Polarized Au(I)/Rh(I) Bimetallic Pairs Cooperatively Trigger Ligand non-Innocence and Bond Activation

Macarena G. Alférez, Juan J. Moreno, Celia Maya, Jesús Campos*

Abstract

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla (Spain).

1. Experimental procedures ... 2
2. NMR spectra... 10
3. Crystal structure determinations.. 32
4. Mass spectrometry ... 39
5. Variable temperatura van't Hoff study of the equilibrium of 9 and 2c with 10c. 41
6. Computational details ... 42
7. Referencias.. 45

1. Experimental procedures

General considerations

All preparations and manipulations were carried out using standard Schlenk and glove-box techniques, under argon or high-purity nitrogen atmosphere, respectively. All solvents were dried, stored over $4 \AA$ molecular sieves, and degassed prior to use. Toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ and n-pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ were distilled under nitrogen over sodium. Benzene- d_{6} and toluene- d_{8} were dried over molecular sieves ($4 \AA$). THF- d_{8} was distilled under nitrogen over sodium/benzophenone. $[\mathrm{Au}(\mathrm{THT}) \mathrm{Cl}], \mathbf{1 a}^{1}, \mathbf{2}^{\mathrm{Me}}$ and $\mathbf{2}^{\mathrm{Cyp}}$ were prepared according to previously reported procedures ${ }^{2}$. Other chemicals were commercially available and used as received. Solution NMR spectra were recorded on Bruker AMX-300, DRX-400 and DRX-500 spectrometers. Spectra were referenced to external SiMe4 ($\delta: 0 \mathrm{ppm}$) using the residual proton solvent peaks as internal standards (${ }^{1} \mathrm{H}$ NMR experiments), or the characteristic resonances of the solvent nuclei $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR experiments), while ${ }^{31} \mathrm{P}$ was referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$. Spectral assignments were made by routine one- and two-dimensional NMR experiments where appropriate. For elemental analyses a LECO TruSpec CHN elementary analyzer was utilized. For mass spectroscope we use an Ion Trap Bruker Esquire 6000 with ESI sources.

Synthesis and characterization of new compounds

Compound 1b. Sodium amalgam was prepared by adding sodium ($58 \mathrm{mg}, 2.5 \mathrm{mmol}$) to mercury $(1.5 \mathrm{~mL}, 102 \mathrm{mmol})$ under argon atmosphere. The mixture was suspended in diethyl ether (20 $\mathrm{mL})$ to which a solution of dmpe ($0.2 \mathrm{~mL}, 1.13 \mathrm{mmol}$) was added first and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}$ ($309 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (5 mL) afterwards. The mixture was stirred for 8 hours, after which it was filtered, the solvent evaporated under reduced pressure and the residue extracted with pentane (20 mL). The solution volume was reduced to 5 mL and stored at $-78^{\circ} \mathrm{C}$ to crystallize. Rhombic pink crystals were obtained after 5 days ($750 \mathrm{mg}, 60 \%$). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{Rh}$: C, 49.5; H, 8.1. Found: C, 49.6; H, 8.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 2.17\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.19\left(\mathrm{vt}, 12 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=4 \mathrm{~Hz}, \mathrm{PMe}_{2}\right.$), $1.13\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=16 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 94.9\left(\mathrm{~m}, C_{5} \mathrm{Me}_{5}\right), 31.8$ (vtd, $\left.{ }^{1} J_{\mathrm{CP}}=27,{ }^{2} J_{\mathrm{CRh}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 20.4\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{PMe}_{2}\right), 12.4\left(\mathrm{C}_{5} M e_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 42.2\left(\mathrm{~d},{ }^{1} J_{\text {PRh }}=220 \mathrm{~Hz}\right)$.

Compound 3b ${ }^{\text {Me }}$. A solid mixture of compounds $\mathbf{1 b}$ ($33 \mathrm{mg}, 0.085 \mathrm{mmol}$) and $\mathbf{2}^{\mathrm{Me}}$ ($70 \mathrm{mg}, 0.085$ mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. NMR spectroscopy reaction monitoring revealed that formation of $\mathbf{3 b}^{\mathbf{M e}}$ was immediate and proceeded quantitatively. The solution was concentrated to half its volume and precipitated with pentane. The orange residue was then filtered and dried under vacuum ($77 \mathrm{mg}, 64 \%$). Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 42.4; H, 5.4; N, 1.1; S, 5.2. Found: C, 41.9; H, 5.2; N, 1.3; S, 5.2.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 7.20\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.02\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\mathrm{a}}\right), 6.98\left(\mathrm{td}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{5} J_{\mathrm{HP}}=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 6.63\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HP}}=3.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 2.09$ (s, 12H, Mexyl), $1.76\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=12.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.25\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=9.5\right.$ $\mathrm{Hz}, \mathrm{P} M e \mathrm{Me}$ (dmpe)), $1.13\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.5 \mathrm{~Hz}, \mathrm{PMe}\right.$ Me(dmpe)), $0.77\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=8.6 \mathrm{~Hz}\right.$, PMe $\left.2 \mathrm{Ar}^{\mathrm{Xyl}} \mathrm{C}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 144.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C}_{3}\right), 141.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ $\left.=3 \mathrm{~Hz}, \mathrm{C}_{2}\right), 135.9\left(\mathrm{C}_{1}\right), 131.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}} \approx 40 \mathrm{~Hz}, \mathrm{C}_{4}\right), 130.5$ (overlapped CH_{c} and $\left.\mathrm{CH}_{\mathrm{d}}\right), 128.5\left(\mathrm{CH}_{\mathrm{a}}\right)$, $127.2\left(\mathrm{CH}_{\mathrm{b}}\right), 121.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=324 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 98.7\left(C_{5} \mathrm{Me}_{5}\right), 34.1\left(\mathrm{CH}_{2}\right), 22.4(\mathrm{PMeMe}(\mathrm{dmpe}))$, 21.7 ($\mathrm{Me}_{\mathrm{xyl}}$), 17.7-17.4 (overlapped $\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}$ and PMeMe (dmpe)), $11.2\left(\mathrm{C}_{5} M e_{5}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$) $\delta:-78.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$) $\delta: 45.5\left(\mathrm{dd},{ }^{1} J_{\mathrm{PRh}}\right.$ $=154,{ }^{3} J_{\mathrm{PP}}=9 \mathrm{~Hz}$, dmpe), $14.6\left(\mathrm{dt},{ }^{2} J_{\mathrm{PRh}}=12,{ }^{3} J_{\mathrm{PP}}=9 \mathrm{~Hz}, \mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right)$.

Compound 4b ${ }^{\text {Cyp }}$. A solid mixture of compounds $\mathbf{1 b}$ ($21 \mathrm{mg}, 0.054 \mathrm{mmol}$) and $\mathbf{2}^{\mathbf{C y p}}$ ($50 \mathrm{mg}, 0.054$ mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. NMR spectroscopy reaction monitoring revealed that formation of $\mathbf{4 b}{ }^{\mathbf{C y p}}$ was immediate and proceeded quantitatively. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum ($40 \mathrm{mg}, 30 \%$). To increase purity, compound $\mathbf{4 b}^{\text {Cyp }}$ was crystallized by slow diffusion of pentane over a benzene solution to provide
a yellow/brownish crystalline material. Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{75} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 45.3; $\mathrm{H}, 5.7$; N, 1.1; S, 4.8. Found: C, 44.6; H, 5.7; N, 1.1; S, 4.9.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 7.23\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.08$ to $7.05\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{d}), $6.68\left(\mathrm{brd}, 2 \mathrm{H},{ }^{3} \mathrm{JHH} \approx 7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right.$), $2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.99\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{xy}}\right), 1.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{\mathrm{a}}\right)$, $1.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{\beta}\right), 1.65\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.43\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{dmpe}\right), 1.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.28$ $\left(\mathrm{d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.8 \mathrm{~Hz}, \mathrm{PMeMe}\right), 1.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Au}\right), 1.12\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.8 \mathrm{~Hz}\right.$, PMeMe $),-13.6\left(\mathrm{td}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=34,{ }^{1} \mathrm{~J}_{\mathrm{HRh}}=26 \mathrm{~Hz}, \mathrm{RhH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right)$ $\delta: 148.4 .0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{3}\right), 142.2\left(\mathrm{C}_{2}\right), 136.3\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{1}\right), 131.7\left(\mathrm{br}, \mathrm{CH}_{\mathrm{c}}\right), 131.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}} \approx 30 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{4}\right) 130.8\left(\mathrm{CH}_{\mathrm{d}}\right)$, 127.9 and $127.7\left(\mathrm{CH}_{\mathrm{a}}\right.$ and CH_{b}, overlapped with $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), 120.9\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=324 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right), 98.8\left(\mathrm{CMe}_{\mathrm{\beta}}\right), 90.9\left(\mathrm{CMe}_{\alpha}\right), 37.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=31 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{e}}\right), 34.4\left(\mathrm{CH}_{\mathrm{g}}\right), 31.9\left(\mathrm{CH}_{\mathrm{f}}\right), 27.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}}\right.$ $\left.=75 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Au}\right), 25.4\left(\mathrm{vdd},{ }^{2} J_{\mathrm{CRh}}=28,{ }^{1} J_{\mathrm{CP}}=9 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{dmpe}\right), 21.4\left(\mathrm{Mex}_{\mathrm{xy}}\right), 18.9\left(\mathrm{vt},{ }^{1} J_{\mathrm{CP}}=22\right.$ $\mathrm{Hz}, \mathrm{PMeMe}), 13.4\left(\mathrm{vt},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=18 \mathrm{~Hz}, \mathrm{PMeMe}\right), 10.6$ and $10.5\left(\mathrm{Me}_{\alpha}\right.$ and $\left.\mathrm{Me}_{\beta}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta:-78.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 57.0\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{PP}}=10 \mathrm{~Hz}\right)$, $42.9\left(\mathrm{dd},{ }^{1} J_{\mathrm{PRh}}=137,{ }^{3} J_{\mathrm{PP}}=10 \mathrm{~Hz}\right)$.

Compound 1c. Sodium amalgam was prepared by adding sodium ($173 \mathrm{mg}, 7.5 \mathrm{mmol}$) to mercury ($4.5 \mathrm{~mL}, 306 \mathrm{mmol}$) under argon atmosphere. The mixture was suspended in ether (20 mL), dppe ($1343 \mathrm{mg}, 2.25 \mathrm{mmol}$) was added first and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}(907 \mathrm{mg}, 1.4 \mathrm{mmol})$ in toluene (5 $\mathrm{mL})$ second. The mixture was stirred for 8 hours, after which time was filtrated, the solvent evaporated under reduced pressure and the residue extracted with pentane (20 mL). The solution volume was reduced to 5 mL and stored at $-78{ }^{\circ} \mathrm{C}$ to crystallize. Rhombic pink crystals were obtained after 5 days ($950 \mathrm{mg}, 66 \%$). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{P}_{2} \mathrm{Rh}$: C, 67.9 ; H, 6.2. Found: C, 67.9; H, 6.4.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$) $\delta: 7.68\left(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{Ph}_{2}\right), 7.17\left(\mathrm{~m}, 8 \mathrm{H}, m-\mathrm{Ph}_{2}\right), 7.09(\mathrm{~m}, 4 \mathrm{H}, p-$ Ph_{2}), $1.85\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=19 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta: 139.6\left(\mathrm{vt},{ }^{1} J_{\mathrm{CP}}=16 \mathrm{~Hz}, \mathrm{C}_{\text {ipso }} \mathrm{Ph}_{2}\right.$), $132.9\left(\mathrm{vt},{ }^{2} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{o} \mathrm{Ph}_{2}\right.$), 128.3 (overlapped, $\mathrm{C}_{m} \mathrm{Ph}_{2}$ and $C_{p} \mathrm{Ph}_{2}$), $95.4\left(\mathrm{~m}, C_{5} \mathrm{Me}_{5}\right), 32.2\left(\mathrm{vtd},{ }^{1} J_{\mathrm{CP}}=27,{ }^{2} J_{\mathrm{CRh}}=2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 10.8\left(\mathrm{C}_{5} M e_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 81.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PRh}}=219 \mathrm{~Hz}\right)$.

 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of $\mathbf{3 c}{ }^{\mathrm{Me}}$ was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The green residue was then filtered and dried under vacuum ($40 \mathrm{mg}, 45 \%$). Anal. Calcd. for $\mathrm{C}_{62} \mathrm{H}_{66} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 51.0; H, 4.6; N, 1.0; S, 4.4. Found: C, 50.6; H, 4.7; N, 1.2; S, 4.8.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 7.57\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{Ph}_{2}\right), 7.38\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{Ph}_{2}\right), 7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right)$, 7.13 to $7.03\left(\mathrm{~m}, 16 \mathrm{H}\right.$, overlapping $\left.m-\mathrm{Ph}_{2}, p-\mathrm{Ph}_{2}, \mathrm{H}_{\mathrm{a}}\right), 6.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 6.52\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.3\right.$, $\left.{ }^{4} J_{\mathrm{HP}}=2.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 2.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{dmpe})\right), 1.86\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{xyl}}\right), 1.54\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 0.37(\mathrm{~d}$, $\left.6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=8.8 \mathrm{~Hz}, \mathrm{PMe} e_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 144.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{3}\right)$, $141.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{C}_{2}\right), 137.4\left(\mathrm{~m}, \mathrm{C}_{\text {ipso }} \mathrm{Ph}_{2}\right), 136.1\left(\mathrm{C}_{1}\right), 132.5\left(\mathrm{~m}, \mathrm{C}_{o} \mathrm{Ph}_{2}\right)$), $131.5\left(\mathrm{~m}, \mathrm{C}_{m} \mathrm{Ph}_{2}\right)$, 130.5 (overlapped C_{4} and CH_{c}), $130.4\left(\mathrm{CH}_{d}\right)$, $128.8\left(\mathrm{~m}, \mathrm{C}_{p} \mathrm{Ph}_{2}\right), 128.4\left(\mathrm{CH}_{\mathrm{a}}\right), 127.2\left(\mathrm{CH}_{\mathrm{b}}\right), 121.5$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=324 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 100.5\left(C_{5} \mathrm{Me}_{5}\right), 34.1\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{Me}_{\mathrm{xy}}\right), 17.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=32 \mathrm{~Hz}\right.$, $\left.\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right), 10.9\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(471 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta:-77.9 \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 74.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{PRh}}=164,{ }^{3} J_{\mathrm{PP}}=6 \mathrm{~Hz}\right), 12.1\left(\mathrm{q},{ }^{1} J_{\mathrm{PRh}}={ }^{3} J_{\mathrm{PP}}=6 \mathrm{~Hz}\right)$.

Compound 6a.Following a previously reported procedure, ${ }^{3}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Li}(120 \mathrm{mg}, 0.962 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{RhCl}(\mathrm{COE})_{2}\right]_{2}(332 \mathrm{mg}, 0.461 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$. The solution was stirred at room temperature overnight, filtered through celite and solvent was is removed under vacuum. $\mathrm{PMe}_{3}(1.25 \mathrm{~mL}, 1.23 \mathrm{mmol})$ was slowly added to a solution of the resulting product ($268 \mathrm{mg}, 0.616 \mathrm{mmol}$) in THF at $-80^{\circ} \mathrm{C}$, stirring overnight. Solvent was removed under vacuum and the resulting green solid was coevaporated with pentane ($329 \mathrm{mg}, 72 \%$).

Compound 7a ${ }^{\text {Me }}$. A solid mixture of compounds $\mathbf{6 a}(32 \mathrm{mg}, 0.085 \mathrm{mmol})$ and $\mathbf{2}^{\mathrm{Me}}(70 \mathrm{mg}, 0.085$ $\mathrm{mmol})$ was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of $7 \mathbf{a}^{\mathrm{Me}}$ was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum ($58 \mathrm{mg}, 57 \%$). Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 41.2; H, 4.5; N, 1.2; S, 5.4. Found: C, 41.0; H, 4.3; N, 1.2; S, 5.5 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 6.93-6.87(\mathrm{~m}, 5 \mathrm{H}$, overlapping Ind and H_{d}), $6.65\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} \mathrm{~J}_{\mathrm{HP}}=3.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.79(\mathrm{~m}, 1 \mathrm{H}$, Ind), 4.89
(m, 2H, Ind), $2.09\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{Xyl}}\right), 1.07$ (vt, dar J del vt, $18 \mathrm{H}, \mathrm{PMe}_{3}$), $0.88\left(\mathrm{~d}, 6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=9.6 \mathrm{~Hz}\right.$, $\left.\mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl} 2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 145.9\left(\mathrm{br}, \mathrm{C}_{3}\right), 140.5\left(\mathrm{~d}^{3} J_{\mathrm{CP}}=9 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{2}\right), 135.9\left(\mathrm{C}_{1}\right), 131.9\left(\mathrm{CH}_{\mathrm{d}}\right), 130.8\left(\mathrm{CH}_{\mathrm{c}}\right), 128.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=24 \mathrm{~Hz}, \mathrm{C}_{4}\right), 127.9$ and $127.8\left(\mathrm{CH}_{\mathrm{a}}\right.$ and CH_{b}, overlapped with $\mathrm{C}_{6} \mathrm{D}_{6}$), 124.9 (Ind), $119.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=326 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 115.8 (Ind), 94.6 (Ind), 82.8 (Ind), 74.0 (Ind), 22.5 (m, PMe_{3}), 21.3 ($\mathrm{Me}_{\mathrm{Xyl}}$), 16.3 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=16 \mathrm{~Hz}, \mathrm{PMe}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}$). ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta:-78.4 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 4.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PRh}}=\right.$ $18 \mathrm{~Hz}),-3.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PRh}}=158 \mathrm{~Hz}\right)$.

Compound 7a ${ }^{\text {Cyp }}$. A solid mixture of compounds $\mathbf{6 a}(40 \mathrm{mg}, 0.107 \mathrm{mmol})$ and $\mathbf{2}^{\mathrm{Cyp}}(100 \mathrm{mg}$, 0.107 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of $\mathbf{7 a}^{\mathbf{C y p}}$ was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The green residue was then filtered and dried under vacuum (80 mg , 57 \%). Anal. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{67} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 45.1; H, 5.2; N, 1.1; S, 5.9. Found: C, 45.1; H, 5.0; N, 1.3; S, 5.8.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 7.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 6.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 6.94$ to $6.91\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right.$ and Ind), $6.48\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.5,{ }^{4} J_{\mathrm{HP}}=3.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.75(\mathrm{~m}, 1 \mathrm{H}$, Ind), $4.86(\mathrm{~m}, 2 \mathrm{H}$, Ind $), 2.30$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 1.99\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{Xyl}}\right), 1.65$ to $1.57\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.42\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.13\left(\mathrm{vt}, 18 \mathrm{H}, \mathrm{PMe}_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 147.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C}_{3}\right), 142.1\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{C}_{2}\right)$, $137.5\left(\mathrm{C}_{1}\right), 132.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=30 \mathrm{H}, \mathrm{C}_{4}\right), 132.3\left(\mathrm{CH}_{\mathrm{d}}\right), 131.9\left(\mathrm{CH}_{\mathrm{c}}\right), 128.9\left(\mathrm{CH}_{\mathrm{a}}\right), 128.1\left(\mathrm{CH}_{\mathrm{b}}\right), 125.2$ (Ind), 121.3 (q, ${ }^{1} J_{\mathrm{CF}}=326 \mathrm{~Hz}, \mathrm{CF}_{3}$), 119.1 (Ind), 116.5 (Ind), 94.2 (Ind), 73.3 (Ind), $39.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$ $\left.=28 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{e}}\right), 34.1\left(\mathrm{CH}_{\mathrm{f}}\right), 31.9\left(\mathrm{CH}_{\mathrm{g}}\right), 21.3\left(\mathrm{Mex}_{\mathrm{xyl}}\right), 21.5\left(\mathrm{~m}, \mathrm{PMe}_{3}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(471 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta:-78.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right) \delta: 43.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PRh}}=19 \mathrm{~Hz}\right),-6.2(\mathrm{~d}$, ${ }^{1} J_{\text {PRh }}=159 \mathrm{~Hz}$).

Compound 6d. $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Li}(360 \mathrm{mg}, 2.8 \mathrm{mmol})$ is added to a solution of $\left[\mathrm{RhCl}(\mathrm{COE})_{2}\right]_{2}(1 \mathrm{~g}, 1.4$ $\mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, stirred at room temperature overnight and filtered through celite. The solvent was removed under vacuum and $\mathrm{PMe}_{3}(738 \mathrm{mg}, 2.8 \mathrm{mmol})$ was slowly added to a solution of the resulting product ($600 \mathrm{mg}, 1.4 \mathrm{mmol}$) in THF at $-80^{\circ} \mathrm{C}$, stirring the solution upon warming to room temperature and heating at $60^{\circ} \mathrm{C}$ overnight. Solvent was removed under vacuum and the
resulting red solid was coevaporated with pentane ($840 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR resonances are in agreement with prior literature data(REF).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right) \delta: 50.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PRh}}=223 \mathrm{~Hz}\right)$.

Compound 7d ${ }^{\mathbf{M e}}$. A solid mixture of compound $\mathbf{6 d}(61 \mathrm{mg}, 0.085 \mathrm{mmol})$ and $\mathbf{2}^{\mathbf{M e}}(70 \mathrm{mg}, 0.085$ mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of $\mathbf{7} \mathbf{d}^{\mathrm{Me}}$ was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The yellow residue was then filtered and dried under vacuum ($40 \mathrm{mg}, 31 \%$). Anal. Calcd. for $\mathrm{C}_{71} \mathrm{H}_{65} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 54.4; H, 4.2; N, 0.9; S, 4.1. Found: C, 54.4; H, 4.2; N, 1.0; S, 4.2.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, THF- $\left.d_{8}, 25^{\circ} \mathrm{C}\right) \delta: 7.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 7.44$ to $7.41\left(\mathrm{~m}, 8 \mathrm{H}\right.$, overlapped $p-\mathrm{Ph}_{3}$ and H_{b}), 7.23 to $7.20\left(\mathrm{~m}, 18 \mathrm{H}\right.$, overlapped $m-\mathrm{Ph}_{3}, \mathrm{H}_{\mathrm{c}}$ and $\left.\mathrm{H}_{\mathrm{a}}\right), 7.06$ to $7.01(\mathrm{~m}, 3 \mathrm{H}$, overlapping Ind), $6.90\left(\mathrm{~m}, 12 \mathrm{H}, o-\mathrm{Ph}_{3}\right), 5.83\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Ind), $5.00(\mathrm{~m}, 2 \mathrm{H}$, Ind $), 2.22\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{Xyl}}\right), 0.77(\mathrm{~d}$, $\left.6 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}, \mathrm{PMe} e_{2} \mathrm{Ar}^{\mathrm{Xyl} 2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25^{\circ} \mathrm{C}\right) \delta: 145.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{3}\right), 141.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{C}_{2}\right), 136.4\left(\mathrm{C}_{1}\right), 135.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=47 \mathrm{~Hz}, \mathrm{C}_{4}\right), 133.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=5 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{o} \mathrm{Ph}_{3}\right), 131.8\left(\mathrm{CH}_{\mathrm{d}}\right), 131.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{c}}\right), 130.2\left(\mathrm{C}_{p} \mathrm{Ph}_{3}\right), 128.4\left(\mathrm{CH}_{\mathrm{b}}\right), 128.1\left(\mathrm{t},{ }^{3} J_{\mathrm{CP}}=5\right.$ $\mathrm{Hz}, \mathrm{C}_{m} \mathrm{Ph}_{3}$; overlapped with CH_{a}), 127.9 (Ind), 120.2 (Ind), $119.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=330 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 94.9$ (br, Ind), 79.6 (br, Ind), $21.5\left(\mathrm{Me}_{\mathrm{xyl}}\right), 17.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=35 \mathrm{~Hz}, \mathrm{PMe} \mathrm{C}_{2} \mathrm{Ar}^{\mathrm{Xyl} 2}\right) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, THF- $\left.d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta:-78.3 \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}\right.$, THF- $\left.d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 40.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PRh}}=168\right.$ $\mathrm{Hz}), 1.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PRh}}=15 \mathrm{~Hz}\right)$.

Compound $6 \mathbf{c}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Li}(360 \mathrm{mg}, 2.8 \mathrm{mmol})$ is added to a solution of $\left[\mathrm{RhCl}(\mathrm{COE})_{2}\right]_{2}(1 \mathrm{~g}, 1.4$ $\mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, stirred at room temperature overnight and filtered through celite. Solvent was removed under vacuum and dppe ($273 \mathrm{mg}, 0.69 \mathrm{mmol}$) was slowly added to a solution of the resulting product ($300 \mathrm{mg}, 0.69 \mathrm{mmol}$) in THF (5 mL) at $-80{ }^{\circ} \mathrm{C}$, stirring the solution upon warming to room temperature and heating at $60^{\circ} \mathrm{C}$ overnight. Solvent was removed under vacuum yielding a yellow solid ($320 \mathrm{mg}, 77 \%$). Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{Rh}: \mathrm{C}, 68.2 ; \mathrm{H}$, 5.1. Found: C, 68.2; H, 5.4.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 7.45\left(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{Ph}_{2}\right), 7.11\left(\mathrm{~m}, 8 \mathrm{H}, m-\mathrm{Ph}_{2}\right), 7.07(\mathrm{~m}, 4 \mathrm{H}, p-$ Ph_{2}), 7.05 to $6.92(\mathrm{~m}, 4 \mathrm{H}$, Ind $), 6.14\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Ind), $5.52(\mathrm{~m}, 2 \mathrm{H}$, Ind $), 1.63\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=18 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 139.9\left(\mathrm{~m}, \mathrm{C}_{i p s o} \mathrm{Ph}_{2}\right), 132.6\left(\mathrm{~m}, \mathrm{C}_{o} \mathrm{Ph}_{2}\right), 128.8$ $\left(\mathrm{C}_{p} \mathrm{Ph}_{2}\right.$), 127.7 (overlapped with $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{m} \mathrm{Ph}_{2}$) 120.5 (Ind), 117.2 (Ind), 116.5 (Ind), 95.1 (m, Ind), 73.1 (m, Ind), 28.9 (vt, ${ }^{1} J_{\mathrm{CP}}=25 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) $\delta: 75.9$ (d, $\left.{ }^{1} J_{\mathrm{PRh}}=223 \mathrm{~Hz}\right)$.

Compound 7c $\mathbf{c}^{\text {Cyp }}$. A solid mixture of compound $\mathbf{6 c}(10 \mathrm{mg}, 0.0816 \mathrm{mmol})$ and $\mathbf{2}^{\mathbf{C y p}}(8 \mathrm{mg}, 0.0816$ mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of $7 \mathbf{c}^{\mathbf{C y p}}$ was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum ($57.5 \mathrm{mg}, 57 \%$). Anal. Calcd. for $\mathrm{C}_{69} \mathrm{H}_{70} \mathrm{AuF}_{6} \mathrm{NO}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: C, 53.6; H, 4.6; N, 0.9; S, 4.4. Found: C, 53.6; H, 4.3; N, 1.1; S, 4.5.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25^{\circ} \mathrm{C}$) $\delta: 7.88$ (br, 2H, Hb), 7.59 (br, 4H, Ha), 7,39 (m, 1H, Hd), $7.28\left(\mathrm{~m}, 5 \mathrm{H}\right.$, overlapped $p-\mathrm{PPh}_{3}$ and Ind), $7.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.15\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.07(\mathrm{~m}, 1 \mathrm{H}$, Ind), $6.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 6.83(\mathrm{~m}, 1 \mathrm{H}$, Ind), $6.64(\mathrm{~m}, 2 \mathrm{H}$, Ind), $6.24(\mathrm{~m}, 2 \mathrm{H}$, Ind), 5.92 (br, 2H, Ind), $2.34\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{Xyl}}\right), 2.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{He}), 2.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{dppe}}\right), 1.54(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Hf}), 1.39(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{Hg}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 147.1(\mathrm{C} 3), 142.4\left(\mathrm{CPPh}_{3}\right), 137.4(\mathrm{C} 2), 128.7$ (overlapped PPh_{3}, Ind, $\mathrm{CH}_{\mathrm{b}}, \mathrm{CH}_{\mathrm{a}}$), 127.9 (overlapped $\mathrm{PPh}_{3}, \mathrm{CH}_{\mathrm{c}}, \mathrm{CH}_{\mathrm{d}}$), 125.1 (overlapped PPh_{3}, Ind), 118.9 (Ind), 117.4 (Ind), 39.4 (Ce), $33.7(\mathrm{Cf}), 26.3(\mathrm{Cg}), 20.5$ (overlapped $\mathrm{CH}_{2 \mathrm{dppe}}$ and $\left.\mathrm{Me}_{\mathrm{xyl}}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 74.7\left(\mathrm{~d},,{ }^{1} J_{\mathrm{PRh}}=161 \mathrm{~Hz}\right), 47.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{PP}}=\right.$ 18 Hz).

$X-H(X=H, C, O, N)$ bond activation studies using compounds of $R h$ and $A u$.

Compound 5b. $\mathrm{NH}_{4} \mathrm{PF}_{6}(42 \mathrm{mg}, 0.258 \mathrm{mmol})$ was added to a solution of $\mathbf{1 b}(100 \mathrm{mg}, 0.258$ mmol) in THF (10 mL) and stirred for 1 hour. Concentration to half volume and precipitation
with pentane (20 mL) yielded a solid brown residue (77 mg , 77%). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{P}_{2} \mathrm{Rh}$: C, 49.4; H, 8.3. Found: C, 49.6; H, 8.4.
${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $d_{8}, 25^{\circ} \mathrm{C}$) $\delta: 2.02\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), 1.92 to 1.75 (br m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.62 $\left(\mathrm{dd}, 12 \mathrm{H},{ }^{3} J_{\mathrm{HRh}}=15.0,{ }^{2} J_{\mathrm{HP}}=11.5 \mathrm{~Hz}, \mathrm{PMe}_{2}\right),-13.60\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=31.9,{ }^{1} J_{\mathrm{HRh}}=27.8 \mathrm{~Hz}, \mathrm{RhH}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 94.9\left(C_{5} \mathrm{Me}_{5}\right), 28.8\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 18.8$ and $13.6(\mathrm{~m}$, $\left.\mathrm{PMe}_{2}\right), 9.72\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 45.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PRh}}=134 \mathrm{~Hz}\right.$, dmpe), $-144.2\left(\mathrm{q},{ }^{1} J_{\mathrm{PF}}=710 \mathrm{~Hz}_{\mathrm{PF}}^{6}\right)$

Compound 5c. $\mathrm{NH}_{4} \mathrm{PF}_{6}(26 \mathrm{mg}, 0.157 \mathrm{mmol})$ was added to a solution of $\mathbf{1 c}(100 \mathrm{mg}, 0.157 \mathrm{mmol})$ in THF (10 mL) and stirred for 1 hour. Concentration to half volume and precipitation with pentane (20 mL) yielded a solid brown residue (73 mg , 73%). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{P}$ Rh: C , 67.8; H, 6.3. Found: C, 67.5; H, 6.7.
${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $\mathrm{d}_{8}, 25^{\circ} \mathrm{C}$) $\delta: 7.74,7.65,7.61,7.45\left(\mathrm{~m}, 20 \mathrm{H}\right.$, overlapped $m-\mathrm{Ph}_{2}, o-\mathrm{Ph}_{2}$, $\left.p-\mathrm{Ph}_{2}\right), 2.56\left(\mathrm{~d}, 4 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right),-12.26(\mathrm{~m}, \mathrm{RhH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 132.9,131.4$ and $128.9\left(\mathrm{C}_{o} \mathrm{Ph}_{2} / \mathrm{C}_{m} \mathrm{Ph}_{2} / \mathrm{C}_{p} \mathrm{Ph}_{2}\right), 130.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=43\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{i p s o} \mathrm{Ph}_{2}\right), 132.9\left(\mathrm{vt},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{o} \mathrm{Ph}_{2}\right), 128.3\left(\mathrm{C}_{p} \mathrm{Ph}_{2}\right), 95.0\left(C_{5} \mathrm{Me}_{5}\right), 31.9\left(\mathrm{vtd},{ }^{1} J_{\mathrm{CP}}=27\right.$, $\left.{ }^{2} J_{\mathrm{CRh}}=2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 10.7\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 73.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PRh}}=139\right.$ Hz, dppe $),-144.2\left(\mathrm{q},{ }^{1} J_{\mathrm{PF}}=690 \mathrm{~Hz} \mathrm{PF}_{6}\right)$

Compound $8 . \mathrm{PPh}_{3}(5.62 \mathrm{mg}, 0.0 .21 \mathrm{mmol})$ was added to a solution of gold complex (20 mg , 0.021 mmol) in benzene, and stirred for 5 minutes. Solvent was removed under vacuum to yield the desired product ($10 \mathrm{mg}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25{ }^{\circ} \mathrm{C}$) $\delta: 7.41$ to 7.33 (br t, PPh_{3}), 7.27 to $7.16\left(\mathrm{~m}, \mathrm{PPh}_{3}\right), 7.06$ to $6.9\left(\mathrm{~m}, \mathrm{PPh}_{3}\right), 6.83\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 6.61\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right) 6.54\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$, 2.44 to $2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}), 1.98\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}_{\mathrm{Xy}}\right), 1.89$ to $1.52\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 25{ }^{\circ} \mathrm{C}\right) \delta: 134.1\left(\mathrm{PPh}_{3}\right), 132.3\left(\mathrm{PPh}_{3}\right), 131.9\left(\mathrm{CH}_{\mathrm{c}}\right), 128.3\left(\mathrm{CH}_{\mathrm{a}}\right), 37.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=29\right.$ $\mathrm{Hz}, \mathrm{PCH}), 25.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 25.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=11 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 21.6\left(\mathrm{Me}_{\mathrm{xyl}}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}, 25^{\circ} \mathrm{C}\right) \delta: 59.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=309 \mathrm{~Hz}\right), 44.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=309 \mathrm{~Hz}\right)$.

2. NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{1 b}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of complex $\mathbf{1 b}$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
$\left.\mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$

Figure S3. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{1 b}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{3 b}{ }^{\mathbf{M e}}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{3} \mathbf{b}^{\mathrm{Me}}$.

Figure S6. ${ }^{19} \mathrm{~F}$ NMR of complex $\mathbf{3 b}{ }^{\mathbf{M e}}$.

Figure S7. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{3 b}{ }^{\mathbf{M e}}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{4 b}{ }^{\text {Cyp }}$.

Figure S9. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{4 b}{ }^{\mathbf{C y p}}$.

Figure S10. ${ }^{19} \mathrm{~F}$ NMR of complex $\mathbf{4 b}{ }^{\text {Cyp }}$.

Figure S11. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{4 b}{ }^{\mathbf{C y p}}$.
(

Figure S12. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{1 c}$.

Figure S13. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{1 c}$.

Figure S14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of complex $\mathbf{1 c}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{3} \mathbf{c}^{\mathrm{Me}}$.

Figure S16. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{3 c}{ }^{\mathrm{Me}}$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
$\left(\mathrm{C}_{6} \mathrm{D}_{6}, 471\right.$
$\mathrm{MHz}, 25^{\circ} \mathrm{C}$)

Figure S17. ${ }^{19} \mathrm{~F}$ NMR of complex $\mathbf{3 c} \mathbf{c}^{\mathrm{Me}}$.
($\mathrm{C}_{6} \mathrm{D}_{6}, 202$

Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of complex $\mathbf{3 c}{ }^{\mathbf{M e}}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR of complex $7 \mathbf{a}^{\mathbf{M e}}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR of complex $7 \mathbf{a}^{\mathbf{M e}}$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
($\mathrm{C}_{6} \mathrm{D}_{6}, 471$
$\mathrm{MHz}, 25^{\circ} \mathrm{C}$)

Figure S21. ${ }^{19} \mathrm{~F}$ NMR of complex $7 \mathbf{a}^{\mathrm{Me}}$.

Figure S22. ${ }^{31} \mathrm{P}$ NMR of complex $7 \mathbf{a}^{\mathrm{Me}}$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR of complex $7 \mathbf{a}^{\mathbf{C y p}}$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR of complex $7 \mathbf{a}^{\mathrm{Cyp}}$.

Figure S25. ${ }^{19} \mathrm{~F}$ NMR of complex $\mathbf{7 a}{ }^{\mathbf{C y p}}$.

Figure S26. ${ }^{31} \mathrm{P}$ NMR of complex $7 \mathrm{a}^{\text {Cyp }}$.

Figure S27. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{6 d}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{7 d}{ }^{\mathrm{Me}}$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{7 d}{ }^{\mathrm{Me}}$.

Figure S30. ${ }^{19} \mathrm{~F}$ NMR of complex $\mathbf{7 d}{ }^{\mathrm{Me}}$.

Figure S31. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{7 d}{ }^{\mathrm{Me}}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{6 c}$. There is residual pentane.

Figure S33. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{6 c}$. There is residual pentane.

$$
{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR }
$$

$\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162\right.$
$\mathrm{MHz}, 25^{\circ} \mathrm{C}$)

$$
\stackrel{\text { giv }}{\substack{\text { R } \\ \text { N } \\ \text { N }}}
$$

Figure S34. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{6 c}$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR of complex $7 \mathrm{c}^{\text {Cyp }}$.

Figure S36. ${ }^{13} \mathrm{C}$ NMR of complex $7 \mathbf{c}^{\mathrm{Cyp}}$.

Figure S37. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{7 c}{ }^{\mathbf{C y p}}$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR of complex 5b.

Figure S39. ${ }^{13} \mathrm{C}$ NMR of complex 5b.

Figure S40. ${ }^{31} \mathrm{P}$ NMR of complex $\mathbf{5 b}$.

Figure $\mathbf{S 4 1} .{ }^{1} \mathrm{H}$ NMR of complex 5 c .

Figure S42. ${ }^{13} \mathrm{C}$ NMR of complex $\mathbf{5 c}$.

Figure S43. ${ }^{31} \mathrm{P}$ NMR of complex $5 \mathbf{c}$.

3. Crystal structure determinations

Crystallographic details. Low-temperature diffraction data were collected on a D8 Quest APEXIII single crystal diffractometer with a Photon III detector and a $\mathrm{I} \mu \mathrm{S} 3.0$ microfocus X-ray source $\left(\mathbf{4 b}{ }^{\mathrm{Cyp}}, \mathbf{7 a}^{\mathrm{Me}}, \mathbf{7 a}{ }^{\mathrm{Cyp}}, \mathbf{6 d}, \mathbf{7 d}{ }^{\mathrm{Me}}, \mathbf{6 c}, \mathbf{7 c}^{\mathrm{Cyp}},\left[\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{8}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{XylNC}) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl} 2}\right)\right]\left(\mathrm{NTf}_{2}\right)\right.$ and $\left[\left\{\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl} 2}\right) \mathrm{Au}\right\}_{2}(\mu\right.$-dppe $\left.\left.)\right]\left(\mathrm{NTf}_{2}\right)_{2}\right)$ at the Instituto de Investigaciones Químicas, Sevilla. Data were collected by means of ω and φ scans using monochromatic radiation $\lambda(\mathrm{MoK} \alpha 1)=$ $0.71073 \AA$. The diffraction images collected were processed and scaled using APEX-III software. Using Olex 2^{4}, the structures $\mathbf{4 b}^{\mathrm{Cyp}}, \mathbf{7 c}^{\mathrm{Cyp}}$, and $\left[\left\{\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right) \mathrm{Au}\right\}_{2}(\mu\right.$-dppe $\left.\left.)\right]\left(\mathrm{NTf}_{2}\right)_{2}\right)$ were solved with SHELXT and the structures $\mathbf{7 a}^{\mathbf{M e}}, \mathbf{6 c}, \mathbf{6 d}, 7 \mathbf{a}^{\mathrm{Cyp}}, \mathbf{7 d}^{\mathrm{Me}}$, and $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{8}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{XylNC}) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right)\right]\left(\mathrm{NTf}_{2}\right)$ were solved with olex 2 .solve1.3 and all was refined against F^{2} on all data by full-matrix least squares with SHELXL. ${ }^{5}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model, excluding H bonded to Rh in complex $\mathbf{4} \mathbf{b}^{\text {Cyp }}$, which was obtained from the Fourier map. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups).
PLATON/SQUEEZE was used for the refinement of $\mathbf{4 b}^{\text {Cyp }}$ and $\mathbf{7} \mathbf{c}^{\text {cyp }}$. When the SQUEEZE recycling converges, 339 electrons were recovered from the difference density map in the unit cell of $\mathbf{4 b}{ }^{\text {Cyp }}$. This is consistent with the presence of one triflimidate anion $\left[\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{-}\right]$and one THF molecule per asymmetric unit which account for $(137+28) \times 2=330$ electrons per unit cell.

In the case of the structure $\mathbf{7 a}{ }^{\text {Cyp }}, 215$ electrons were found in a void per unit cell. This is consistent with the presence of one toluene molecule (50 electrons) per asymmetric unit.

A summary of the fundamental crystal and refinement data are given in Table S1, S2 and S3. Atomic coordinates, anisotropic displacement parameters and bond lengths and angles can be found in the cif files, which have been deposited in the Cambridge Crystallographic Data Centre with no. 2223979 - 2223987. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

a)

b)

c)

d)

Figure S44. ORTEP of compounds 6d (a), $\left[\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{XylNC}) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right)\right]$ $\left(\mathrm{NTf}_{2}\right)(\mathrm{b}), \mathbf{6 c}(\mathrm{c}), \mathbf{7} \mathbf{c}^{\mathrm{Cyp}}(\mathrm{d})$ and $\left[\left\{\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right) \mathrm{Au}\right\}_{2}\left(\mu-\mathrm{dppe}^{2}\right)\right]\left(\mathrm{NTf}_{2}\right)_{2}(\mathrm{e})$. For the sake of clarity most hydrogen atoms, as well as solvent molecules and triflimide counteranions are excluded, while some fragments are represented in wireframe format and thermal ellipsoids are set at 50% probability.

Table S1. Crystal data and structure refinement for compounds $\mathbf{4 b}{ }^{\mathbf{C y p}}, \mathbf{7 a} \mathbf{a}^{\mathbf{M e}}$ and $\mathbf{7 a}{ }^{\mathbf{C y p}}$.

	4b ${ }^{\text {Cyp }}$	$7 \mathrm{a}^{\mathrm{Me}}$	$7 \mathbf{a}^{\text {Cyp }}$
formula	$\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{AuP}_{3} \mathrm{Rh}$	$\begin{gathered} \hline \mathrm{x}\left(\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{AuP}_{3} \mathrm{Rh}\right) \\ +2 \mathrm{x}\left(\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}\right) \end{gathered}$	$\begin{gathered} \hline 2 \mathrm{x}\left(\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{AuP}_{3} \mathrm{Rh}\right)+ \\ 2 \mathrm{x}\left(\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}\right)+ \\ 2 \mathrm{x}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \\ \hline \end{gathered}$
Fw	1038.81	2387.48	2760.04
cryst.size, mm	$0.34 \times 0.07 \times 0.04$	$0.30 \times 0.10 \times 0.05$	$0.18 \times 0.15 \times 0.12$
crystal system	Triclinic	Monoclinic	Triclinic
space group	$P-1$	$P 2_{1 / n}$	$P-1$
a, \AA	9.4923 (10)	25.8321 (8)	14.1319 (13)
b, \AA	17.2690 (18)	8.9867 (3)	17.4134 (15)
c, \AA	18.5760 (18)	40.1396 (18)	23.475 (2)
α, deg	104.345 (3)	90	85.692 (4)
β, deg	98.054 (3)	93.4312 (17)	88.744 (4)
γ, deg	90.238 (3)	90	86.622 (4)
V, \AA^{3}	2918.6 (5)	9301.5 (6)	5749.6 (9)
$T, \mathrm{~K}$	193	193	193
Z	2	4	2
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.182	1.705	1.594
$\mu, \mathrm{mm}^{-1}(\mathrm{MoK} \alpha)$	2.900	3.763	3.055
$F(000)$	1054	4736	2776
absorption corrections	$\begin{gathered} \text { multi-scan, } 0.35- \\ 0.75 \end{gathered}$	$\begin{gathered} \text { multi-scan, } 0.48 \text { - } \\ 0.75 \end{gathered}$	$\begin{aligned} & \text { multi-scan, } 0.52- \\ & 0.75 \end{aligned}$
θ range, deg	2.169-28.260	2.033-25.696	1.808-26.434
no. of rflns measd	564417	49516	28874
$\mathrm{R}_{\text {int }}$	0.1932	0.0651	0.1328
no. of rflns unique	14378	17159	18490
no. of params / restraints	495/ 0	1100 / 3	1337 / 1
$R_{1}(I>2 \sigma(I))^{\text {a }}$	0.0666	0.0656	0.0863
R_{1} (all data)	0.1607	0.0959	0.1510
$w R_{2}(I>2 \sigma(I))$	0.1396	0.1031	0.1661
$w R_{2}$ (all data)	0.1807	0.1109	0.1991
Diff.Fourier.peaks $\min /$ max, e^{-3}	-1.555 / 2.104	-1.591 / 1.420	-2.192/1.781
CCDC number	2223979	2223980	2223981

Table S2. Crystal data and structure refinement for compounds $\mathbf{6 d}$, $\mathbf{7 d}{ }^{\mathbf{M e}}$ and $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{XylNC}) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right)\right]\left(\mathrm{NTf}_{2}\right)$ (labelled as I in the Table)

	6d	7d ${ }^{\text {Me }}$	I
formula	$\mathrm{C}_{45} \mathrm{H}_{37} \mathrm{P}_{2} \mathrm{Rh}$	$\begin{gathered} \mathrm{C}_{69} \mathrm{H}_{64} \mathrm{AuP}_{3} \mathrm{Rh}+ \\ \mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}+ \\ 2 \mathrm{x}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{68} \mathrm{H}_{70} \mathrm{AuNP}_{2} \mathrm{Rh}+ \\ \mathrm{C}_{3} \mathrm{H}_{3.5} \end{gathered}$
Fw	742.59	1722.35	1302.62
cryst.size, mm	$0.19 \times 0.14 \times 0.11$	$0.13 \times 0.1 \times 0.08$	$0.20 \times 0.17 \times 0.12$
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P 2_{1 /} / n$	$P 2{ }_{1} / \mathrm{c}$	C2/c
a, \AA	10.9920 (4)	22.0242 (17)	24.0998 (7)
b, \AA	19.9168 (7)	15.0200 (10)	24.7705 (8)
c, \AA	16.4411 (5)	24.1969 (18)	28.1675 (9)
α, deg	90	90	90
$\beta, \operatorname{deg}$	104.1791 (12)	110.708 (3)	112.8643 (11)
$\gamma, \operatorname{deg}$	90	90	90
V, \AA^{3}	3489.7 (2)	7487.3 (10)	15493.8 (8)
$T, \mathrm{~K}$	193	193	193
Z	4	4	8
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.413	1.528	1.117
$\mu, \mathrm{mm}^{-1}(\mathrm{MoK} \alpha)$	0.613	2.364	2.179
$F(000)$	1528	3472	5284
absorption corrections	multi-scan, $0.68-0.75$	$\begin{gathered} \text { multi-scan, } 0.40- \\ 0.75 \end{gathered}$	$\begin{gathered} \text { multi-scan, } 0.65- \\ 0.75 \end{gathered}$
θ range, deg	2.266-28.314	1.977-26.421	2.258-25.037
no. of rflns measd	63448	93036	146359
$\mathrm{R}_{\text {int }}$	0.0856	0.0723	0.0538
no. of rflns unique	8672	15320	13710
no. of params / restraints	433/9	916/18	692/3
$R_{1}(I>2 \sigma(I))^{\text {a }}$	0.0376	0.0374	0.0364
R_{1} (all data)	0.0700	0.0481	0.0462
$w R_{2}(I>2 \sigma(I))$	0.0718	0.0921	0.1109
$w R_{2}$ (all data)	0.0893	0.0995	0.1187
Diff.Fourier.peaks $\min / \max , \mathrm{e}^{-3}$	-0.616/0.844	-1.678/1.270	-0.820/0.884
CCDC number	2223982	2223983	2223984

Table S30. Crystal data and structure refinement for compounds $\mathbf{6 c}, \mathbf{7 c}^{\mathbf{C y p}}$ and $\left[\left\{\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl}}\right) \mathrm{Au}\right\}_{2}(\mu\right.$-dppe $\left.)\right]\left(\mathrm{NTf}_{2}\right)_{2}$ (labelled as II in the Table).

	6c	$7 c^{\text {Cyp }}$	II
formula	$\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{Rh}$	$\mathrm{C}_{67} \mathrm{H}_{70} \mathrm{AuP}_{3} \mathrm{Rh}+$ $\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{AuP}_{2}$
Fw	616.45	1548.16	850.76
cryst.size, mm	$0.23 \times 0.20 \times 0.10$	$0.10 \times 0.05 \times 0.02$	$0.17 \times 0.13 \times 0.12$
crystal system	Monoclinic	Orthorhombic	Monoclinic
space group	$P 2_{1} / n$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2_{1} / n$
a, \AA	9.2418 (4)	13.0982(4)	13.5273 (5)
b, \AA	8.9282 (4)	17.1018(4)	20.7432 (8)
c, \AA	33.9326 (13)	30.9379(9)	16.8019(7)
α, deg	90	90	90
β, deg	92.2885 (12)	90	91.1697(12)
$\gamma, \operatorname{deg}$	90	90	90
V, \AA^{3}	2783.0 (2)	6930.2(3)	4713.6 (3)
T, K	193	193	193
Z	4	4	4
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.471	1.484	1.199
$\mu, \mathrm{mm}^{-1}(\mathrm{MoK} \alpha)$	0.752		3.214
$F(000)$	1264	3112	1720
absorption corrections	$\begin{gathered} \hline \text { multi-scan, } 0.64 \text { - } \\ 0.75 \end{gathered}$	multi-scan, $0.64-0.74$	multi-scan, $0.62-0.75$
θ range, deg	2.233-27.137	2.36-24.99	1.952-28.298
no. of rflns measd	40098	141393	83091
$\mathrm{R}_{\text {int }}$	0.0450	0.1568	0.0790
no. of rflns unique	6171	13158	11695
no. of params / restraints	343/ 0	789/ 0	447/ 0
$R_{1}(I>2 \sigma(I))^{\text {a }}$	0.0318	0.0459	0.0459
R_{1} (all data)	0.0431	0.0825	0.0695
$w R_{2}(I>2 \sigma(I))$	0.0576	0.0954	0.1099
$w R_{2}$ (all data)	0.0620	0.1173	0.1237
Diff.Fourier.peaks $\min /$ max, $\mathrm{e}^{\circ}{ }^{-3}$	-0.354/0.419	-1.337/1.335	-1.529/3.324
CCDC number	2223985	2223986	2223987

4. Mass spectrometry

Compound $\left[\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right)\right]\left(\mathrm{NTf}_{2}\right)$
MS (electrospray, m/z): calcd for C62H73P2AuP 2 Rh: 1179.36 found 1179.56.

\#	\mathbf{m} / \mathbf{z}	FWHM	\mathbf{S} / \mathbf{N}
1	287.18	0.39	363.8
2	303.16	0.37	78.4
3	383.32	0.34	50.0
4	495.46	0.41	182.1
5	496.43	0.40	65.0
6	541.22	0.49	63.9
7	619.41	0.39	50.1
8	677.45	0.46	480.0
9	678.43	0.40	147.9
10	1179.43	0.51	65.5

$\#$	\mathbf{m} / \mathbf{z}	FWHM	\mathbf{S} / \mathbf{N}
1	961.62	0.39	20.0
2	963.69	0.41	19.6
3	1019.65	0.41	31.4
4	1179.56	0.43	82.3
5	1180.55	0.48	47.1
6	1223.54	0.39	24.9
7	1285.61	0.43	29.7
8	1287.63	0.43	38.3
9	1304.35	0.36	19.4
10	1305.65	0.46	34.2

Compound $\left[\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{8}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{XylNC}) \mathrm{Rh} \rightarrow \mathrm{Au}\left(\mathrm{PCyp}_{2} \mathrm{Ar}^{\mathrm{Xyl2}}\right)\right]\left(\mathrm{NTf}_{2}\right)$
MS (electrospray, m / z): calcd for $\mathrm{C}_{78} \mathrm{H}_{81} \mathrm{AuF}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{RhS}_{2}$: 1680.35 found 1680.87.

5. Variable temperatura van't Hoff study of the equilibrium of 1 c and $2^{\text {Cyp }}$ with 3c ${ }^{\text {Cyp }}$.

Complexes $\mathbf{1 c}$ and $\mathbf{2}^{\text {Cyp }}$ were dissolved in benzene- d_{6} in a J. Young NMR tube. The reaction was monitored for 24 hours by ${ }^{1} \mathrm{H}$ NMR spectroscopy until disappearance of complex $4 \mathrm{c}^{\mathrm{Cyp}}$, rendering a mixture comprising complexes $\mathbf{1 c}, \mathbf{2}^{\text {Cyp }}$ and $\mathbf{3 c}{ }^{\text {Cyp }}$. To study the equilibrium between the precursors and the adduct, the tube was inserted into a temperature-controlled NMR probe and ${ }^{1} \mathrm{H}$ NMR spectra were collected at 5 K intervals from 238 K to 298 K , allowing 5 minutes for equilibration at each temperature. Concentrations were determined by NMR. The equilibrium constant of the reaction was calculated according to the expression:

$$
K_{o b s}=\frac{[3 c]}{[1 c][2]}
$$

The plot of $\ln \left(\mathrm{K}_{\text {obs }}\right)$ as a function of T^{-1} was fit by a line according to the expression:

$$
\ln \left(K_{o b s}\right)=\frac{-\Delta H}{R T}+\frac{\Delta S}{R}
$$

The enthalpy and entropy of the reaction were extracted from the slope and intercept, respectively.

Figure S45. Van't Hoff plot derived from variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of the equilibrium between $\mathbf{1 c}$ and $\mathbf{2}^{\mathbf{C y p}}$ with $\mathbf{3 c}^{\mathbf{C y p}}$ from 298 K to 238 K .

6. Computational details

Calculations were performed at the DFT level with the Gaussian 09 (Revision E.01) program. ${ }^{6}$ The hybrid functional PBE^{7} was used throughout the computational study, and dispersion effects were accounted for by using Grimme's D3 parameter set with Becke-Johnson (BJ) damping. ${ }^{8}$ Geometry optimizations were carried out without geometry constraints, using the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})^{9}$ basis set to represent the C, H, P, O, S, F and N atoms and the Stuttgart/Dresden Effective Core Potential and its associated basis set (SDD) ${ }^{10}$ to describe the Rh and Au atoms. Bulk solvent effects (dichloromethane) were included at the optimization stage with the SMD continuum model. ${ }^{11}$ The stationary points and their nature as minima or saddle points (TS) were characterized by vibrational analysis, which also produced zero-point (ZPE), enthalpy (H), entropy (S) and Gibbs energy (G) data at 298.15 K . The minima connected by a given transition state were determined by perturbing the transition states along the TS coordinate and optimizing to the nearest minimum.

Figure S46. Free energy profile of the direct (left) and stepwise (right) transfer of a hydride from the Cp * to Rh for the Xyl system.

Figure S47. Transition state for the abstraction of a hydride from the $\mathrm{Cp} *$ by the gold center for the Tripp system (TS11, $28.1 \mathrm{kcal} / \mathrm{mol}$).

Figure S48. Transition state for the concerted formation of $\mathrm{Au}-\mathrm{C}$ and $\mathrm{N}-\mathrm{H}$ bonds for the Xyl system (TS12, $41.2 \mathrm{kcal} / \mathrm{mol}$).

7. Referencias

${ }^{1}$ B. Klingert, H. Werner, Chem. Ber., 1983, 116, 1450-1462.
${ }^{2}$ a) M. F. Espada; J. Campos, , J. López-Serrano, M. L. Poveda, E. Carmona, Angew. Chem. Int. Ed. 2015, 54, 15379. b) N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. LópezSerrano, J. Campos, Chem. Eur. J. 2020, 26, 5982.
${ }^{3}$ Z. Naturforsch. 35 b, 689-693 (1980)
${ }^{4}$ a) Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75. b) Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. c) Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.
${ }^{5}$ G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
${ }^{6}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision E.01, Gaussian, Inc.: Wallingford CT, 2013.
${ }^{7}$ J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
${ }^{8}$ S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
${ }^{9}$ a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Phys. Chem. 1972, 56, 2257-2261. b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222. c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. 1982, 77, 36543665.
${ }^{10}$ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123141.
${ }^{11}$ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

