Electronic Supplementary Information

Impact of the Zinc complexation of polytopic polyaza ligands on the interaction with double and single stranded DNA/RNA and antimicrobial activity

Jorge Gonzalez-Garcia,*^a Carol Galiana,^b M. Auxiliadora Dea-Ayuela,^b Marijana Radić Stojković,^c Sonia López-Molina,^a Cristina Galiana-Rosello,^a Salvador Blasco,^a Ivo Piantanida*^c and Enrique Garcia-Espana*^a

^aInstitute of Molecular Science, University of Valencia, Departament of Inorgnaic Chemistry, 46009, Paterna (Spain).

^bDepartment of Pharmacy, CEU Cardenal Herrera University, Ramón y Cajal s/n, 46115 Alfara del Patriarca, Spain

^cDivision of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, P. O. Box 180, 10002 Zagreb (Croatia).

Table of Contents

Table S1 Crystallographic data	Page 3
Table S2 Selected distances and angles	Page 4
Figure S1-S8 Fluorescence titrations of ZnPHENPOD,	
Zn ₂ PHENPOD and Zn ₃ PHENPOD with DNA/RNA.	Pages 5-8
Figure S9-S17. CD titration of DNA/RNA with PHENPOD	
and Zn2PHENPOD at different molar ratios	Pages 9-13
Figure S18. Cell viability analysis based on the optical	
density at 600 nm for PYPOD , Zn PYPOD , Zn ₂ PYPOD	
and Zn3 PYPOD in <i>S. aureus</i> .	Page 13
Figure S19. Cell viability analysis based on the optical	
density at 600 nm for PHENPOD , Zn PHENPOD ,	
Zn2PHENPOD and Zn3PHENPOD in S. aureus.	Page 14

Formula	C66H106Cl9N22NaO30Zn4		
Formula weight	2291.33		
Crystal system	Orthorhombic		
Space group	Pbcn		
Cell <i>a</i> / Å <i>b</i> / Å <i>c</i> / Å <i>V</i> / Å ³	13.1143(2) 18.5283(2) 38.6732(5) 9397.2(2)		
Ζ	8		
Т / К	293(2)		
size / mm	$0.80 \times 0.34 \times 0.06$		
F ₀₀₀	4720		
density / g.cm ⁻³	1.620		
R(int)	0.1013		
$ \begin{array}{c} \theta_{max} \ / \ deg. \\ \theta_{min} \ / \ deg. \end{array} $	27.498 3.045		
reflections - collected - unique	58315 10672		
$R1 - all - F2 > 2\sigma_{F2}$	0.1386 0.0669		
$wR2$ - all - $F^2 > 2\sigma_{F2}$	0.2313 0.1978		
GoF - all - $F^2 > 2\sigma_{F2}$	1.045 1.047		
 parameters constraints restraints	596 0 50		

Table S1.- Crystallographic data of the "supercomplex" $\{[Zn_2PYPODCl]_2Na(ClO_4)\}^{6+}$.

distances	Zn1 - N1	2.090(5)	Zn2 - N10	2.232(4)
	Zn1 - N2	2.285(5)	Zn2 - N6	2.244(4)
	Zn1 - N3	2.182(5)	Zn2 - N7	2.065(4)
	Zn1 - N4	2.209(5)	Zn2 - N8	2.257(4)
	Zn1 – N5	2.196(4)	Zn2 - N9	2.237(4)
	Zn1 - Cl5	2.356(2)	Zn2-N11	2.086(4)
angles	N1 - Zn1 - N2	76.2(2)	N10 - Zn2 - N6	159.19(15)
	N1 - Zn1 - N3	78.1(2)	N10 - Zn2 - N8	80.20(14)
	N1 - Zn1 - N4	91.00(19)	N10 - Zn2 - N9	81.45(16)
	N1 - Zn1 - N5	172.07(17)	N6 - Zn2 - N8	100.08(14)
	N1 - Zn1 - Cl5	93.89(15)	N7 - Zn2 - N10	92.69(14)
	N2 - Zn1 - Cl5	107.79(17)	N7 - Zn2 - N6	107.76(14)
	N3 - Zn1 - N2	146.5(2)	N7 - Zn2 - N8	77.65(15)
	N3 - Zn1 - N4	81.0(2)	N7 - Zn2 - N9	77.82(16)
	N3 - Zn1 - N5	101.2(2)	N7 - Zn2 - N11	173.84(15)
	N3 - Zn1 - Cl5	94.95(17)	N9 - Zn2 - N6	106.09(15)
	N4 - Zn1 - N2	78.4(2)	N9 - Zn2 - N8	148.46(15)
	N4 - Zn1 - Cl5	172.90(14)	N11 - Zn2 - N10	81.35(15)
	N5 - Zn1 - N2	101.39(18)	N11 - Zn2 - N6	78.09(15)
	N5 - Zn1 - N4	81.09(17)	N11 - Zn2 - N8	99.68(15)
	N5 - Zn1 - Cl5	94.05(12)	N11 - Zn2 - N9	102.65(16)
1	1		1	

Table S2.- Selected distances and angles of the complex $[Zn_2PYPODC1]^{3+}$

Figure S1.- Fluorescence titrations of (a) Zn**PHENPOD**, (b) Zn_2 **PHENPOD** and (c) Zn_3 **PHENPOD** with Calf Thymus DNA (ctDNA) at pH 7.4 in cacodylate buffer 0.05 M. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [ctDNA]/[Zn_x**PHENPOD**].

Figure S2.- Fluorescence titrations of (a) Zn**PHENPOD**, (b) Zn_2 **PHENPOD** and (c) Zn_3 **PHENPOD** with poly rA-poly rU at pH 7.4 in cacodylate buffer 0.05 M. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [poly rA-poly rU]/[Zn_x**PHENPOD**].

Figure S3.- Fluorescence titrations of (a) Zn_2 **PHENPOD** and (b) Zn_3 **PHENPOD** with poly dA-poly dT at pH 7.4 in cacodylate buffer 0.05 M. (c) Plot of the fluorescence intensity normalized *vs.* metal complex [poly dA-poly dT]/[Zn_x**PHENPOD**].

Figure S4.- Fluorescence titrations of (a) Zn**PHENPOD**, (b) Zn_2 **PHENPOD** and (c) Zn_3 **PHENPOD** with poly dG-poly dC at pH 7.4 in cacodylate buffer 0.05 M. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [poly dG-poly dC]/[Zn_x**PHENPOD**].

Figure S5.- Fluorescence titrations of (a) ZnPHENPOD, (b) $Zn_2PHENPOD$ and (c) $Zn_3PHENPOD$ with poly dA at pH 7.4 in cacodylate buffer 0.05 M with poly dA. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [poly A]/[Zn_xPHENPOD].

Figure S6.- Fluorescence titrations of (a) Zn**PHENPOD**, (b) Zn_2 **PHENPOD** and (c) Zn_3 **PHENPOD** with poly dA at pH 7.4 in cacodylate buffer 0.05 M with poly dC. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [poly dC]/[Zn_x**PHENPOD**].

Figure S7.- Fluorescence titrations of (a) Zn**PHENPOD**, (b) Zn_2 **PHENPOD** and (c) Zn_3 **PHENPOD** with poly dA at pH 7.4 in cacodylate buffer 0.05 M with poly dG. (d) Plot of the fluorescence intensity normalized *vs.* metal complex [poly dG]/[Zn_x**PHENPOD**].

Figure S8.- Fluorescence titrations of (a) ZnPHENPOD, (b) $Zn_2PHENPOD$ and (c) $Zn_3PHENPOD$ with poly U at pH 7.4 in cacodylate buffer 0.05 M. (d) Plot of the fluorescence intensity normalized *vs*. metal complex [poly U]/[$Zn_xPHENPOD$].

Figure S9. CD titration of *ctDNA* ($c = 1.0 \times 10^{-5}$ mol dm⁻³) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 mol dm⁻³) at pH 7.4.

Figure S10. CD titration of poly rA-poly rU ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S11. CD titration of poly dA-poly dT ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S12. CD titration of poly dG-poly dC ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S13. CD titration of poly d(G-C)₂ ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S14. CD titration of poly dU ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S15. CD titration of poly dC ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S16. CD titration of poly dC ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S17. CD titration of poly dA ($c = 1.0 \times 10^{-5}$ M) with (a) **PHENPOD** and (b) Zn₂**PHENPOD** at molar ratios r = [compound] / [polynucleotide] (buffer sodium cacodylate, I = 0.05 M) at pH 7.4.

Figure S18. Cell viability analysis based on the optical density at 600 nm for **PYPOD**, Zn**PYPOD**, Zn**PYPOD** and Zn₃**PYPOD** in *S. aureus*. Bottom legend represents the concentration in μ M.

Figure S19. Cell viability analysis based on the optical density at 600 nm for **PHENPOD**, Zn**PHENPOD**, Zn₂**PHENPOD** and Zn₃**PHENPOD** in *S. aureus*. Bottom legend represents the concentration in μ M.