Supporting information for:

Synthesis of imidazolium-based pentacoordinated organofluorosilicate and germanate salts

Jan Gnidovec,^{a,b} Evelin Gruden,^a Melita Tramšek,^a Jernej Iskra,^c Jaroslav Kvíčala^d and Gašper Tavčar^{*a,b}

^a Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

^b Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

^c Department of Chemistry and Biochemistry, University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia

^d Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic

Table of content

S1 NM	IR Spectroscopy	3
S1.1	[IPrH][Ph ₃ SiF ₂] (1)	3
S1.2	Attempted synthesis of [IPrH][Et ₃ SiF ₂] (2)	5
S1.3	[IPrH][Ph ₂ SiF ₃] (3)	7
S1.4	[IPrH][Et ₂ SiF ₃] (4)	9
S1.5	[IPrH][EtSiF4] (6)	. 11
S1.6	[IPrH][Ph ₃ GeF ₂] (7)	13
S2 Ra	man Spectroscopy	15
S2.1	[IPrH][Ph ₃ SiF ₂] (1)	15
S2.2	[IPrH][Ph ₂ SiF ₃] (3)	15
S2.3	[IPrH][Et ₂ SiF ₃] (4)	16
S2.4	[IPrH][EtSiF ₄] (6)	16
S2.5	[IPrH][Ph ₃ GeF ₂] (7)	17
S3 Cry	/stal Structure Data	18
S3.1	Crystal structures of the asymmetric units	25
S4 Co	mputational Results	30
S5 Ma	ss Spectrometry	34
S5.1	[IPrH][Ph ₃ SiF ₂] (1)	34
S5.2	[IPrH][Ph ₂ SiF ₃] (3)	34
S5.3	[IPrH][Et ₂ SiF ₃] (4)	35
S5.4	[IPrH][EtSiF4] (6)	35
S5.6	[IPrH][Ph ₃ GeF ₂] (7)	36
S6 Re	ferences	37

S1 NMR Spectroscopy

Figure S1 ¹H NMR spectrum of [IPrH][Ph₃SiF₂] (1) in MeCN-d³ solution.

Figure S2 ¹³C NMR spectrum of [IPrH][Ph₃SiF₂] (1) in MeCN-d³ solution.

Figure S3 ¹⁹F NMR spectrum of [IPrH][Ph₃SiF₂] (1) in MeCN-d³ solution.

S1.2 Attempted synthesis of [IPrH][Et₃SiF₂] (2)

Reaction between Et₃SiF and [IPrH][F] was carried out in MeCN-d³ for 24h. Afterwards the ¹H and ¹⁹F NMR spectra were measured at room temperature and at –40°C. Below, the ¹⁹F NMR spectrum of the reaction mixture measured at room temperature is shown in Figure S4, while a comparison of ¹⁹F NMR spectra of Et₃SiF and the reaction mixture measured at –40°C is shown in Figure S5. Both spectra show that only the starting compounds are present in the reaction mixture. Note that in Figure S5 the signal for [IPrH][F] is disproportionally weaker than the signal of Et₃SiF due to its lower solubility at –40°C.

Figure S4: ¹⁹F NMR spectrum of the Et₃SiF and [IPrH][F] reaction mixture at 298K.

Figure S5 Comparison of ^{19}F NMR spectra of Et_3SiF and reaction mixture of Et_3SiF and [IPrH][F] at 233K.

Figure S7 ¹³C NMR spectrum of [IPrH][Ph₂SiF₃] (3) in MeCN-d³ solution.

Figure S6 ¹H NMR spectrum of [IPrH][Ph₂SiF₃] (3) in MeCN-d³ solution.

Figure S8 ¹⁹F NMR spectrum of [IPrH][Ph₂SiF₃] (3) in MeCN-d³ solution.

Figure S9 ¹H NMR spectrum of [IPrH][Et₂SiF₃] (4) in MeCN-d³ solution.

Figure S10 ¹³C NMR spectrum of [IPrH][Et₂SiF₃] (4) in MeCN-d³ solution.

Figure S11 ¹⁹F NMR spectrum of [IPrH][Et₂SiF₃] (**4**) in MeCN-d³ solution.

Signal at -86 ppm corresponds to the axially positioned fluorine atoms, while signal at -136 ppm belongs to the equatorial fluorine. Signals around -144 ppm are a result of [IPrH][F] and [IPrH][HF₂] impurities.

Figure S12 ¹H NMR spectrum of [IPrH][EtSiF₄] (**6**) in MeCN-d³ solution.

Figure S13 ¹³C NMR spectrum of [IPrH][EtSiF₄] (6) in MeCN-d³ solution.

Figure S14 ¹⁹F NMR spectrum of [IPrH][EtSiF₄] (**6**) in MeCN-d³ solution.

Signal at -116 ppm belongs to the compound **6**, while the signals at -143 ppm and -144 ppm correspond to [IPrH][F] and [IPrH][HF₂] impurities, respectively.

Figure S15 ¹H NMR spectrum of [IPrH][Ph₃GeF₂] (7) in MeCN-d³ solution.

Figure S16 ¹³C NMR spectrum of [IPrH][Ph₃GeF₂] (7) in MeCN-d³ solution.

Figure S17 ¹³C NMR spectrum of [IPrH][Ph₃GeF₂] (**7**) in MeCN-d³ solution. Signal at -146 ppm belongs to excess [IPrH][F].

S2 Raman Spectroscopy

S2.1 [IPrH][Ph₃SiF₂] (1)

Figure S18 Raman spectrum of [IPrH][Ph₃SiF₂] (1)

Figure S19 Raman spectrum of [IPrH][Ph₂SiF₃] (3)

Figure S20 Raman spectrum of [IPrH][Et₂SiF₃] (4)

Figure S21 Raman spectrum of [IPrH][EtSiF₄] (6)

Figure S22: Raman spectrum of [IPrH][Ph₃GeF₂] (7)

S3 Crystal Structure Data

Table S1 Selected crystal data for $[IPrH][Ph_3SiF_2]$ (1), $[IPrH][Ph_2SiF_3]$ (3), $[IPrH][Et_2SiF_3]$ ·MeCN (4·MeCN) and $[IPrH][PhSiF_4]$ (5).

	[IPrH][Ph ₃ SiF ₂] (1)	[IPrH][Ph ₂ SiF ₃] (3)	[IPrH][Et ₂ SiF ₃] ·MeCN (4 ·MeCN)	[IPrH][PhSiF ₄] (5)
CCDC No.	2240916	2240917	2240918	2240919
Chemical	C ₂₇ H ₃₇ N ₂ ·	C ₂₇ H ₃₇ N ₂ ·	C ₂₇ H ₃₇ N ₂ ·	C ₂₇ H ₃₇ N ₂ ·
formula	$C_{18}H_{15}F_2Si$	$C_{12}H_{10}F_3Si$	$C_4H_{10}F_3Si \cdot C_2H_3$	C ₆ H₅F₄Si
			N	
<i>F</i> w (g/mol)	686.97	628.87	573.85	570.77
<i>T</i> (K)	150	150	150	150
λ (Å)	1.54184	1.54184	1.54184	1.54184
Cristal size	0.95 × 0.57 ×	0.59 × 0.46 ×	0.76 × 0.48 ×	0.80 × 0.62 ×
(mm)	0.46	0.25	0.34	0.28
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P21/c	P21/c	P2 ₁ /n	<i>P</i> -1
a (Å)	12.4227(3)	18.4493(2)	10.54523(9)	9.8511(2)
b (Å)	18.0014(3)	19.9096(2)	16.13628(15)	17.6141(3)
c (Å)	18.7170(4)	20.1610(3)	19.75591(16)	20.1066(3)
α (°)	90	90	90	69.107(2)
β (°)	108.699(3)	107.3070(10)	91.4592(8)	82.0820(10)
γ (°)	90	90	90	88.7690(10)
V (Å ³)	3964.67(16)	7070.21(15)	3360.59(5)	3226.95(11)
Ζ	4	8	4	4
$ ho_{calc}$ (g/cm ³)	1.151	1.182	1.134	1.175
µ (mm⁻¹)	0.847	0.944	0.950	1.029
<i>F</i> (000)	1472	2688	1240	1216
Θ range (°)	3.5-72.3	2.8-72.4	3.5-72.3	2.7-72.3
Index ranges	−15 ≤ h ≤ 15	-20 ≤ h ≤ 22	−13 ≤ h ≤ 12	−12 ≤ h ≤ 12
	−21 ≤ k ≤ 22	−24 ≤ k ≤ 17	−19 ≤ k ≤ 19	−21 ≤ k ≤ 21
	-20 ≤ l ≤ 22	-24 ≤ ≤ 24	-24 ≤ ≤ 24	-24 ≤ I ≤ 24
Reflections	41128	40383	114300	111155
Independent	7763	13662	6630	12537
reflections	1100	10002	0000	12007
Reflections with	6558	10288	5722	10696
$(1 > 2\sigma(1))$				
Rint	0.0688	0.0326	0.0649	0.0575
Data / restrains /	7763 / 0 / 459	13662 / 0 / 827	6630 / 0 / 398	12537 / 0 / 1006
parameters				
S ^[a]	1.047	1.030	1.051	1.014
$R_1^{[b]}, WR_2^{[c]} (I > $	0.0480, 0.1266	0.0431, 0.1119	0.0499, 0.1334	0.0484, 0.1302
2 <i>σ</i> (<i>l</i>))				
$R_{1^{[b]}}, wR_{2^{[c]}}$ (all	0.0568, 0.1362	0.0608, 0.1242	0.0565, 0.1423	0.0564, 0.1389
data)				
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0.412, 0.657	-0.345, 0.337	-0.219, 0.474	-0.296, 0.379

^[a] $S = [\Sigma(w(F_o^2 - F_c^2)^2)/(N_o - N_p)]^{1/2}.$

^[b] $R_1 = ||F_0| - |F_c|| / \Sigma |F_0|$.

^[c] $wR_2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma(w(F_o^2)^2)]^{1/2}.$

	[IPrH][EtSiF ₄]	[IPrH][Ph ₃ GeF ₂]	[IPrH][Ph ₃ GeF ₂]	[IPrH][Ph ₃ GeF ₂]
	(6)	(7)	·MeCN (7a)	·MeCN (7b)
CCDC No.	2240920	2240921	2240922	2240923
Chemical	$C_{27}H_{37}N_2 \cdot C_2H_5F$	$C_{27}H_{37}N_{2}$	$C_{27}H_{37}N_2$	$C_{27}H_{37}N_2$
formula	₄Si	C ₁₈ H ₁₅ F ₂ Ge	$C_{18}H_{15}F_2Ge \cdot C_2H$	C ₁₈ H ₁₅ F ₂ Ge⋅C ₂ H
			зN	₃ N
F _w (g/mol)	522.73	731.47	772.53	772.53
<i>Т</i> (К)	150	150	150	150
λ (Å)	1.54184	1.54184	1.54184	1.54184
Cristal size	0.38 × 0.29 ×	0.52 × 0.23 ×	0.75 × 0.20 ×	0.44 × 0.29 ×
(mm)	0.18	0.06	0.09	0.2
Crystal system	Monoclinic	Triclinic	Triclinic	Orthorhombic
Space group	l2a	<i>P</i> -1	<i>P</i> –1	<i>P</i> 2 ₁ 2 ₁ 2 ₁
a (Å)	17.5233(1)	10.6533(3)	11.3519(3)	14.4757(1)
b (Å)	39.6998(4)	18.5885(5)	12.0229(3)	15.3732(2)
<i>c</i> (Å)	17.5322(1)	20.6911(5)	15.6446(4)	18.8377(2)
α (°)	90	94.715(2)	89.256(2)	90
β (°)	90.1310(10)	97.195(2)	81.538(2)	90
γ (°)	90	95.184(2)	80.477(2)	90
$V(Å^3)$	12196.62(16)	4030.37(19)	2082.73(9)	4192.10(7)
Ζ	16	4	2	4
$ ho_{calc}$ (g/cm ³)	1.139	1.205	1.232	1.224
μ (mm ⁻¹)	1.042	1.351	1.341	1.333
<i>F</i> (000)	4480	1544	816	1632
Θ range (°)	2.7-72.3	3.0-72.1	3.7-72.3	2.8-72.4
Index ranges	−21 ≤ h ≤ 21	−12 ≤ h ≤ 12	−13 ≤ h ≤ 13	−17 ≤ h ≤ 17
_	-42 ≤ k ≤ 47	-22 ≤ k ≤ 22	−14 ≤ k ≤ 14	−18 ≤ k ≤ 18
	−21 ≤ I ≤ 21	-25 ≤ I ≤ 22	−19 ≤ I ≤ 19	-23 ≤ I ≤ 23
Reflections	97660	33630	32767	34996
collected				
Independent	11993	15341	8068	8093
reflections				
Reflections with	11069	11878	7139	7783
$(l > 2\sigma(l))$				
R _{int}	0.0337	0.0345	0.0418	0.0338
Data / restrains	11993 / 0 / 709	15341 / 0 / 1033	8068 / 0 / 498	8093 / 0 / 487
/ parameters				
S ^[a]	1.020	1.033	1.056	1.053
$R_1^{[b]}, wR_2^{[c]} (I > I)$	0.0384, 0.1032	0.0520, 0.1292	0.0354, 0.0851	0.0274, 0.0679
2σ(<i>I</i>))				
R1 ^[b] , <i>wR</i> 2 ^[c] (all	0.0430, 0.1073	0.0697, 0.1415	0.0419, 0.0900	0.0293, 0.0692
data)				
$\Delta ho_{min}, \Delta ho_{max}$ (eÅ ⁻³)	-0.308, 0.344	-0.349, 1.134	-0.276, 0.481	-0.229, 0.370

Table S2 Selected crystal data for [IPrH][EtSiF₄] (6), [IPrH][Ph₃GeF₂] (7),[IPrH][Ph₃GeF₂]·MeCN (7a) and [IPrH][Ph₃GeF₂]·MeCN (7b).

^[a] $S = [\Sigma(w(F_o^2 - F_c^2)^2)/(N_o - N_p)]^{1/2}.$

^[b] $R_1 = ||F_0| - |F_c|| / \Sigma |F_0|.$

^[c] $wR_2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma(w(F_o^2)^2)]^{1/2}.$

Table S3 Selected bond lengths (Å) and bond angles (°) for compounds $[IPrH][Ph_3SiF_2]$ (1), $[IPrH][Ph_2SiF_3]$ (3), $[IPrH][Et_2SiF_3]$ ·MeCN (4·MeCN), $[IPrH][PhSiF_4]$ (5), $[IPrH][EtSiF_4]$ (6) and $[IPrH][Ph_3GeF_2]$ (7).

$[IPrH][Ph_3SiF_2]$ (1)				
Bond lengths				
Si(1)–F(1)	1.743(1)	Si(1)–C(1)	1.898(2)	
Si(1)–F(2)	1.746(1)	Si(1)–C(7)	1.906(2)	
		Si(1)–C(13)	1.907(2)	
Bond angles			· · · ·	
F(1)–Si(1)–F(2)	177.44(5)	F(2)–Si(1)–C(7)	90.10(6)	
F(1) - Si(1) - C(1)	88.98(6)	F(2)–Si(1)–C(13)	90.09(6)	
F(1) - Si(1) - C(7)	91.74(6)	C(1)-Si(1)-C(7)	123.97(8)	
F(1)–Si(1)–C(13)	90.35(6)	C(1)–Si(1)–C(13)	119.81(8)	
F(2)–Si(1)–C(1)	88.51(6)	C(7)–Si(1)–C(13)	116.21(7)	
$[IPrH][Ph_2SiF_3]$ (3)				
Anion 1		Anion 2		
Bond lengths		Bond lengths		
Si(1)–F(1)	1.645(1)	Si(2)–F(4)	1.646(1)	
Si(1)–F(2)	1.691(1)	Si(2)–F(5)	1.689(1)	
Si(1)–F(3)	1.711(1)	Si(2)–F(6)	1.710(1)	
Si(1) - C(1)	1.897(2)	Si(2)-C(13)	1.897(2)	
Si(1)–C(7)	1.901(2)	Si(2)–C(19)	1.898(2)	
Bond angles		Bond angles		
F(1)–Si(1)–F(2)	88.00(6)	F(4)–Si(2)–F(5)	88.00(6)	
F(1)–Si(1)–F(3)	85.92(5)	F(4)–Si(2)–F(6)	85.99(5)	
F(1) - Si(1) - C(1)	120.30(7)	F(4)-Si(2)-C(13)	119.87(7)	
F(1)–Si(1)–C(7)	121.98(7)	F(4)-Si(2)-C(19)	121.29(7)	
F(2)–Si(1)–F(3)	173.91(5)	F(5)–Si(2)–F(6)	173.97(6)	
F(2)-Si(1)-C(1)	92.19(6)	F(5)-Si(2)-C(13)	92.25(7)	
F(2)-Si(1)-C(7)	91.91(6)	F(5)-Si(2)-C(19)	91.83(7)	
F(3)–Si(1)–C(1)	91.22(6)	F(6)-Si(2)-C(13)	91.20(7)	
F(3)–Si(1)–C(7)	90.97(6)	F(6)-Si(2)-C(19)	90.84(7)	
C(1)-Si(1)-C(7)	117.68(7)	C(13)–Si(2)–C(19)	118.80(8)	
[IPrH][Et2SiF3]·MeCN (4·Me	eCN)			
Bond lengths	•			
Si(1)–F(1)	1.733(1)	Si(1)–C(1)	1.875(2)	
Si(1)–F(2)	1.648(1)	Si(1)–C(3)	1.885(2)	
Si(1)–F(3)	1.729(1)			
Bond angles	· · · ·			
F(1)–Si(1)–F(2)	86.41(5)	F(2)–Si(1)–C(1)	118.09(7)	
F(1)–Si(1)–F(3)	173.12(6)	F(2)-Si(1)-C(3)	119.51(7)	
F(1)–Si(1)–C(1)	89.95(6)	F(3)-Si(1)-C(1)	94.26(7)	
F(1)–Si(1)–C(3)	91.42(7)	F(3)-Si(1)-C(3)	90.92(7)	
F(2)–Si(1)–F(3)	86.81(5)	C(1)–Si(1)–C3	122.36(8)	
	× /			

[IPrH][PhSiF ₄] (5)				
Anion 1		Anion 2		
Bond lengths		Bond lengths		
Si(1A)_F(1A)	1.653(2)	Si(2A)–F(5A)	1.624(4)	
Si(1B)–F(1B)	1.69(1)	Si(2B)–F(5B)	1.689(7)	
Si(1A)–F(2A)	1.718(2)	Si(2A)–F(6A)	1.751(3)	
Si(1B)–F(2B)	1.523(7)	Si(2B)–F(6B)	1.553(6)	
Si(1A)–F(3A)	1.584(3)	Si(2A)–F(7A)	1.574(5)	
Si(1B)–F(3B)	1.763(9)	Si(2B)–F(7B)	1.745(7)	
Si(1A)–F(4A)	1.660(2)	Si(2A)–F(8A)	1.656(3)	
Si(1B)–F(4B)	1.568(9)	Si(2B)–F(8B)	1.600(7)	
Si(1A)–C(1A)	1.902(5)	Si(2A)–C(11A)	1.850(7)	
Si(1B)–C(1B)	1.77(2)	Si(2B)–C(11B)	1.873(7)	
Bond angles		Bond angles		
F(1A) - Si(1A) - F(2A)	174.6(1)	F(5A) - Si(2A) - F(6A)	174.8(2)	
F(1B)-Si(1B)-F(2B)	124.1(5)	F(5B)-Si(2B)-F(6B)	122.0(4)	
F(1A) - Si(1A) - F(3A)	91.6(1)	F(5A) - Si(2A) - F(7A)	93.2(2)	
F(1B) = Si(1B) = F(3B)	84 1(4)	F(5B) = Si(2B) = F(7B)	84 2(3)	
F(1A) = Si(1A) = F(4A)	88 3(1)	F(5A) - Si(2A) - F(8A)	89 3(2)	
F(1B) = Si(1B) = F(4B)	89 2(5)	F(5B) = Si(2B) = F(8B)	88 0(4)	
F(1A) = Si(1A) = C(1A)	93 4(2)	F(5A) = Si(2A) = C(11A)	91 4(3)	
F(1B) = Si(1B) = C(1B)	112 8(8)	F(5B) = Si(2B) = C(11B)	119 8(4)	
F(2A) = Si(1A) = F(3A)	89 3(1)	F(6A) = Si(2A) = F(7A)	88 3(2)	
F(2R) = Si(1R) = F(3R)	87.4(4)	F(6B) = Si(2B) = F(7B)	88 2(3)	
F(2A) = Si(1A) = F(1A)	86 5(1)	F(6A) = S(2A) = F(8A)	85 6(1)	
F(2R) = Si(1R) = F(4R)	05.0(5)	F(6R) = S(2R) = F(6R)	03.0(1)	
F(2D) = SI(1D) = F(4D)	95.9(5)	F(0D) = SI(2D) = F(0D) F(6A) = Si(2A) = C(11A)	93.0(3)	
F(2R) = Si(1R) = C(1R)	90.7(2)	F(0A) = Si(2A) = C(TTA)	92.0(3)	
F(2D) = SI(1D) = C(1D)	121.9(0)	F(0D) = SI(2D) = C(TTD)	110.0(4)	
F(3A) = Si(1A) = F(4A)	110.3(1)	F(7A) = SI(2A) = F(0A)	110.4(2)	
F(3B) = SI(1B) = F(4B)	173.2(0)	F(7B) - S(2B) - F(8B)	171.8(4)	
F(3A) = SI(1A) = C(1A)	122.7(2)	F(7A) - SI(2A) - C(11A)	121.9(3)	
F(3B) = SI(1B) = C(1B)	87.9(7)	F(7B) = SI(2B) = C(11B)	92.8(4)	
F(4A) - SI(1A) - C(1A)	120.6(2)	F(8A) - SI(2A) - C(11A)	119.5(2)	
F(4B) - SI(1B) - C(1B)	95.3(8)	F(8B) - Si(2B) - C(11B)	93.3(4)	
Anion 1		Anion 2		
Bond lengths		Bond lengths	4 9 9 9 (4)	
Si(1) - F(1)	1.701(1)	SI(2)-F(5)	1.698(1)	
Si(1)-F(2)	1.672(1)	Si(2) - F(6)	1.670(1)	
Si(1)-F(3)	1.618(1)	Si(2)-F(7)	1.621(1)	
SI(1)-F(4)	1.614(1)	SI(2)-F(8)	1.617(1)	
$S_{1}(1)-C(1)$	1.862(3)	SI(2)-C(3)	1.866(3)	
Bond angles		Bond angles		
F(1)-Si(1)-F(2)	174.87(7)	F(5)–Si(2)–F(6)	174.56(7)	
F(1)–Si(1)–F(3)	88.08(7)	F(5)–Si(2)–F(7)	88.06(7)	
F(1)–Si(1)–F(4)	88.10(6)	F(5)-Si(2)-F(8)	88.17(6)	
F(1)–Si(1)–C(1)	89.6(1)	F(5)–Si(2)–C(3)	90.0(1)	

F(2)–Si(1)–F(3)	89.36(7)	F(6)–Si(2)–F(7)	89.07(6)
F(2)-Si(1)-F(4)	89.21(7)	F(6)-Si(2)-F(8)	89.09(7)
F(2)-Si(1)-C(1)	95.5(1)	F(6)-Si(2)-C(3)	95.5(1)
F(3)–Si(1)–F(4)	118.45(7)	F(7)–Si(2)–F(8)	117.841(7)
F(3)–Si(1)–C(1)	121.90(9)	F(7)-Si(2)-C(3)	121.5(1)
F(4)–Si(1)–C(1)	119.5(1)	F(8)–Si(2)–C(3)	120.5(1)
[IPrH][Ph ₃ GeF ₂] (7)			
Anion 1		Anion 2	
Bond lengths		Bond lengths	
Ge(1)–F(1)	1.930(1)	Ge(2)–F(3A)	1.939(9)
Ge(1)–F(2)	1.923(1)	Ge(2)–F(3B)	1.87(2)
Ge(1)–C(1)	1.946(3)	Ge(2)-F(4)	1.935(2)
Ge(1)–C(7)	1.949(3)	Ge(2)–C(21)	1.958(4)
Ge(1)–C(13)	1.963(3)	Ge(2)–C(27A)	1.970(5)
		Ge(2)–C(27B)	1.945(1)
		Ge(2)–C(33)	1.955(4)
Bond angles		Bond angles	
F(1)–Ge(1)–F(2)	177.23(7)	F(3A)–Ge(2)–F(4)	176.1(3)
F(1)–Ge(1)–C(1)	90.75(9)	F(3B)-Ge(2)-F(4)	170.5(7)
F(1)–Ge(1)–C(7)	89.04(9)	F(3A)–Ge(2)–C(21)	89.2(3)
F(1)–Ge(1)–C(13)	91.9(1)	F(3B)–Ge(2)–C(21)	87.7(7)
F(2)–Ge(1)–C(1)	88.36(9)	F(3A)–Ge(2)–C(27B)	100.7(5)
F(2)–Ge(1)–C(7)	89.15(9)	F(3B)–Ge(2)–C(27A)	80.4(7)
F(2)–Ge(1)–C(13)	90.8(1)	F(3A)–Ge(2)–C(33)	86.9(3)
C(1)–Ge(1)–C(7)	120.5(1)	F(3B)–Ge(2)–C(33)	99.0(7)
C(1)–Ge(1)–C(13)	121.8(1)	F(4)–Ge(2)–C(21)	90.3(1)
C(7)–Ge(1)–C(13)	117.7(1)	F(4)–Ge(2)–C(27A)	92.4(1)
		F(4)–Ge(2)–C(27B)	82.8(4)
		F(4)–Ge(2)–C(33)	90.0(1)
		C(21)–Ge(2)–C(27A)	118.6(2)
		C(21)–Ge(2)–C(27B)	120.9(4)
		C(21)–Ge(2)–C(33)	120.1(2)
		C(27A)–Ge(2)–C(33)	121.2(2)
		C(27B)-Ge(2)-C(33)	118.6(4)

Table S4 Selected bond lengths (Å) and bond angles (°) of interactions between
cation and anion in crystal structures of compounds [IPrH][Ph_3SiF_2] (1),
[IPrH][Ph_2SiF_3] (3), [IPrH][Et_2SiF_3]·MeCN (4·MeCN), [IPrH][PhSiF_4] (5), [IPrH][EtSiF_4]
(6) and [IPrH][Ph_3GeF_2] (7).

F…H–C/F	F…C	F…H	H-C	<(FHC)
[[IPrH][Ph ₃ SiF ₂] (1)				
F(1)…H(22)−C(22)	2.926(2)	2.0841(9)	0.950(2)	146.83(9)
F(2)···H(24) ^I −C(24) ^I	2.980(2)	2.0383(9)	0.950(2)	171.0(1)
[[IPrH][Ph ₂ SiF ₃] (3)				
Anion 1	F	r	r	1
F(1)…H(32)-C(32)	3.220(2)	2.298(1)	0.950(2)	163.5(1)
F(1)…H(69)-C(69)	3.163(3)	2.368(1)	0.950(2)	141.0(1)
F(3)····H(32)−C(32)	2.990(2)	2.233(1)	0.950(2)	135.9(1)
Anion 2				
F(4)····H(62)−C(62)	3.270(2)	2.343(1)	0.950(2)	165.2(1)
F(4)···H(52) ^I –C(52) ^I	3.289(3)	2.424(1)	0.950(2)	151.2(1)
F(6)····H(62)−C(62)	2.970(2)	2.226(1)	0.950(2)	134.5(1)
[IPrH][Et ₂ SiF ₃]·MeCN (4·Me	CN)			
F(1)…H(12)-C(12)	2.958(2)	2.058(1)	0.950(1)	157.57(9)
F(2)···H(15) ^I -C(15) ^I	3.207(2)	2.307(1)	0.950(2)	157.84(9)
F(3)····H(14) ^I -C(14) ^I	3.010(2)	2.507(1)	0.950(1)	113.17(9)
[[IPrH][PhSiF ₄] (5)				
Anion 1				
F(1A)···H(22)-C(22)	3.084(3)	2.155(2)	0.950(1)	165.6(1)
F(1B)···H(22)-C(22)	3.023(6)	2.122(6)	0.950(1)	157.8(2)
F(1B)···H(60) ^I -C(60) ^I	3.323(7)	2.549(8)	0.950(2)	138.7(2)
F(2A)···H(25) ^I -C(25) ^I	2.925(2)	2.393(2)	0.950(2)	115.1(1)
F(2A)···H(24) ^I −C(24) ^I	2.968(2)	2.490(2)	0.950(2)	111.1(1)
F(2A)···H(71A)–C(71A)	3.19(1)	2.478(2)	0.95(1)	131.6(8)
F(2B)···H(24) ^I −C(24) ^I	3.100(4)	2.387(4)	0.950(2)	131.6(1)
F(3A)···H(24) ^I -C(24) ^I	3.172(3)	2.264(2)	0.950(2)	159.7(1)
F(3B)···H(24) ^I -C(24) ^I	3.035(5)	2.239(4)	0.950(2)	140.8(1)
F(3B)···H(60) ^I -C(60) ^I	3.070(6)	2.568(6)	0.950(2)	113.3(2)
F(4A)····H(22)-C(22)	2.950(2)	2.241(2)	0.950(1)	130.8(1)
F(4A)····H(34B)-C(34)	3.327(3)	2.444(2)	0.980(3)	149.7(2)
F(4B)…H(22)-C(22)	3.007(6)	2.261(6)	0.950(1)	134.8(2)
Anion 2				
F(5A)····H(52)-C(52)	3.120(4)	2.212(3)	0.950(2)	159.7(1)
F(5B)···H(52)-C(52)	3.070(6)	2.210(6)	0.950(2)	150.1(2)
F(6A)···H(54) ^I -C(54) ^I	3.019(3)	2.525(2)	0.950(2)	112.5(1)
	× /	· · ·	× *	· · ·

F(6A)····H(55) ^I –C(55) ^I	3.002(3)	2.486(2)	0.950(2)	114.2(1)
F(6B)···H(54) ^I -C(54) ^I	3.224(3)	2.516(3)	0.950(2)	131.4(1)
F(7A)···H(54) ^I -C(54) ^I	3.220(3)	2.288(3)	0.950(2)	166.6(1)
F(7B)···H(54) ^I −C(54) ^I	3.024(3)	2.172(3)	0.950(2)	148.7(1)
F(7B)···H(28)-C(28)	3.037(4)	2.401(4)	0.950(2)	124.0(2)
F(8A)···H(52)-C(52)	2.973(3)	2.250(3)	0.950(2)	132.3(1)
F(8A)····H(66A)-C(66)	3.302(4)	2.369(2)	0.980(3)	158.8(2)
F(8B)…H(52)-C(52)	2.943(3)	2.168(3)	0.950(2)	137.9(1)
[IPrH][EtSiF ₄] (6)				
Anion 1	<u>.</u>	·	·	
F(1)…H(22)-C(22)	2.968(2)	2.050(1)	0.950(2)	162.1(1)
F(2)····H(55) ^I −C(55) ^I	2.958(2)	2.162(1)	0.950(2)	140.6(1)
F(2)···H(72) ^I −C(72) ^I	3.132(2)	2.460(1)	0.950(2)	127.7(1)
F(3)····H(54) ^I −C(54) ^I	3.073(2)	2.280(1)	0.950(2)	140.6(1)
F(4)···H(22)−C(22)	3.122(2)	2.379(1)	0.950(2)	134.8(1)
Anion 2				
F(5)···H(52)-C(52)	2.994(2)	2.105(1)	0.950(2)	155.4(1)
F(6)···H(24)-C(24)	2.864(2)	2.200(1)	0.950(2)	126.1(1)
F(6)···H(28) ^I -C(28) ^I	3.154(2)	2.478(1)	0.950(2)	128.1(1)
F(7)····H(25)–C(25)	3.118(2)	2.229(1)	0.950(2)	155.3(1)
F(8)····H(52)-C(52)	3.120(2)	2.317(1)	0.950(2)	141.9(1)
[[IPrH][Ph ₃ GeF ₂] (7)				
Anion 1				
F(1)···H(72) ^I −C(72) ^I	2.835(3)	1.982(2)	0.950(3)	148.3(2)
F(2)···H(45)−C(45)	2.933(5)	2.078(2)	0.950(3)	149.0(2)
F(2)···H(79) ^I −C(79) ^I	3.268(4)	2.373(2)	0.950(4)	156.6(2)
Anion 2				
F(3A)…H(75)–C(75)	2.86(1)	1.93(1)	0.950(4)	163.8(4)
F(3B)…H(75)–C(75)	3.02(2)	2.07(2)	0.950(4)	174.0(6)
$F(4)\cdots H(42)^{I}-C(42)^{I}$	2.842(3)	1.921(2)	0.950(3)	162.6(2)

S3.1 Crystal structures of the asymmetric units

Figure S23 Crystal structure of the asymmetric unit of $[IPrH][Ph_2SiF_3]$ (3). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

Figure S24 Crystal structure of the asymmetric unit of [IPrH][Et₂SiF₃]·MeCN (4·MeCN). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

Figure S25 Crystal structure of the asymmetric unit of [IPrH][PhSiF₄] (**5**). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

(b)

Figure S26 Structure of the disordered anions in the crystal structure of $[IPrH][PhSiF_4]$ (5). (a) Disordered anion 1, and (b) disordered anion 2. The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, all hydrogen atoms are omitted. Central images represent the overlapping of domains A and B. For clarity, domain B is shaded in central images.

Figure S27 Crystal structure of the asymmetric unit of [IPrH][EtSiF₄] (6). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

Figure S28 Crystal structure of the asymmetric unit of [IPrH][Ph₃GeF₂] (7). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

Figure S29 Crystal structure of the asymmetric unit of [IPrH][Ph₃GeF₂]·MeCN (**7a**). The ellipsoids are drawn at 50% probability. The positions of disordered atoms are shown in domains A and B. For clarity, domain B is shaded and all hydrogen atoms are omitted except for those on the imidazolium ring.

Figure S30 Crystal structure of the asymmetric unit of [IPrH][Ph₃GeF₂]·MeCN (**7b**). The ellipsoids are drawn at 50% probability. For clarity, all hydrogen atoms are omitted except for those on the imidazolium ring.

S4 Computational Results

Molecular calculations of the crystal structures were performed in gas-phase with the Gaussian 16 program¹ using the Perdew–Burke–Ernzerhof (PBE) exchangecorrelation functional² and the D3 empirical dispersion correction of Grimme³ with Becke–Johnson damping.⁴ Electrons were described with all-electron basis sets. We used the triple- ζ basis set with polarization functions, in particular Def2-TZVP.^{5,6}

Fable S5 Experimental and Calculated Bond Distances of $[IPrH][Et_{4-n}SiF_{n+1}]$ $(n = 1-4)$.					
Compound	<i>d</i> (Si–C) / Å		<i>d</i> (Si–F) / Å		

Compound	/ d(Si–C) / A		<i>d</i> (Si–F) / A	
	Experimental	Calculated	Experimental	Calculated
[IPrH][Et ₃ SiF ₂]	na	1.92	na	2.04 ^[a,b]
		1.91		1.71 ^[a]
		1.91		
[IPrH][Et ₂ SiF ₃]	1.875(2)	1.90	1.733(1) ^[a,b]	1.87 ^[a,b]
	1.885(2)	1.90	1.729(1) ^[a]	1.70 ^[a]
			1.648(1) ^[b]	1.69
[IPrH][EtSiF ₄]	1.862(3)	1.90	1.701(1) ^[a,b]	1.80 ^[a,b]
			1.672(1) ^[a]	1.68 ^[a]
			1.618(1)	1.68
			1.614(1) ^[b]	1.63
[IPrH][SiF₅] ^[d]			1.62(1) ^[a,b,c]	1.74 ^[a,b]
			1.644(4) ^[a,c]	1.66 ^[a]
			1.59(1) ^[b,c]	1.66
			1.594(4) ^[c]	1.64
			1.585(4) ^[c]	1.62

[a] Axial position of fluorine atoms.

[b] Si–F distances, where fluorine atoms form the strongest hydrogen bonds with the hydrogen atom at C2 position.

[c] Si–C and Si–F distances for domain A, where the anions are disordered.

[d] Values reported in ⁷.

Figure S31 Optimized structures of $[IPrH][Et_{4-n}SiF_{n+1}]$ (n = 1-4).

Compound	<i>d</i> (Si–C) ∕Å		<i>d</i> (Si–F) / Å	
	Experimental	Calcu- lated	Experimental	Calcu- lated
[IPrH] [Ph₃GeF₂]	1.946(3) 1.958(4) 1.949(3) 1.970(5) 1.963(3) 1.955(4)	1.99 1.99 1.98	$\begin{array}{ccc} 1.930(1)^{[a,b]} & 1.939(9)^{[a,b,c]} \\ 1.923(1)^{[a]} & 1.935(2)^{[a]} \end{array}$	2.07 ^[a,b] 1.87 ^[a]
[IPrH] [Ph ₂ GeF ₃]	na	1.97 1.97	na	1.99 ^[a,b] 1.84 ^[a] 1.82
[IPrH] [PhGeF4]	na	1.97	na	1.91 ^[a,b] 1.82 ^[a] 1.81 1.76
[IPrH] [GeF₅] ^[d]			$\begin{array}{c} 1.773(4)^{[a,b,c]}\\ 1.758(1)^{[c]}\\ 1.742(4)^{[b,c]}\\ 1.716(2)^{[c]}\\ 1.703(2)^{[c]}\end{array}$	1.85 ^[a,b] 1.78 ^[a] 1.80 1.76 1.75
[IPrH] [Et ₃ GeF ₂]	na	1.99 1.99 1.98	na	2.35 ^[a,b] 1.85 ^[a]
[IPrH] [Et ₂ GeF ₃]	na	1.98 1.97	na	2.05 ^[a,b] 1.85 ^[a] 1.82
[IPrH] [EtGeF₄]	na	1.97	na	1.93 ^[a,b] 1.82 ^[a] 1.81 1.77
[IPrH] [GeF ₅] ^[d]			$\begin{array}{c} 1.773 \overline{(4)^{[a,b,c]}} \\ 1.758 (1)^{[c]} \\ 1.742 (4)^{[b,c]} \\ 1.716 (2)^{[c]} \\ 1.703 (2)^{[c]} \end{array}$	1.85 ^[a,b] 1.78 ^[a] 1.80 1.76 1.75

Table S6 Experimental and Calculated Bond Distances of $[IPrH][Ph_{4-n}GeF_{n+1}]$ (n = 1-4) and $[IPrH][Et_{4-n}GeF_{n+1}]$ (n = 1-4)

[a] Axial position of fluorine atoms.

[b] Ge–F distances, where fluorine atoms form the strongest hydrogen bonds with the hydrogen atom at C2 position.

[c] Ge–C and Ge–F distances for domain A, where the anions are disordered.

[d] Values reported in ⁷.

[IPrH][Ph3GeF2]

[IPrH][Ph2GeF3]

[IPrH][PhGeF₄]

[IPrH][GeF₅]

[IPrH][Et₃GeF₂]

[IPrH][Et₂GeF₃]

[IPrH][EtGeF₄]

[IPrH][GeF₅]

Figure S32 Optimized structures of [IPrH][Ph_{4-n}GeF_{n+1}] (n = 1-4) and [IPrH][Et_{4-n}GeF_{n+1}] (n = 1-4).

Table S7 Calculated electronic energies (*E*) at the PBE/def2TZVP level of theory and calculated energies of reactions ΔE in a.u. and kJ/mol.

Compound	<i>E</i> / a.u.	Reaction	∆ <i>E /</i> a.u.	∆ <i>E /</i> kJ/mol
[IPrH][F]	-1259.4111232			
Et ₃ SiF	-626.67114995			
Et ₂ SiF ₂	-647.39000789			
EtSiF ₃	-668.10336467			
SiF ₄	-688.81168744			
Ph ₂ SiF	-1083 5715290			
Ph ₂ SiF ₂	-951.98720139			
PhSiF ₃	-820.40216887			
Ft ₂ GeF	-2413.9706465			
Et ₂ GeF ₂	-2434.6670501			
EtGeF ₃	-2455.3540030			
GeF4	-2476.0264617			
Ph ₂ GeF	-2870.8679849			
Ph ₂ GeF ₂	-2739.2614349			
PhGeF ₃	-2607.6499366			
		Ft₂SiF + [IPrH][F] →		
[IPrH][Et ₃ SiF ₂] (2)	-1886.0989692		-0.0166960	-44
		$Et_2SiF_2 + [IPrH][F] \rightarrow$		
$[IPrH][Et_2SiF_3]$ (4)	-1906.8287845		-0.0276534	-73
		EtSiF ₃ + [IPrH][F] \rightarrow		
[IPrH][EtSiF ₄] (6)	-1927.5507372	[IPrH][EtSiF4]	-0.0362493	-95
		$SiF_4 + [IPrH][F] \rightarrow$		
[IPrH][SiF₅]	-1948.2696837	[IPrH][SiF₅]	-0.0468731	-123
		$Ph_3SiF + [IPrH][F] →$		
[IPrH][Ph ₃ SiF ₂] (1)	-2343.0148273	[IPrH][Ph ₃ SiF ₂]	-0.0321751	-84
		$Ph_2SiF_2 + [IPrH][F] \rightarrow$		
[IPrH][Ph ₂ SiF ₃] (3)	-2211.4377454	[IPrH][Ph ₂ SiF ₃]	-0.0394208	-103
		PhSiF₃ + [IPrH][F] →		
[IPrH][PhSiF ₄] (5)	-2079.8560493	[IPrH][PhSiF ₄]	-0.0427572	-112
		$SiF_4 + [IPrH][F] \rightarrow$		
[IPrH][SiF₅]	-1948.2696837	[IPrH][SiF₅]	-0.0468731	-123
		$Et_3GeF + [IPrH][F] \rightarrow$		
[IPrH][Et ₃ GeF ₂] (7)	-3673.4042062	[IPrH][Et ₃ GeF ₂]	-0.0224365	-59
	00044440070	$Et_2GeF_2 + [IPrH][F] \rightarrow$	0.00500.45	~
[IPrH][Et2GeF3]	-3694.1140978		-0.0359245	-94
	0744 0400544	$ EtGeF_3 + [IPrH][F] \rightarrow$	0.0450050	440
	-3714.8103514		-0.0452252	-119
	-2725 5005424	$ Ger_4 + [IPI\Pi][r] \rightarrow$	-0.0620572	_165
	-3735.5005421		-0.0629572	-105
	4420 2424702	$ Pn_3 GeF + [IP[H][F] \rightarrow \\ ID_{r} H ID_{r} C_{2} F]$	0.0222714	_00
	-4130.3124/92		-0.0333711	-00
	-3008 71761/18	$[FII_2GeF_2 + [IFI\Pi][F] \rightarrow \\ [IDrH][Dh_2C_2F_2]$	-0.0450567	-118
	5330.1110140	$\frac{1}{2} \frac{1}{2} \frac{1}$	0.0400007	110
[IPrH][PhGeF4]	-3867 1121370	$[IPrH][PhGeF_{4}]$	-0.0510772	-134
	0007.1121070	<u>GeF₄ + [IPrH][F] →</u>	0.0010772	104
[IPrH][GeF₅]	-3735.5005421	[IPrH][GeF ₅]	-0.0629572	-165

S5 Mass Spectrometry

S5.1 [IPrH][Ph3SiF2] (1)

	L		_		-1 ()																
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT (Norm)	C	н	N	F 2	285i									
297.0908	297.0911	-0.3	-1.0	11.5	C18 H15 F2 285i	348.1	1.2	18	15		2	1									
	297.0848	6.0	20.2	15.5	C19 H13 N2 285i	348.0	1.1	19	13	2		1									
	297.0828	8.0	26.9	16.5	C20 H10 N2 F	347.9	1.0	20	10	2	1										
Jan Gnidove	c.																				
Phagies Act	N eucon NEG	57 (2.22	26) Cm	(55:50)																	THE ME ES.
1 1150il 2 A01	N SUSSIIINEO	57 (2.52	20) 0111	(33.33)																	6.41e+002
100-										297.1											0.416-005
1																					
											298.1	1									
%-																					
1												299.1									
1																					
													200.4								
283.3	204 2205 1	286.5	207.4	288.4	289.1		203.2 204	2 206 2	296.	7			300.1	000.0.001.0	202.0	204.0	304.8	207.2 000.4	309.2 - 24.0 -	211.2	242.2.242.5
ببلببا-0	284.3285.1	· · · · · · · · ·	207.1		200.1 291.0.29	1.9.292.2	200.2 294.	2 290.2		اسليبيد	ليتلبعين	طليسلية	يريس أسجعت	500.9 301.8	302.8	304.0	/ 306.0	507.2 308.1	310.4	011.2	312.2,312.5
	284.0	286.0		288.0	290.0	292.0	294.0		296.0		298.0		300.0	302.	0	304.0	306.0	308.0	310.0	3	12.0

Figure S33 Mass spectrum of [IPrH][Ph₃SiF₂] (1).

Figure S34 Mass spectrum of [IPrH][Ph₂SiF₃] (3).

S5.3 [IPrH][Et2SiF3] (4)

Figure S35 Mass spectrum of [IPrH][Et₂SiF₃] (4).

S5.4 [IPrH][EtSiF4] (6)

Figure S36 Mass spectrum of [IPrH][Et₂SiF₃] (6).

S5.6 [IPrH][Ph3GeF2] (7)

Figure S37 Mass spectrum of [IPrH][Ph₃GeF₂] (7).

S6 References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 (Revision B01), Gaussian Inc., Wallingford, CT, 2016.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 3 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.
- 4 S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456–1465.
- 5 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- 6 F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057–1065.
- 7 B. Alič, M. Tramšek, A. Kokalj and G. Tavčar, *Inorg. Chem.*, 2017, **56**, 10070–10077.