tb_{0.9}Eu_{0.1}$

Figure S8. Ac susceptibility results. (Left) $\chi''(f, T)$ at constant magnetic field H=3 kOe and (Right) $\chi''(f, H)$ at constant T=2 K for mixed compound **Tb**_{0.9}**Eu**_{0.1}.

Fig. S9 $\chi''(f)$ measurements on pure **Tb** compound at H= 3 kOe and T= 2 K at different experimental SQUID pressure conditions, showing the influence of the bottleneck effect.