Supporting information

Polarized Au(I)/Rh(I) Bimetallic Pairs Cooperatively Trigger Ligand non-Innocence and Bond Activation

Macarena G. Alférez, Juan J. Moreno, Celia Maya, Jesús Campos*

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla (Spain).

1.	Experimental procedures	2
2.	NMR spectra	10
3.	Crystal structure determinations	32
4.	Mass spectrometry	39
5.	Variable temperatura van't Hoff study of the equilibrium of 9 and 2c with 10c	41
6.	Computational details	42
7.	Referencias	45

1. Experimental procedures

General considerations

All preparations and manipulations were carried out using standard Schlenk and glove-box techniques, under argon or high-purity nitrogen atmosphere, respectively. All solvents were dried, stored over 4 Å molecular sieves, and degassed prior to use. Toluene (C_7H_8) and *n*-pentane (C_5H_{12}) were distilled under nitrogen over sodium. Benzene- d_6 and toluene- d_8 were dried over molecular sieves (4 Å). THF- d_8 was distilled under nitrogen over sodium/benzophenone. [Au(THT)Cl], **1a**¹, **2**^{Me} and **2**^{Cyp} were prepared according to previously reported procedures². Other chemicals were commercially available and used as received. Solution NMR spectra were recorded on Bruker AMX-300, DRX-400 and DRX-500 spectrometers. Spectra were referenced to external SiMe4 (δ : 0 ppm) using the residual proton solvent peaks as internal standards (¹H NMR experiments), or the characteristic resonances of the solvent nuclei (¹³C{¹H} NMR experiments), while ³¹P was referenced to H₃PO₄. Spectral assignments were made by routine one- and two-dimensional NMR experiments where appropriate. For elemental analyses a LECO TruSpec CHN elementary analyzer was utilized. For mass spectroscope we use an Ion Trap Bruker Esquire 6000 with ESI sources.

Synthesis and characterization of new compounds

Compound 1b. Sodium amalgam was prepared by adding sodium (58 mg, 2.5 mmol) to mercury (1.5 mL, 102 mmol) under argon atmosphere. The mixture was suspended in diethyl ether (20 mL) to which a solution of dmpe (0.2 mL, 1.13 mmol) was added first and $[(\eta^5-C_5Me_5)RhCl_2]_2$ (309 mg, 0.5 mmol) in toluene (5 mL) afterwards. The mixture was stirred for 8 hours, after which it was filtered, the solvent evaporated under reduced pressure and the residue extracted with pentane (20 mL). The solution volume was reduced to 5 mL and stored at -78 °C to crystallize. Rhombic pink crystals were obtained after 5 days (750 mg, 60 %). Anal. Calcd. for C₁₆H₃₁P₂Rh: C, 49.5; H, 8.1. Found: C, 49.6; H, 8.0.

¹H NMR (400 MHz, C₆D₆, 25 °C) δ : 2.17 (s, 15H, C₅Me₅), 1.19 (vt, 12H, ²*J*_{HP} = 4 Hz, PMe₂), 1.13 (d, 4H, ²*J*_{HP} = 16 Hz, CH₂). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C) δ : 94.9 (m, *C*₅Me₅), 31.8 (vtd, ¹*J*_{CP} = 27, ²*J*_{CRh} = 4 Hz, CH₂), 20.4 (vt, ¹*J*_{CP} = 9 Hz, PMe₂), 12.4 (C₅*Me*₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C) δ : 42.2 (d, ¹*J*_{PRh} = 220 Hz).

Compound 3b^{Me}. A solid mixture of compounds **1b** (33 mg, 0.085 mmol) and **2**^{Me} (70 mg, 0.085 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. NMR spectroscopy reaction monitoring revealed that formation of **3b**^{Me} was immediate and proceeded quantitatively. The solution was concentrated to half its volume and precipitated with pentane. The orange residue was then filtered and dried under vacuum (77 mg, 64%). Anal. Calcd. for C₄₄H₆₆AuF₆NO₄P₃RhS₂: C, 42.4; H, 5.4; N, 1.1; S, 5.2. Found: C, 41.9; H, 5.2; N, 1.3; S, 5.2.

¹H NMR (500 MHz, C₆D₆, 25 °C) δ : 7.20 (t, 2H, ³*J*_{HH} = 7.7 Hz, H_b), 7.02 (d, 4H, ³*J*_{HH} = 7.7 Hz, H_a), 6.98 (td, 1H, ³*J*_{HH} = 7.6, ⁵*J*_{HP} = 1.6 Hz, H_d), 6.63 (dd, 2H, ³*J*_{HH} = 7.6, ⁴*J*_{HP} = 3.0 Hz, H_c), 2.09 (s, 12H, Me_{Xyl}), 1.76 (d, 4H, ²*J*_{HP} = 12.4 Hz, CH₂), 1.64 (s, 15H, C₅Me₅), 1.25 (d, 6H, ²*J*_{HP} = 9.5 Hz, PMeMe (dmpe)), 1.13 (d, 6H, ²*J*_{HP} = 9.5 Hz, PMeMe(dmpe)), 0.77 (d, 6H, ²*J*_{HP} = 8.6 Hz, PMe₂Ar^{Xyl2}). ¹³C{¹H} NMR (125 MHz, C₆D₆, 25 °C) δ : 144.8 (d, ²*J*_{CP} = 9 Hz, C₃), 141.7 (d, ³*J*_{CP} = 3 Hz, C₂), 135.9 (C₁), 131.5 (d, ¹*J*_{CP} ≈ 40Hz, C₄), 130.5 (overlapped CH_c and CH_d), 128.5 (CH_a), 127.2 (CH_b), 121.3 (q, ¹*J*_{CF} = 324 Hz, CF₃), 98.7 (*C*₅Me₅), 34.1 (CH₂), 22.4 (PMeMe (dmpe)), 21.7 (Me_{Xyl}), 17.7-17.4 (overlapped PMe₂Ar^{Xyl2} and PMeMe (dmpe)), 11.2 (C₅Me₅). ¹⁹F{¹H} NMR (471 MHz, C₆D₆, 25 °C) δ : -78.3. ³¹P{¹H} NMR (202 MHz, C₆D₆, 25 °C) δ : 45.5 (dd, ¹*J*_{PRh} = 154, ³*J*_{PP} = 9 Hz, dmpe), 14.6 (dt, ²*J*_{PRh} = 12, ³*J*_{PP} = 9 Hz, PMe₂Ar^{Xyl2}).

Compound 4b^{Cyp}. A solid mixture of compounds **1b** (21 mg, 0.054 mmol) and **2**^{Cyp} (50 mg, 0.054 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. NMR spectroscopy reaction monitoring revealed that formation of **4b**^{Cyp} was immediate and proceeded quantitatively. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum (40 mg, 30%). To increase purity, compound **4b**^{Cyp} was crystallized by slow diffusion of pentane over a benzene solution to provide

a yellow/brownish crystalline material. Anal. Calcd. for C₅₀H₇₅AuF₆NO₄P₃RhS₂: C, 45.3; H, 5.7; N, 1.1; S, 4.8. Found: C, 44.6; H, 5.7; N, 1.1; S, 4.9.

¹H NMR (400 MHz, C₆D₆, 25 °C) δ: 7.23 (t, 2H, ³*J*_{HH} = 7.4 Hz, H_b), 7.08 to 7.05 (m, 5H, H_a and H_d), 6.68 (brd, 2H, ³*J*_{HH} \approx 7.4 Hz, H_c), 2.18 (m, 2H, H_e), 1.99 (s, 12H, Me_{Xyl}), 1.74 (s, 6H, Me_α), 1.69 (s, 6H, Me_β), 1.65 (m, 8H, H_g), 1.43 (d, 4H, ²*J*_{HP} = 9 Hz, C*H*₂dmpe), 1.35 (m, 8H, H_f), 1.28 (d, 6H, ²*J*_{HP} = 9.8 Hz, P*Me*Me), 1.21 (d, 2H, ²*J*_{HP} = 7.7 Hz, CH₂Au), 1.12 (d, 6H, ²*J*_{HP} = 9.8 Hz, PM*e*Me), -13.6 (td, 1H, ²*J*_{HP} = 34, ¹*J*_{HRh} = 26 Hz, RhH). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C) δ: 148.4.0 (d, ²*J*_{CP} = 8 Hz, C₃), 142.2 (C₂), 136.3 (br s, C₁), 131.7 (br, CH_c), 131.4 (d, ¹*J*_{CP} \approx 30Hz, C₄) 130.8 (CH_d), 127.9 and 127.7 (CH_a and CH_b, overlapped with C₆D₆), 120.9 (q, ¹*J*_{CF} = 324 Hz, CF₃), 98.8 (*C*Me_β), 90.9 (*C*Me_α), 37.8 (d, ¹*J*_{CP} = 9 Hz, CH₂dmpe), 21.4 (Me_{Xyl}), 18.9 (vt, ¹*J*_{CP} = 22 Hz, PM*eMe*), 13.4 (vt, ¹*J*_{CP} = 18 Hz, P*Me*Me), 10.6 and 10.5 (Me_α and Me_β). ¹⁹F{¹H} NMR (376 MHz, C₆D₆, 25 °C) δ: -78.3. ³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C) δ: 57.0 (t, ³*J*_{PP} = 10 Hz).

Compound 1c. Sodium amalgam was prepared by adding sodium (173 mg, 7.5 mmol) to mercury (4.5 mL, 306 mmol) under argon atmosphere. The mixture was suspended in ether (20 mL), dppe (1343 mg, 2.25 mmol) was added first and $[(\eta^5-C_5Me_5)RhCl_2]_2$ (907 mg, 1.4 mmol) in toluene (5 mL) second. The mixture was stirred for 8 hours, after which time was filtrated, the solvent evaporated under reduced pressure and the residue extracted with pentane (20 mL). The solution volume was reduced to 5 mL and stored at -78 °C to crystallize. Rhombic pink crystals were obtained after 5 days (950 mg, 66 %). Anal. Calcd. for C₃₆H₃₉P₂Rh: C, 67.9; H, 6.2. Found: C, 67.9; H, 6.4.

¹H NMR (400 MHz, C₆D₆, 25 °C) δ : 7.68 (m, 8H, *o*-Ph₂), 7.17 (m, 8H, *m*-Ph₂), 7.09 (m, 4H, *p*-Ph₂), 1.85 (d, 4H, ²*J*_{HP} = 19 Hz, CH₂), 1.79 (s, 15H, C₅Me₅). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C) δ : 139.6 (vt, ¹*J*_{CP} = 16 Hz, C_{*ipso*}Ph₂), 132.9 (vt, ²*J*_{CP} = 6 Hz, C_{*o*}Ph₂), 128.3 (overlapped, C_{*m*Ph₂ and C_{*p*Ph₂), 95.4 (m, C₅Me₅), 32.2 (vtd, ¹*J*_{CP} = 27, ²*J*_{CRh} = 2 Hz, CH₂), 10.8 (C₅*Me*₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C) δ : 81.2 (d, ¹*J*_{PRh} = 219 Hz).}}

Compound 3 c^{Me} . A solid mixture of compounds **1**c (38.7 mg, 0.061 mmol) and **2**^{Me} (50 mg, 0.061 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of **3** c^{Me} was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The green residue was then filtered and dried under vacuum (40 mg, 45 %). Anal. Calcd. for C₆₂H₆₆AuF₆NO₄P₃RhS₂: C, 51.0; H, 4.6; N, 1.0; S, 4.4. Found: C, 50.6; H, 4.7; N, 1.2; S, 4.8.

¹H NMR (500 MHz, C₆D₆, 25 °C) δ : 7.57 (m, 4H, *o*-Ph₂), 7.38 (m, 4H, *o*-Ph₂), 7.32 (m, 2H, H_b), 7.13 to 7.03 (m, 16H, overlapping *m*-Ph₂, *p*-Ph₂, H_a), 6.90 (m, 1H, H_d), 6.52 (dd, 2H, ³J_{HH} = 7.3, ⁴J_{HP} = 2.4 Hz, H_c), 2.62 (m, 4H, CH₂(dmpe)), 1.86 (s, 12H, Me_{Xyl}), 1.54 (s, 15H, C₅Me₅), 0.37 (d, 6H, ²J_{HP} = 8.8 Hz, PMe₂). ¹³C{¹H} NMR (125 MHz, C₆D₆, 25 °C) δ : 144.9 (d, ¹J_{CP} = 8 Hz, C₃), 141.2 (d, ¹J_{CP} = 2 Hz, C₂), 137.4 (m, C_{*ipso*}Ph₂), 136.1 (C₁), 132.5 (m, C_{*o*}Ph₂)), 131.5 (m, C_{*m*}Ph₂), 130.5 (overlapped C₄ and CH_c), 130.4 (CH_d), 128.8 (m, C_{*p*}Ph₂), 128.4 (CH_a), 127.2 (CH_b), 121.5 (q, ¹J_{CF} = 324 Hz, CF₃), 100.5 (C₅Me₅), 34.1 (CH₂), 21.4 (Me_{Xyl}), 17.5 (d, ¹J_{CP} = 32 Hz, PMe₂Ar^{Xyl2}), 10.9 (C₅Me₅). ¹⁹F{¹H} NMR (471 MHz, C₆D₆, 25 °C) δ : -77.9. ³¹P{¹H} NMR (202 MHz, C₆D₆, 25 °C) δ : 74.1 (dd, ¹J_{PRh} = 164, ³J_{PP} = 6 Hz), 12.1 (q, ¹J_{PRh} = ³J_{PP} = 6 Hz).

Compound 6a. Following a previously reported procedure,³ (C₉H₇)Li (120 mg, 0.962 mmol) was added to a solution of [RhCl(COE)₂]₂ (332 mg, 0.461 mmol) in toluene (10 mL). The solution was stirred at room temperature overnight, filtered through celite and solvent was is removed under vacuum. PMe₃ (1.25 mL, 1.23 mmol) was slowly added to a solution of the resulting product (268 mg, 0.616 mmol) in THF at -80 °C, stirring overnight. Solvent was removed under vacuum and the resulting green solid was coevaporated with pentane (329 mg, 72%).

Compound 7a^{Me}. A solid mixture of compounds **6a** (32 mg, 0.085 mmol) and **2^{Me}** (70 mg, 0.085 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of **7a^{Me}** was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum (58 mg, 57 %). Anal. Calcd. for C₄₁H₅₃AuF₆NO₄P₃RhS₂: C, 41.2; H, 4.5; N, 1.2; S, 5.4. Found: C, 41.0; H, 4.3; N, 1.2; S, 5.5.

¹H NMR (500 MHz, C₆D₆, 25 °C) δ : 7.20 (m, 2H, H_b), 7.04 (m, 4H, H_a), 6.93-6.87 (m, 5H, overlapping Ind and H_d), 6.65 (dd, 2H, ³J_{HH} = 7.6, ⁴J_{HP} = 3.3 Hz, H_c), 5.79 (m, 1 H, Ind), 4.89

(m, 2H, Ind), 2.09 (s, 12H, Me_{Xyl}), 1.07 (vt, dar *J* del vt, 18H, PMe₃), 0.88 (d, 6H, ${}^{2}J_{HP} = 9.6$ Hz, P*Me*₂Ar^{Xyl2}). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C₆D₆, 25 °C) δ : 145.9 (br , C₃), 140.5 (d ${}^{3}J_{CP} = 9$ Hz, C₂), 135.9 (C₁), 131.9 (CH_d), 130.8 (CH_c), 128.8 (d, {}^{1}J_{CP} = 24 Hz, C₄), 127.9 and 127.8 (CH_a and CH_b, overlapped with C₆D₆), 124.9 (Ind), 119.6 (q, {}^{1}J_{CF} = 326 Hz, CF₃), 115.8 (Ind), 94.6 (Ind), 82.8 (Ind), 74.0 (Ind), 22.5 (m, PMe₃), 21.3 (Me_{Xyl}), 16.3 (d, {}^{1}J_{CP} = 16 Hz, P*Me*₂Ar^{Xyl2}). ${}^{19}F{}^{1}H{}$ NMR (471 MHz, C₆D₆, 25 °C) δ : -78.4. ${}^{31}P{}^{1}H{}$ NMR (202 MHz, C₆D₆, 25 °C) δ : 4.6 (d, ${}^{2}J_{PRh} = 18$ Hz), -3.9 (d, ${}^{1}J_{PRh} = 158$ Hz).

Compound 7a^{Cyp}. A solid mixture of compounds **6a** (40 mg, 0.107 mmol) and **2**^{Cyp} (100 mg, 0.107 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of **7a**^{Cyp} was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The green residue was then filtered and dried under vacuum (80 mg, 57 %). Anal. Calcd. for C₄₉H₆₇AuF₆NO₄P₃RhS₂: C, 45.1; H, 5.2; N, 1.1; S, 5.9. Found: C, 45.1; H, 5.0; N, 1.3; S, 5.8.

¹H NMR (500 MHz, C₆D₆, 25 °C) δ : 7.12 (m, 2H, H_b), 6.99 (m, 4H, H_a), 6.94 to 6.91 (m, 5H, H_d and Ind), 6.48 (dd, 2H, ³*J*_{HH} = 7.5, ⁴*J*_{HP} = 3.3 Hz, H_c), 5.75 (m, 1H, Ind), 4.86 (m, 2H, Ind), 2.30 (m, 2H, H_e), 1.99 (s, 12H, Me_{Xyl}), 1.65 to 1.57 (m, 8H, H_f), 1.42 (m, 8H, H_g), 1.13 (vt, 18H, PMe₃). ¹³C{¹H} NMR (125 MHz, C₆D₆, 25 °C) δ : 147.5 (d,²*J*_{CP} = 9 Hz, C₃), 142.1 (d ³*J*_{CP} = 4 Hz, C₂), 137.5 (C₁), 132.7 (d,¹*J*_{CP} = 30 H, C₄), 132.3 (CH_d), 131.9 (CH_c), 128.9 (CH_a), 128.1 (CH_b), 125.2 (Ind), 121.3 (q, ¹*J*_{CF} = 326 Hz, CF₃), 119.1 (Ind), 116.5 (Ind), 94.2 (Ind), 73.3 (Ind), 39.1 (d, ¹*J*_{CP} = 28 Hz, CH_e), 34.1 (CH_f), 31.9 (CH_g), 21.3 (Me_{Xyl}), 21.5 (m, PMe₃). ¹⁹F{¹H} NMR (471 MHz, C₆D₆, 25 °C) δ : -78.3. ³¹P{¹H} NMR (202 MHz, C₆D₆, 25 °C) δ : 43.3 (d, ²*J*_{PRh} = 19 Hz), -6.2 (d, ¹*J*_{PRh} = 159 Hz).

Compound 6d. $(C_9H_7)Li$ (360 mg, 2.8 mmol) is added to a solution of $[RhCl(COE)_2]_2$ (1 g, 1.4 mmol) in toluene (10 mL), stirred at room temperature overnight and filtered through celite. The solvent was removed under vacuum and PMe₃ (738 mg, 2.8 mmol) was slowly added to a solution of the resulting product (600 mg, 1.4 mmol) in THF at -80 °C, stirring the solution upon warming to room temperature and heating at 60 °C overnight. Solvent was removed under vacuum and the

resulting red solid was coevaporated with pentane (840 mg, 84 %). ¹H NMR resonances are in agreement with prior literature data(REF).

³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C) δ : 50.9 (d, ²*J*_{PRh} = 223 Hz).

Compound 7d^{Me}. A solid mixture of compound **6d** (61 mg, 0.085 mmol) and 2^{Me} (70 mg, 0.085 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of **7d^{Me}** was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The yellow residue was then filtered and dried under vacuum (40 mg, 31 %). Anal. Calcd. for C₇₁H₆₅AuF₆NO₄P₃RhS₂: C, 54.4; H, 4.2; N, 0.9; S, 4.1. Found: C, 54.4; H, 4.2; N, 1.0; S, 4.2.

¹H NMR (500 MHz, THF- d_8 , 25 °C) δ : 7.74 (m, 1H, H_d), 7.44 to 7.41 (m, 8H, overlapped *p*-Ph₃ and H_b), 7.23 to 7.20 (m, 18H, overlapped *m*-Ph₃, H_c and H_a), 7.06 to 7.01 (m, 3H, overlapping Ind), 6.90 (m, 12H, *o*-Ph₃), 5.83 (m, 2H, Ind), 5.00 (m, 2H, Ind), 2.22 (s, 12 H, Me_{Xyl}), 0.77 (d, 6H, ²J_{HP} = 10.0 Hz, PMe₂Ar^{Xyl2}). ¹³C{¹H} NMR (125 MHz, THF- d_8 , 25 °C) δ : 145.3 (d, ²J_{CP} = 9 Hz, C₃), 141.3 (d, ³J_{CP} = 4 Hz, C₂), 136.4 (C₁), 135.8 (d, ¹J_{CP} = 47 Hz, C₄), 133.6 (t, ²J_{CP} = 5 Hz, C_oPh₃), 131.8 (CH_d), 131.3 (d, ³J_{CP} = 8 Hz, CH_c), 130.2 (C_pPh₃), 128.4 (CH_b), 128.1 (t, ³J_{CP} = 5 Hz, C_mPh₃; overlapped with CH_a), 127.9 (Ind), 120.2 (Ind), 119.9 (q, ¹J_{CF} = 330 Hz, CF₃), 94.9 (br, Ind), 79.6 (br, Ind), 21.5 (Me_{Xyl}), 17.4 (d, ¹J_{CP} = 35 Hz, PMe₂Ar^{Xyl2}). ¹⁹F{¹H} NMR (471 MHz, THF- d_8 , 25 °C) δ : -78.3. ³¹P{¹H} NMR (202 MHz, THF- d_8 , 25 °C) δ : 40.1 (d, ¹J_{PRh} = 168 Hz), 1.6 (d, ¹J_{PRh} = 15 Hz).

Compound 6c (C₉H₇)Li (360 mg, 2.8 mmol) is added to a solution of [RhCl(COE)₂]₂ (1 g, 1.4 mmol) in toluene (10 mL), stirred at room temperature overnight and filtered through celite. Solvent was removed under vacuum and dppe (273 mg, 0.69 mmol) was slowly added to a solution of the resulting product (300 mg, 0.69 mmol) in THF (5 mL) at -80 °C, stirring the solution upon warming to room temperature and heating at 60 °C overnight. Solvent was removed under vacuum yielding a yellow solid (320 mg, 77 %). Anal. Calcd. for C₃₅H₃₁P₂Rh: C, 68.2; H, 5.1. Found: C, 68.2; H, 5.4.

¹H NMR (500 MHz, C₆D₆, 25 °C) δ : 7.45 (m, 8H, *o*-Ph₂), 7.11 (m, 8H, *m*-Ph₂), 7.07 (m, 4H, *p*-Ph₂), 7.05 to 6.92 (m, 4H, Ind), 6.14 (m, 1H, Ind), 5.52 (m, 2H, Ind), 1.63 (d, 4H, ²*J*_{HP} = 18 Hz, CH₂).¹³C{¹H} NMR (125 MHz, C₆D₆, 25 °C) δ : 139.9 (m, C_{*ipso*}Ph₂), 132.6 (m, C_{*o*}Ph₂), 128.8 (C_{*p*}Ph₂), 127.7 (overlapped with C₆D₆, C_{*m*}Ph₂) 120.5 (Ind), 117.2 (Ind), 116.5 (Ind), 95.1 (m, Ind), 73.1 (m, Ind), 28.9 (vt, ¹*J*_{CP} = 25 Hz, CH₂). ³¹P{¹H} NMR (202 MHz, C₆D₆, 25 °C) δ : 75.9 (d, ¹*J*_{PRh} = 223 Hz).

Compound 7c^{Cyp}. A solid mixture of compound **6c** (10 mg, 0.0816 mmol) and **2**^{Cyp} (8 mg, 0.0816 mmol) was dissolved in toluene (5 mL) and stirred at room temperature for 5 minutes. Reaction monitoring revealed that formation of **7c**^{Cyp} was immediate and proceeded quantitatively by NMR spectroscopy. The solution was concentrated to half volume and precipitated with pentane. The brown residue was then filtered and dried under vacuum (57.5 mg, 57 %). Anal. Calcd. for $C_{69}H_{70}AuF_6NO_4P_3RhS_2$: C, 53.6; H, 4.6; N, 0.9; S, 4.4. Found: C, 53.6; H, 4.3; N, 1.1; S, 4.5.

¹H NMR (400 MHz, THF- d_8 , 25 °C) δ :7.88 (br, 2H, Hb), 7.59 (br, 4H, Ha), 7,39 (m, 1H, Hd), 7.28 (m, 5H, overlapped *p*-PPh₃ and Ind), 7.24 (m, 6H, PPh₃), 7.15 (m, 10H, PPh₃), 7.07 (m,1H, Ind), 6.92 (m, 2H, H_c), 6.83 (m, 1H, Ind), 6.64 (m, 2H, Ind), 6.24 (m, 2H, Ind), 5.92 (br, 2H, Ind), 2.34 (s, 12H, Me_{Xyl}), 2.23 (m, 2H, He), 2.12 (m, 4H, CH_{2dppe}), 1.54 (m, 8H, Hf), 1.39 (m, 8H, Hg). ¹³C{¹H} NMR (100 MHz, THF- d_8 , 25 °C) δ : 147.1 (C3) , 142.4 (CPPh₃), 137.4 (C2), 128.7 (overlapped PPh₃, Ind, CH_b, CH_a), 127.9 (overlapped PPh₃, CH_c, CH_d), 125.1 (overlapped PPh₃, Ind), 118.9 (Ind), 117.4 (Ind), 39.4 (Ce), 33.7 (Cf), 26.3 (Cg), 20.5 (overlapped CH_{2dppe} and Me_{Xyl}).³¹P{¹H} NMR (162 MHz, THF- d_8 , 25 °C) δ : 74.7 (d, , ¹J_{PRh} = 161 Hz), 47.0 (d, ³J_{PP} = 18Hz).

X-H (X = H, C, O, N) bond activation studies using compounds of Rh and Au.

Compound 5b. NH_4PF_6 (42 mg, 0.258 mmol) was added to a solution of **1b** (100 mg, 0.258 mmol) in THF (10 mL) and stirred for 1 hour. Concentration to half volume and precipitation

with pentane (20 mL) yielded a solid brown residue (77 mg, 77%). Anal. Calcd. for $C_{16}H_{32}P_2Rh$: C, 49.4; H, 8.3. Found: C, 49.6; H, 8.4.

¹H NMR (400 MHz, THF- d_8 , 25 °C) δ : 2.02 (s, 15H, C₅Me₅), 1.92 to 1.75 (br m, 4H, CH₂), 1.62 (dd, 12H, ${}^{3}J_{\text{HRh}} = 15.0$, ${}^{2}J_{\text{HP}} = 11.5$ Hz, PMe₂), -13.60 (dt, 1H, ${}^{2}J_{\text{HP}} = 31.9$, ${}^{1}J_{\text{HRh}} = 27.8$ Hz, RhH). ¹³C{¹H} NMR (100 MHz, THF- d_8 , 25 °C) δ : 94.9 (C_5 Me₅), 28.8 (m, CH₂), 18.8 and 13.6 (m, PMe₂), 9.72 (C₅Me₅). ³¹P{¹H} NMR (162 MHz, THF- d_8 , 25 °C) δ : 45.9 (d, ${}^{1}J_{\text{PRh}} = 134$ Hz, dmpe), -144.2 (q, ${}^{1}J_{\text{PF}} = 710$ Hz PF₆)

Compound 5c. NH₄PF₆ (26 mg, 0.157 mmol) was added to a solution of **1c** (100 mg, 0.157 mmol) in THF (10 mL) and stirred for 1 hour. Concentration to half volume and precipitation with pentane (20 mL) yielded a solid brown residue (73 mg, 73%). Anal. Calcd. for $C_{36}H_{40}P_2Rh$: C, 67.8; H, 6.3. Found: C, 67.5; H, 6.7.

¹H NMR (400 MHz, THF-d₈, 25 °C) δ : 7.74, 7.65, 7.61, 7.45 (m, 20H, overlapped *m*-Ph₂, *o*-Ph₂, *p*-Ph₂), 2.56 (d, 4H, ²J_{HP} = 18.3 Hz, CH₂), 1.60 (s, 15H, C₅Me₅), -12.26 (m, RhH). ¹³C{¹H} NMR (100 MHz, THF-d₈, 25 °C) δ : 132.9, 131.4 and 128.9 (C_oPh₂/C_mPh₂/C_pPh₂), 130.0 (d, ¹J_{CP} = 43 Hz, C_{ipso}Ph₂), 132.9 (vt, ³J_{CP} = 6 Hz, C_oPh₂), 128.3 (C_pPh₂), 95.0 (C₅Me₅), 31.9 (vtd, ¹J_{CP} = 27, ²J_{CRh} = 2 Hz, CH₂), 10.7 (C₅Me₅). ³¹P{¹H} NMR (162 MHz, THF-d₈, 25 °C) δ : 73.5 (d, ¹J_{PRh} = 139 Hz, dppe), -144.2 (q, ¹J_{PF} = 690 Hz PF₆)

Compound 8. PPh₃ (5.62 mg, 0.0.21 mmol) was added to a solution of gold complex (20 mg, 0.021 mmol) in benzene, and stirred for 5 minutes. Solvent was removed under vacuum to yield the desired product (10 mg, 40%).

¹H NMR (400 MHz, THF- d_8 , 25 °C) δ : 7.41 to 7.33 (br t, PPh₃), 7.27 to 7.16 (m, PPh₃), 7.06 to 6.9 (m, PPh₃), 6.83 (d, 4H, ${}^{3}J_{\text{HH}} = 7.6$ Hz, H_a), 6.61 (br, 1H, H_d) 6.54 (br d, 2H, ${}^{3}J_{\text{HH}} = 7.6$ Hz, H_c), 2.44 to 2.31 (m, 2H, PCH), 1.98 (s, 12H, Me_{Xyl}), 1.89 to 1.52 (m, 16H, CH₂). ${}^{13}\text{C}{}^{1}\text{H}$ NMR (100 MHz, THF- d_8 , 25 °C) δ : 134.1 (PPh₃), 132.3 (PPh₃), 131.9 (CH_c), 128.3 (CH_a), 37.9 (d, ${}^{1}J_{\text{CP}} = 29$ Hz, PCH), 25.7 (d, ${}^{2}J_{\text{CP}} = 10$ Hz, CH₂), 25.6 (d, ${}^{3}J_{\text{CP}} = 11$ Hz, CH₂), 21.6 (Me_{Xyl}). ${}^{31}\text{P}{}^{1}\text{H}$ NMR (162 MHz, THF- d_8 , 25 °C) δ : 59.4 (d, ${}^{1}J_{\text{PP}} = 309$ Hz), 44.3 (d, ${}^{1}J_{\text{PP}} = 309$ Hz).

2. NMR spectra

Figure S2. ¹³C{¹H} NMR of complex **1b**.

57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 2: f1(ppm)

Figure S3. ³¹P NMR of complex 1b.

Figure S4. ¹H NMR of complex 3b^{Me}.

Figure S5. ¹³C NMR of complex 3b^{Me}.

Figure S6. ¹⁹F NMR of complex 3b^{Me}.

Figure S7. ³¹P NMR of complex 3b^{Me}.

Figure S8. ¹H NMR of complex 4b^{Cyp}.

Figure S9. ¹³C NMR of complex 4b^{Cyp}.

Figure S10. 19 F NMR of complex $4b^{Cyp}$.

Figure S11. ³¹P NMR of complex 4b^{Cyp}.

Figure S12. ¹H NMR of complex 1c.

Figure S14. ³¹P{¹H} NMR of complex **1c**.

Figure S15. ¹H NMR of complex 3c^{Me}.

Figure S16. ¹³C NMR of complex 3c^{Me}.

Figure S17. ¹⁹F NMR of complex 3c^{Me}.

Figure S18. ³¹P{¹H} NMR of complex 3c^{Me}.

Figure S20. ¹³C NMR of complex 7a^{Me}.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Figure S21. ¹⁹F NMR of complex 7a^{Me}.

Figure S22. ³¹P NMR of complex 7a^{Me}.

ò -10

Figure S23. ¹H NMR of complex $7a^{Cyp}$.

Figure S24. ¹³C NMR of complex 7a^{Cyp}.

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Figure S25. ¹⁹F NMR of complex 7a^{Cyp}.

Figure S26. ³¹P NMR of complex 7a^{Cyp}.

40 20 f1 (ppm) 220 -160 200 180 160 140 120 100 80 60 0 -20 -40 -60 -80 -100 -120 -140

Figure S27. ³¹P NMR of complex 6d.

Figure S28. ¹H NMR of complex 7d^{Me}.

Figure S29. ¹³C NMR of complex 7d^{Me}.

Figure S30. ¹⁹F NMR of complex 7d^{Me}.

Figure S31. ³¹P NMR of complex 7d^{Me}.

Figure S32. ¹H NMR of complex 6c. There is residual pentane.

Figure S34. ³¹P NMR of complex 6c.

Figure S36. ¹³C NMR of complex 7c^{Cyp}.

Figure S40. ³¹P NMR of complex 5b.

Figure S41. ¹H NMR of complex 5c.

Figure S42. ¹³C NMR of complex 5c.

Figure S43. ³¹P NMR of complex 5c.

3. Crystal structure determinations

Crystallographic details. Low-temperature diffraction data were collected on a D8 Quest APEX-III single crystal diffractometer with a Photon III detector and a IµS 3.0 microfocus X-ray source $(\mathbf{4b}^{Cyp}, \mathbf{7a}^{Me}, \mathbf{7a}^{Cyp}, \mathbf{6d}, \mathbf{7d}^{Me}, \mathbf{6c}, \mathbf{7c}^{Cyp}, [(\eta^5-C_9H_8)(PPh_3)(XyINC)Rh \rightarrow Au(PCyp_2Ar^{Xyl2})](NTf_2)$ and $[\{(PCyp_2Ar^{Xyl2})Au\}_2(\mu-dppe)](NTf_2)_2)$ at the Instituto de Investigaciones Químicas, Sevilla. Data were collected by means of ω and φ scans using monochromatic radiation λ (Mo K α 1) = 0.71073 Å. The diffraction images collected were processed and scaled using APEX-III software. Using Olex2⁴, the structures $\mathbf{4b}^{Cyp}$, $\mathbf{7c}^{Cyp}$, and $[\{(PCyp_2Ar^{Xyl2})Au\}_2(\mu-dppe)](NTf_2)_2)$ were solved with SHELXT and the structures $\mathbf{7a}^{Me}$, $\mathbf{6c}$, $\mathbf{6d}$, $\mathbf{7a}^{Cyp}$, $\mathbf{7d}^{Me}$, and $[(\eta^5-C_9H_8)(PPh_3)(XyINC)Rh \rightarrow Au(PCyp_2Ar^{Xyl2})](NTf_2)$ were solved with olex2.solve1.3 and all was refined against F² on all data by full-matrix least squares with SHELXL.⁵ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model, excluding H bonded to Rh in complex $\mathbf{4b}^{Cyp}$, which was obtained from the Fourier map. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups).

PLATON/SQUEEZE was used for the refinement of $4b^{Cyp}$ and $7c^{Cyp}$. When the SQUEEZE recycling converges, 339 electrons were recovered from the difference density map in the unit cell of $4b^{Cyp}$. This is consistent with the presence of one triflimidate anion $[C_2F_6NO_4S_2^-]$ and one THF molecule per asymmetric unit which account for $(137+28)x^2 = 330$ electrons per unit cell.

In the case of the structure $7a^{Cyp}$, 215 electrons were found in a void per unit cell. This is consistent with the presence of one toluene molecule (50 electrons) per asymmetric unit.

A summary of the fundamental crystal and refinement data are given in Table S1, S2 and S3. Atomic coordinates, anisotropic displacement parameters and bond lengths and angles can be found in the cif files, which have been deposited in the Cambridge Crystallographic Data Centre with no. 2223979 – 2223987. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

a)

b)

c)

d)

Figure S44. ORTEP of compounds **6d** (a), $[(\eta^5-C_9H_7)(PPh_3)(XyINC)Rh \rightarrow Au(PCyp_2Ar^{Xyl2})]$ (NTf₂) (b), **6c** (c), **7c**^{Cyp} (d) and $[\{(PCyp_2Ar^{Xyl2})Au\}_2(\mu-dppe)](NTf_2)_2$ (e). For the sake of clarity most hydrogen atoms, as well as solvent molecules and triflimide counteranions are excluded, while some fragments are represented in wireframe format and thermal ellipsoids are set at 50% probability.

	4b ^{Cyp}	7a ^{Me}	7a ^{Cyp}
formula	$C_{48}H_{69}AuP_3Rh$	$2x(C_{39}H_{52}AuP_3Rh)$	$2x(C_{47}H_{64}AuP_{3}Rh) +$
		$+2x(C_2F_6NO_4S_2)$	$2\mathbf{x}(\mathbf{C}_{2}\mathbf{F}_{6}\mathbf{NO}_{4}\mathbf{S}_{2}) +$
Fw	1038.81	2387.48	$2x(C_6H_6)$ 2760.04
cryst size mm	$0.34 \times 0.07 \times 0.04$	$0.30 \times 0.10 \times 0.05$	$0.18 \times 0.15 \times 0.12$
crystal system	Triclinic	Monoclinic	0.10 × 0.15 × 0.12
		P2./n	
	1 - 1	12/n	1 - 1
a, A	9.4923 (10)	23.0321 (0)	17 4124 (15)
<i>D</i> , A	17.2090 (18)	8.9807 (3)	17.4134 (13)
<i>C</i> , A	18.5760 (18)	40.1396 (18)	23.475 (2)
α , deg	104.345 (3)	90	85.692 (4)
β , deg	98.054 (3)	93.4312 (17)	88.744 (4)
γ, deg	90.238 (3)	90	86.622 (4)
<i>V</i> , A ³	2918.6 (5)	9301.5 (6)	5749.6 (9)
<i>Т</i> , К	193	193	193
Z	2	4	2
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.182	1.705	1.594
μ , mm ⁻¹ (MoK α)	2.900	3.763	3.055
<i>F</i> (000)	1054	4736	2776
absorption	multi-scan, 0.35 –	multi-scan, 0.48 –	multi-scan, 0.52 –
corrections	0.75	0.75	0.75
θ range, deg	2.169 - 28.260	2.033 - 25.696	1.808 - 26.434
no. of rflns measd	564417	49516	28874
R _{int}	0.1932	0.0651	0.1328
no. of rflns unique	14378	17159	18490
no. of params /	495/0	1100 / 3	1337 / 1
restraints			
$R_1 (I > 2\sigma(I))^{a}$	0.0666	0.0656	0.0863
R_1 (all data)	0.1607	0.0959	0.1510
$wR_2 (I > 2\sigma(I))$	0.1396	0.1031	0.1661
wR_2 (all data)	0.1807	0.1109	0.1991
Diff.Fourier.peaks	-1.555 / 2.104	-1.591 / 1.420	-2.192/ 1.781
min/max, eÅ ⁻³			
CCDC number	2223979	2223980	2223981

Table S1. Crystal data and structure refinement for compounds $4b^{Cyp}$, $7a^{Me}$ and $7a^{Cyp}$.

	6d	7d ^{Me}	Ι
formula	$C_{45}H_{37}P_2Rh$	$\begin{array}{c} C_{69}H_{64}AuP_{3}Rh + \\ C_{2}F_{6}NO_{4}S_{2} + \\ 2x(C_{6}H_{6}) \end{array}$	$C_{68}H_{70}AuNP_2Rh + C_3H_{3.5}$
Fw	742.59	1722.35	1302.62
cryst.size, mm	$0.19 \times 0.14 \times 0.11$	0.13× 0.1× 0.08	0.20× 0.17× 0.12
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$P2_{1}/n$	$P2_{l}/c$	<i>C2/c</i>
<i>a</i> , Å	10.9920 (4)	22.0242 (17)	24.0998 (7)
<i>b</i> , Å	19.9168 (7)	15.0200 (10)	24.7705 (8)
<i>c</i> , Å	16.4411 (5)	24.1969 (18)	28.1675 (9)
α, deg	90	90	90
β , deg	104.1791 (12)	110.708 (3)	112.8643 (11)
γ, deg	90	90	90
$V, Å^3$	3489.7 (2)	7487.3 (10)	15493.8 (8)
<i>Т</i> , К	193	193	193
Ζ	4	4	8
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.413	1.528	1.117
μ , mm ⁻¹ (MoK α)	0.613	2.364	2.179
<i>F</i> (000)	1528	3472	5284
absorption corrections	multi-scan, 0.68 – 0.75	multi-scan, 0.40 – 0.75	multi-scan, 0.65 – 0.75
θ range, deg	2.266-28.314	1.977–26.421	2.258-25.037
no. of rflns measd	63448	93036	146359
R _{int}	0.0856	0.0723	0.0538
no. of rflns unique	8672	15320	13710
no. of params / restraints	433/ 9	916/18	692/3
$R_1 (I > 2\sigma(I))^{a}$	0.0376	0.0374	0.0364
R_1 (all data)	0.0700	0.0481	0.0462
$wR_2 (I > 2\sigma(I))$	0.0718	0.0921	0.1109
wR_2 (all data)	0.0893	0.0995	0.1187
Diff.Fourier.peaks min/max, eÅ ⁻³	-0.616/0.844	-1.678/1.270	-0.820/0.884
CCDC number	2223982	2223983	2223984

Table S2. Crystal data and structure refinement for compounds **6d**, **7d**^{Me} and $[(\eta^5 - C_9H_7)(PPh_3)(XyINC)Rh \rightarrow Au(PCyp_2Ar^{Xyl2})]$ (NTf₂) (labelled as **I** in the Table)

	6с	7c ^{Cyp}	II
formula	$C_{35}H_{31}P_2Rh$	$\frac{C_{67}H_{70}AuP_{3}Rh+}{C_{2}F_{6}NO_{4}S_{2}}$	$C_{45}H_{51}AuP_2$
Fw	616.45	1548.16	850.76
cryst.size, mm	$0.23 \times 0.20 \times 0.10$	$0.10 \times 0.05 \times 0.02$	$0.17 \times 0.13 \times 0.12$
crystal system	Monoclinic	Orthorhombic	Monoclinic
space group	$P2_1/n$	$P2_{1}2_{1}2_{1}$	$P2_1/n$
<i>a</i> , Å	9.2418 (4)	13.0982(4)	13.5273 (5)
<i>b</i> , Å	8.9282 (4)	17.1018(4)	20.7432 (8)
<i>c</i> , Å	33.9326 (13)	30.9379(9)	16.8019(7)
α, deg	90	90	90
β , deg	92.2885 (12)	90	91.1697(12)
γ, deg	90	90	90
V, Å ³	2783.0 (2)	6930.2(3)	4713.6 (3)
<i>Т</i> , К	193	193	193
Ζ	4	4	4
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.471	1.484	1.199
μ , mm ⁻¹ (MoK α)	0.752		3.214
<i>F</i> (000)	1264	3112	1720
absorption corrections	multi-scan, 0.64 – 0.75	multi-scan, 0.64 – 0.74	multi-scan, 0.62 – 0.75
θ range, deg	2.233-27.137	2.36–24.99	1.952-28.298
no. of rflns measd	40098	141393	83091
R _{int}	0.0450	0.1568	0.0790
no. of rflns unique	6171	13158	11695
no. of params / restraints	343/ 0	789/ 0	447/ 0
$R_1 (I > 2\sigma(I))^{a}$	0.0318	0.0459	0.0459
R_1 (all data)	0.0431	0.0825	0.0695
$wR_2 (I > 2\sigma(I))$	0.0576	0.0954	0.1099
wR_2 (all data)	0.0620	0.1173	0.1237
Diff.Fourier.peaks min/max, eÅ ⁻³	-0.354/0.419	-1.337/1.335	-1.529/3.324
CCDC number	2223985	2223986	2223987

Table S30. Crystal data and structure refinement for compounds **6c**, **7c**^{Cyp} and $[{(PCyp_2Ar^{Xyl2})Au}_2(\mu$ -dppe)](NTf₂)₂ (labelled as **II** in the Table).

4. Mass spectrometry

Compound $[(\eta^5-C_9H_7)(PPh_3)(C_2H_4)Rh \rightarrow Au(PCyp_2Ar^{Xyl_2})](NTf_2)$

MS (electrospray, m/z): calcd for C62H73P2AuP₂Rh: 1179.36 found 1179.56.

Compound $[(\eta^5-C_9H_8)(PPh_3)(XylNC)Rh \rightarrow Au(PCyp_2Ar^{Xyl2})](NTf_2)$

MS (electrospray, m/z): calcd for $C_{78}H_{81}AuF_6N_2O_4P_3RhS_2$: 1680.35 found 1680.87.

5. Variable temperatura van't Hoff study of the equilibrium of 1c and 2^{Cyp} with 3c^{Cyp}.

Complexes 1c and 2^{Cyp} were dissolved in benzene- d_6 in a J. Young NMR tube. The reaction was monitored for 24 hours by ¹H NMR spectroscopy until disappearance of complex $4c^{Cyp}$, rendering a mixture comprising complexes 1c, 2^{Cyp} and $3c^{Cyp}$. To study the equilibrium between the precursors and the adduct, the tube was inserted into a temperature-controlled NMR probe and ¹H NMR spectra were collected at 5 K intervals from 238 K to 298 K, allowing 5 minutes for equilibration at each temperature. Concentrations were determined by NMR. The equilibrium constant of the reaction was calculated according to the expression:

$$K_{obs} = \frac{[3c]}{[1c][2]}$$

The plot of $ln(K_{obs})$ as a function of T^{-1} was fit by a line according to the expression:

$$\ln(K_{obs}) = \frac{-\Delta H}{RT} + \frac{\Delta S}{R}$$

The enthalpy and entropy of the reaction were extracted from the slope and intercept, respectively.

Figure S45. Van't Hoff plot derived from variable temperature ¹H NMR spectra of the equilibrium between 1c and 2^{Cyp} with $3c^{Cyp}$ from 298 K to 238 K.

6. Computational details

Calculations were performed at the DFT level with the Gaussian 09 (Revision E.01) program.⁶ The hybrid functional PBE0⁷ was used throughout the computational study, and dispersion effects were accounted for by using Grimme's D3 parameter set with Becke–Johnson (BJ) damping.⁸ Geometry optimizations were carried out without geometry constraints, using the 6-31G(d,p)⁹ basis set to represent the C, H, P, O, S, F and N atoms and the Stuttgart/Dresden Effective Core Potential and its associated basis set (SDD)¹⁰ to describe the Rh and Au atoms. Bulk solvent effects (dichloromethane) were included at the optimization stage with the SMD continuum model.¹¹ The stationary points and their nature as minima or saddle points (TS) were characterized by vibrational analysis, which also produced zero-point (ZPE), enthalpy (H), entropy (S) and Gibbs energy (G) data at 298.15 K. The minima connected by a given transition state were determined by perturbing the transition states along the TS coordinate and optimizing to the nearest minimum.

Figure S46. Free energy profile of the direct (left) and stepwise (right) transfer of a hydride from the Cp* to Rh for the Xyl system.

Figure S47. Transition state for the abstraction of a hydride from the Cp* by the gold center for the Tripp system (TS11, 28.1 kcal/mol).

Figure S48. Transition state for the concerted formation of Au–C and N–H bonds for the Xyl system (TS12, 41.2 kcal/mol).

7. Referencias

¹ B. Klingert, H. Werner, Chem. Ber., 1983, 116, 1450-1462.

² a) M. F. Espada; J. Campos, J. López-Serrano, M. L. Poveda, E. Carmona, *Angew. Chem. Int. Ed.* **2015**, *54*, 15379. b) N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. López-Serrano, J. Campos, *Chem. Eur. J.* **2020**, *26*, 5982.

³ Z. Naturforsch. 35 b, 689-693 (1980)

⁴ a) Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75. b) Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. c) Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

⁵ G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

⁶ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision E.01, Gaussian, Inc.: Wallingford CT, **2013**.

⁷ J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865–3868.

⁸ S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

⁹ a) W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Phys. Chem.* **1972**, *56*, 2257–2261. b) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta.* **1973**, *28*, 213–222. c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654–3665.

¹⁰ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* **1990**, 77, 123–141.

¹¹ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.