Electrocatalytic reduction of CO₂ to CO by a Series

of organometallic Re(I)-tpy complexes

Shriya Saha^a, Thomas Doughty^b, Dibyendu Banerjee^c, Sunil K. Patel^a, Dibyendu Mallick^{*c}, E. Siva Subramaniam Iyer^a, Souvik Roy^{*b}, Raja Mitra^{*a}

^aSchool of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa 403401, India. Email: <u>rajamitra@iitgoa.ac.in</u>

^bSchool of Chemistry, University of Lincoln, Green Lane, Lincoln, Lincolnshire, LN6 7DL, UK. Email: <u>sroy@lincoln.ac.uk</u>

^cDepartment of Chemistry, Presidency University, Kolkata 700073, India. Email: <u>dibyendu.chem@presiuniv.ac.in</u>

Table of content:

Topics	Page number
Characterisation of L2	S3-S5
Characterisation of L3	S6-S8
Characterisation of L4	S9-S11
Characterisation of L5	S12-S14
Characterisation of Re1	S15-S18
Characterisation of Re2	S19-S22
Characterisation of Re3	S23-S26
Characterisation of Re4	S27-S30
Characterisation of Re5	S31-S37
ATR–IR comparison study	S38
Stability of the metal complexes in acetonitrile monitored by UV-Vis	S39
TD-DFT study of Re1-5	S40-S44
Transient Absorption studies of Re1-5 and L5	S45-S49
Scan rate-dependent Cyclic Voltammograms of Re1-5	S49-S51
Diffusion coefficients for Re1-5 and Re7	S52
Fast scan rate-dependent Cyclic Voltammograms of Re1-5 and Re7	S 53
Catalytic Cyclic Voltammograms of Re1-5 and Re7 in absence and	\$53
presence of trifluoroethanol	555
Catalytic Cyclic Voltammograms of Re1-5 at fast scan rates	S54
Representative Cyclic Voltammogram of $Re2$ for i_{cat} and i_p determination	S54
Cyclic Voltammogram of Re2 under different scan rates	S55
Cyclic Voltammogram of Re3 and Re4 showing effect of water on electrocatalysis	S55
<i>Cyclic Voltammogram of</i> Re2 <i>under</i> N_2 <i>and</i> CO_2 <i>with varying amount of trifluoroethanol</i>	S56
Fast scan Cyclic Voltammograms of Re2 with varying amount of trifluoroethanol	S56
Controlled potential electrolysis (CPE) of Re1-5 in CO ₂	S57
Stability studies after CPE Re5, Re1 and Re2 by UV-Vis	S57-58
Rinse test	S59
References	S59
Cartesian coordinates for L1-5 and Re1-5	S60-S69

Figure S1a: ¹H NMR spectrum of L2 (500 MHz, CDCl₃).

Figure S1b: ${}^{13}C{}^{1}H$ NMR spectrum of L2 (125 MHz, CDCl₃).

Figure S1c: ATR–IR spectrum of L2.

Figure S1d: Absorbance spectra of L2 (0.01 mM) in acetonitrile and DMF.

Figure S1e: LC-MS spectrum of L2, mass values shown at 3.424 min; Mass fragmentation pattern for L2 $[C_{21}H_{15}N_3 = M]$; $m/z = 310 [M+H]^+ (C_{21}H_{16}N_3)$, $m/z = 332 [M+Na]^+ (C_{21}H_{16}N_3Na)$.

Figure S2a: ¹H NMR spectrum of L3 (500 MHz, CDCl₃).

Figure S2b: ¹³C{¹H} NMR spectrum of L3 (125 MHz, CDCl₃).

Figure S2c: ATR–IR spectrum of L3.

Figure S2d: Absorbance spectra of L3 (0.01 mM) in acetonitrile and DMF.

Figure S2e: LC-MS spectrum of L3, mass values shown at 3.950 min; Mass fragmentation pattern for L3 $[C_{22}H_{17}N_3 = M]$; $m/z = 324 [M+H]^+ (C_{22}H_{18}N_3)$, $m/z = 346 [M+Na]^+ (C_{22}H_{18}N_3Na)$.

Figure S3a: ¹H NMR spectrum of L4 (500 MHz, CDCl₃) (water peak at 1.6 ppm).

Figure S3b: ${}^{13}C{}^{1}H$ NMR spectrum of L4 (125 MHz, CDCl₃).

Figure S3c: ATR-IR spectrum of L4.

Figure S3d: Absorbance spectra of L4 (0.01 mM) in acetonitrile and DMF.

Figure S3e: LC-MS spectrum of L4, mass values shown at 4.502 min; Mass fragmentation pattern for L4 [$C_{21}H_{14}BrN_3 = M$]; $m/z = 388 [M+H]^+ (C_{21}H_{15}^{79}BrN_3)$; $m/z = 390 [M+H]^+ (C_{21}H_{15}^{81}BrN_3)$.

Figure S4a: ¹H NMR spectrum of L5 (500 MHz, CDCl₃) (water peak at 1.6 ppm).

Figure S4b: ¹³*C*{¹*H*} *NMR spectrum of L5 (125 MHz, CDCl₃).*

Figure S4c: ATR–IR spectrum of L5.

Figure S4d: Absorbance spectra of L5 (0.01 mM) in acetonitrile and DMF.

LabSolutions Analysis Report

<Sample Information>

Sample Name	: L5			
Sample ID	: L5			
Data Filename	: L5 25-03-2023.lcd			
Method Filename	: C 95 D 5 10 min 0.2ml min.lcm			
Batch Filename	: 25032023.lcb			
Vial #	: 1-91	Sample Type	: Unknown	
Injection Volume	: 1 uL			
Date Acquired	: 3/25/2023 12:42:27 PM	Acquired by	: IIT GOA	
Date Processed	: 3/25/2023 12:58:21 PM	Processed by	: IIT GOA	

<Chromatogram>

mAU

Figure S4e: RP-HPLC-MS and corresponding UV-Vis spectra of L5 at $t_R = 4.389$ min; HPLC purity 90%; m/z values for $t_R = 3.857$, 4.389 & 6.367 min shows same m/z: fragmentation pattern at 4.389 min $[C_{25}H_{19}FeN_3 = M]$; $m/z = 418 [M+H]^+ (C_{25}H_{20}FeN_3^+)$, $m/z = 440 [M+Na]^+$ $(C_{25}H_{20}FeN_3Na^+).$

Figure S5a: ¹H NMR spectrum of Re1 (400 MHz, CDCl₃) (water peak at 1.6 ppm).

Figure S5b: ¹H NMR spectrum of Re1 (400 MHz, DMSO-d₆) (water peak at 3.33 ppm).

Figure S5c: ${}^{13}C{}^{1}H$ NMR spectrum of **Re1** (101 MHz, DMSO-d₆) with 16405 scans.

•

Figure S5d: ATR–IR spectrum of Re1.

Figure S5e: Absorbance spectra of Re1 (0.01 mM) in acetonitrile and DMF.

Figure S5e: *HRMS for* **Re1** [$C_{18}H_{11}BrN_3O_3Re = M$] Calcd for [M+Na⁺] m/z 605.9416 found m/z 605.9405; Calcd for [(M–CO–Br)⁺+MeOH] m/z 508.0631 found m/z 508.0320.

Figure S6a: ¹H NMR spectrum of Re2 (500 MHz, CDCl₃) (water peak at 1.6 ppm).

Figure S6b: ¹H NMR spectrum of Re2 (400 MHz, DMSO-d₆) (water peak at 3.47 ppm).

Figure S6c: ${}^{13}C{}^{1}H$ NMR spectrum of **Re2** (101 MHz, DMSO-d₆) with 13678 scans.

Figure S6d: ATR–IR spectrum of Re2.

Figure S6e: Absorbance spectra of Re2 (0.01 mM) in acetonitrile and DMF.

Figure S6f: Mass fragmentation pattern and isotopic distribution for **Re2** $[C_{24}H_{15}BrN_3O_3Re = M]$; $m/z = 660 [M+H]^+ (C_{24}H_{16}BrN_3O_3Re)$; $m/z = 580 [M-Br]^+ (C_{24}H_{16}N_3O_3Re)$.

Figure S6g: HRMS for **Re2** $[C_{24}H_{15}BrN_3O_3Re = M]$; Calcd for $[M-CO+Na]^+ m/z$ 653.9775 found m/z 653.1380; Calcd for $[(M-Br)^+] m/z$ 580.0643 found m/z 580.0848.

Figure S7a: ¹H NMR spectrum of Re3 (400 MHz, CDCl₃) (water peak at 1.6 ppm).

Figure S7b: ¹*H NMR spectrum of Re3* (400 *MHz, DMSO-d*₆) (water peak at 3.38 ppm).

Figure S7c: ${}^{13}C{}^{1}H$ NMR spectrum of **Re3** (101 MHz, DMSO-d₆) with 13643 scans.

Figure S7d: ATR–IR spectrum of Re3.

Figure S7e: Absorbance spectra of Re3 (0.01 mM) in acetonitrile and DMF.

Figure S7f: HRMS for **Re3** $[C_{25}H_{17}BrN_3O_3Re = M]$; Calcd for $[M+H]^+ m/z = 674.0055$ $(C_{25}H_{18}^{79}BrN_3O_3Re)$ found m/z = 674.0090; Calcd for $[(M-CO-Br)^++MeOH] m/z = 598.1112$ found m/z = 598.0814.

Figure S8a: ¹*H NMR spectrum of Re4 (500 MHz, CDCl₃)* (water peak at 1.6 ppm).

Figure S8b: ¹H NMR spectrum of **Re4** (400 MHz, DMSO-d₆) (water peak at 3.33 ppm).

Figure S8c: ${}^{13}C{}^{1}H$ NMR spectrum of **Re4** (101 MHz, DMSO-d₆) with 11100 scans.

Figure S8d: ATR–IR spectrum of Re4.

Figure S8e: Absorbance spectra of Re4 (0.01 mM) in acetonitrile and DMF.

Figure S8f: HRMS for Re4 [$C_{24}H_{14}Br_2N_3O_3Re = M$] Calcd for [M+H]⁺ m/z = 739.9004 ($C_{25}H_{18}^{81}Br_2N_3O_3Re$) found m/z = 739.8991; Calcd for [(M–Br)⁺] m/z = 657.9748 found m/z = 657.9763.

Figure S9a: ¹*H NMR spectrum of Re5 (400 MHz, CDCl₃)* (water peak at 1.6 ppm) *toluene* peaks marked with *; observed at 7.24, 7.18 & 2.36 ppm; reported³ at 7.25, 7.17 & 2.36 ppm.

Figure S9b.: ${}^{13}C{}^{1}H$ NMR spectrum of **Re5** (101 MHz, CDCl₃), with 15879 scans. The ${}^{13}C$ peaks for CO were not observed even with longer scans; toluene peaks marked with *; observed at 137.9, 129.1, 128.3, 125.3 & 21.5 ppm; reported³ at 137.0, 129.0, 128.2, 125.3 & 21.5 ppm.

Figure S9c: ¹*H NMR spectrum of Re5 (400 MHz, DMSO-d*₆*) (water peak at 3.33 ppm); toluene peaks marked with *; observed at 7.24, 7.17 & 2.30 ppm; reported*³ *at 7.25, 7.18 & 2.30 ppm.*

Figure S9d: ¹³C{¹H} NMR spectrum of **Re5** (101 MHz, DMSO-d₆)with 1024 scans; toluene peaks marked with *; observed at 137.8, 129.4, 128.7, 125.8 & 21.5 ppm; reported³ at 137.4, 128.9, 128.2, 125.3 & 21.0 ppm.

Figure S9e: COSY spectra of Re5 (DMSO-d₆).

Figure S9f: (i)Section of COSY spectra (0-6 ppm) shows the $-CH_3$ peak of toluene, with no correlation to any other protons; (ii) Section of COSY spectra (6-10 ppm) shows the aromatic protons of toluene, having no correlation with any other aromatic peaks of the complex.

Figure S9g: HSQC spectra of Re5 (DMSO-d₆).

Figure S9h: HSQC spectra of the aromatic region shows three ${}^{13}C$ correlated with the protons at 7.21 ppm, which are characteristic of toluene³.

Figure S9i: ATR–IR spectrum of Re5.

Figure S9j: Absorbance spectra of Re5 (0.01 mM) in acetonitrile and DMF.

Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename	: Re5 : Re5 : Re5 27-03-2023 003.lcd		
Method Filename	: C_95_D_5_10_min_0.2ml_min.lcm		
Batch Filename	: 27032023.lcb		
Vial #	: 1-93	Sample Type	: Unknown
Injection Volume	: 0.5 uL		
Date Acquired	: 3/27/2023 10:22:05 AM	Acquired by	: IIT GOA
Date Processed	: 3/27/2023 10:32:10 AM	Processed by	: IIT GOA

<Chromatogram>

Figure S9k: RP-HPLC-MS and corresponding UV-Vis spectra of **Re5** at $t_R = 1.989$ min; HPLC purity 96.4%; m/z values for $t_R = for 1.600$ & 1.989 min shows same m/z; Mass fragmentation pattern at 1.989 min $[C_{28}H_{19}BrFeN_3O_3Re = M]$, m/z = 768 $[M+H]^+$ $(C_{28}H_{20}BrFeN_3O_3Re)$, m/z = 688 $[M-Br]^+$ ($C_{28}H_{19}N_3O_3Re$).

Figure S9i: HRMS for **Re5** $[C_{28}H_{19}BrFeN_3O_3Re = M]$ Calcd for $[M+Na]^+ m/z = 789.9394$ $(C_{28}H_{19}^{79}BrFeN_3O_3ReNa)$ found m/z = 789.9397 $[M+Na]^+$; Calcd for $[(M-Br)^+] m/z = 688.0352$ found m/z = 688.0422.

Re(I) complexes		$\mathcal{U}_{str(C=O)}(cm^{-1})$	
Re(CO) ₅ Br	2017	1942	
Re1	2019	1911	1884
Re2	$2013 (2018)^{1}$	1906 (1909)	1876 (1878)
Re3	2021	1934	1898
Re4	2019	1940 & 1907	1880
Re5	2013	1904	1886
Re(bpy)(CO) ₃ Br/Re7	$2010(2011)^2$	1898 (1903)	1867 (1880)

Figure S10: Comparisons of infrared spectra for all Re(I) complexes and $Re(CO)_5Br$, the starting precursor. In the parenthesis, previously reported values are shown.

Figure S11.: UV-Vis spectral changes in Re(I) complexes (0.01 mM in acetonitrile, obtained from diluting a stock solution of 0.3 mM in acetonitrile) shown at certain time intervals 0 h, 4 h and 24 h. The sample was kept at ambient condition.

Transition Wavelength(nm)	Oscillator Strength	Excitations	Nature
249	0.180	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_x (Br) \rightarrow \pi^*(tpy)$	ILCT
256	0.146	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_y (Br) \rightarrow \pi^*(tpy)$	ILCT
303	0.393	$\pi(tpy) \rightarrow \pi^*(tpy)$ $\pi_{yz}(Re\text{-}Br) \rightarrow \pi^*(tpy)$	Combination of MLCT and ILCT
431	0.056	$5d_{yz}(Re), 4p_y(Br) \rightarrow \pi^*(tpy)$	MLCT

tpy=terpyridine

Figure S12: Frontier Molecular Orbitals of complex *Re1*; with TDDFT data calculated at B3LYP/Def2-TZVP level of theory using acetonitrile as implicit solvent.

Transition Wavelength(nm)	Oscillator Strength	Excitations	Nature
281	0.355	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_y (Br) \rightarrow \pi^*(tpy)$	ILCT
309	0.287	$\pi(tpy) \rightarrow \pi^*(tpy)$ $\pi_{yz}(Re-Br) \rightarrow \pi^*(tpy)$	Combination of MLCT and ILCT
438	0.088	$5d_{yz}(Re), 4p_y(Br) \rightarrow \pi^*(tpy)$	MLCT

Figure S13: Frontier Molecular Orbitals of complex *Re2*; with TDDFT data calculated at B3LYP/Def2-TZVP level of theory using acetonitrile as implicit solvent.

Transition Wavelength(nm)	Oscillator Strength	Excitations	Nature
287	0.328	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_y (Br) \rightarrow \pi^*(tpy)$	ILCT
309	0.227	$\pi(tpy) \rightarrow \pi^*(tpy)$ $\pi_{yz}(Re\text{-}Br) \rightarrow \pi^*(tpy)$	Combination of MLCT and ILCT
436	0.098	$5d_{yz}(Re), 4p_y(Br) \rightarrow \pi^*(tpy)$	MLCT

Figure S14: Frontier Molecular Orbitals of complex *Re3*; with TDDFT data calculated at B3LYP/Def2-TZVP level of theory using acetonitrile as implicit solvent.

HOMO-1

номо

lumo

LUMO+1

Transition Wavelength(nm)	Oscillator Strength	Excitations	Nature
285	0.437	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_y (Br) \rightarrow \pi^*(tpy)$	ILCT
310	0.211	$\pi(tpy) \rightarrow \pi^*(tpy)$ $\pi_{yz}(Re\text{-}Br) \rightarrow \pi^*(tpy)$	Combination of MLCT and ILCT
441	0.095	$5d_{yz}(Re), 4p_y(Br) \rightarrow \pi^*(tpy)$	MLCT

Figure S15: Frontier Molecular Orbitals of complex *Re4*; with TDDFT data calculated at B3LYP/Def2-TZVP level of theory using acetonitrile as implicit solvent.

HOMO-1

LUMO

LUMO+1

Transition Wavelength(nm)	Oscillator Strength	Excitations	Nature
282	0.260	$\pi (tpy) \rightarrow \pi^*(tpy)$ $p_y (Br) \rightarrow \pi^*(tpy)$	ILCT
309	0.197	$\pi(tpy) \rightarrow \pi^*(tpy)$ $\pi_{yz}(Re\text{-}Br) \rightarrow \pi^*(tpy)$	Combination of MLCT and ILCT
438	0.098	$3d_{xy} (Fe) \rightarrow \pi^*(tpy)$ $5d_{yz} (Re), 4p_y(Br) \rightarrow \pi^*(tpy)$	MLCT
516	0.008	$3d_{x2-y2} (Fe), \rightarrow 3d_{xz} (Fe)$ $3d_{z2} (Fe) \rightarrow 3d_{yz} (Fe)$	d-d transition
602	0.013	$3d_{x2-y2} (Fe) \rightarrow 3d_{xz} (Fe)$ $3d_{xy} (Fe) \rightarrow 3d_{yz} (Fe)$	d-d transition

Figure S16: Frontier Molecular Orbitals of complex Re5; with TDDFT data calculated at B3LYP/Def2-TZVP level of theory using acetonitrile as implicit solvent.

Compound	Wavelength (nm)	$ au_1(ps)$	$ au_2(ps)$	Standard Deviation
Re1	370	46 ± 5 (0.0034 ± 0.0001)	2212 ± 149 (0.0055 ± 0.0001)	0.0002
	525	0.58 97 ± 25 (0.0005 ± 0.00001) 0.25	$\frac{0.02}{2212 \pm 164}$ (0.0015 ± 0.00003) 0.75	0.0001
Re5	370 nm	10 ± 0.7 0.0018 ± 0.00001 0.60	855.0 0.0012 ± 0.0001 0.40	0.0001
	525 nm		19 ± 3 -0.0006 ± 0.00003	0.00001
	585 nm	-	18 ± 3 0.0003 ± 0.00002	0.00001

Figure S17: *Kinetic traces at 370 nm and 525 nm for Re1 (a) and 370 nm, 525nm, and 585 nm for Re5 (b), with the kinetic fitting parameters in the table.*

Compound	Wavelength (nm)	τ ₁ (ps)	τ ₂ (ps)	Standard Deviation
	370	100 ± 18 (0.0042 ± 0.0002) 0.37	2213 ± 210 (0.007 ± 0.0002) 0.63	0.0003
Ke2	525	58 ± 11 (0.0020 ± 0.0001) 0.29	2466 ± 200 (0.0040 ± 0.0001) 0.71	0.0002

Figure S18: (a) 2D plots of *Re2, (b)* global lifetime analysis, *(c)* Kinetic traces at 370 nm and 525 nm; with the kinetic fitting parameters in the table.

Compound	Wavelength (nm)	τ ₁ (ps)	T2 (ps)	Standard Deviation
	370	118 ± 25 (0.0028 ± 0.0002)	2438 ± 180 (0.0086 ± 0.0001)	0.0002
Da2		0.19	0.81	
Re3		46 ± 8	2585 ± 206	0.0002
	525	(0.0018 ± 0.0001)	(0.0044 ± 0.0001)	
		0.29	0.71	

Figure S19: (a) 2D plots of *Re3, (b)* global lifetime analysis, *(c)* Kinetic traces at 370 nm and 525 nm; with the kinetic fitting parameters in the table.

Compound	Wavelength (nm)	τ ₁ (ps)	t2 (ps)	Standard Deviation
	370	141 ± 19	2210 ± 130	0.0001
		(0.0021 ± 0.0001)	(0.0049 ± 0.0001)	
D - 4		0.30	0.70	
Ke4	525	45 ± 4	2226 ± 95	0.0001
		(0.0012 ± 0.0001)	(0.0028 ± 0.0001)	
		0.30	0.70	

Figure S20: (a) 2D plots of *Re4, (b)* global lifetime analysis, *(c)* Kinetic traces at 370 nm and 525 nm; with the kinetic fitting parameters in the table.

Figure S21: (a) 2D plots of L5, (b) transient absorption spectra at different delay times.

Figure S22: Scan rate dependent cyclic voltammograms of 1 mM **Re1** in N_2 saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte. The inset figure shows the voltammogram of **Re1** when the scan is reversed before the second reduction.

Figure S23: Scan rate dependent cyclic voltammograms of 1 mM Re2 in N_2 saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte.

Figure S24: Scan rate dependent cyclic voltammograms of 0.6 mM Re3 in N_2 saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte.

Figure S25: Scan rate dependent cyclic voltammograms of 1 mM **Re4** in N_2 saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte.

Figure S26: Scan rate dependent cyclic voltammograms of 1 mM **Re5** in N_2 saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte. Figure (a) shows oxidative event(s) and the first reduction event. Figure (b) shows the reduction processes occurring before -2.55 V.

Figure S27: Determination of diffusion coefficients from scan rate dependent CVs shown in *Figure S22-26.* Peak currents for the first reductive step (~ -1.8 V) vs the square root of the scan rate for **Re1-5** and **Re7**.

Figure S28: Scan rate dependent cyclic voltammograms of Re1-5 and Re7 at fast scan rates (25, 20, 15, 12.5, 10, 8, 6, 4, 2, $1 V s^{-1}$) in N₂ saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte.

Figure S29: Catalytic cyclic voltammograms of *Re1-5* and *Re7* recorded in acetonitrile under N_2 and CO_2 in the absence or presence of 10 mM trifluoroethanol (TFE). Voltammograms were recorded at 100 mV s⁻¹ using 0.1 M n-Bu₄NBF₄ as the supporting electrolyte.

Figure S30: Cyclic voltammograms of **Re1-5** at fast scan rates (25, 20, 15, 12.5, 10, 8, 6, 4, 2, $1 V s^{-1}$) in CO₂ saturated acetonitrile containing 0.1 M n-Bu₄NBF₄ as the supporting electrolyte. The inset figures present the scan rate dependence of the plateau catalytic current (*i*_{cat}). The corresponding potential is shown by the red dashed line.

Figure S31: Representative cyclic voltammograms of **Re2** (~1 mM) under N_2 and CO_2 saturated acetonitrile to demonstrate the determination of i_{cat} and i_p . Conditions: supporting electrolyte 0.1 M n-Bu₄NBF₄, scan rate 100 mV s⁻¹.

Figure S32: Cyclic voltammograms of *Re2* (~1 mM) under N_2 and CO_2 saturated acetonitrile at different scan rates (1, 0.8, 0.5, 0.2, 0.1, 0.05 V s⁻¹). Conditions: supporting electrolyte 0.1 *M* n-Bu₄NBF₄.

Figure S33: Cyclic voltammograms of (a) *Re3* (0.6 mM) and (b) *Re4* (1 mM) under N_2 and CO_2 in neat acetonitrile and in acetonitrile/water mixture (99:1 v/v), demonstrating minimal effect of water on electrocatalysis. Condition: 0.1 M n-Bu₄NBF₄ supporting electrolyte, 0.1 V s^{-1} scan rate.

Figure S34: Cyclic voltammograms of **Re2** under N_2 and CO_2 in the presence varying concentration of TFE. Figure A and B show the voltametric response in the presence of 10 mM and 50 mM TFE, respectively, under N_2 and CO_2 . Figure C shows the difference in response under N_2 without TFE and in the presence of TFE (10 and 50 mM). Condition: 0.1 M n-Bu₄NBF₄ supporting electrolyte, 0.1 V s⁻¹ scan rate.

Figure S35: Cyclic voltammograms of **Re2** (~0.6 mM) at fast scan rates (25, 20, 15, 12.5, 10, 8, 6, 4, 2, 1 V s⁻¹) in CO₂ saturated acetonitrile containing (A) 10 mM TFE and (B) 20 mM TFE. 0.1 M n-Bu₄NBF₄ was used as the supporting electrolyte. Inset figure (A) shows the dependence of i_{cat} on scan rate.

Figure S36: Current versus time plots for controlled potential electrolyses of **Re1-5** in CO₂ saturated 0.5% (v/v) water/acetonitrile mixture -2.3 V vs Fc^{+/0}. Blank trace shows current in the absence of any catalyst. Electrolyses were performed using a glassy carbon plate working electrode (A ~ 2 cm²) and 0.1 M n-Bu₄NBF₄ electrolyte.

Figure S37: UV-vis spectra of **Re5** before and after 1 h electrolysis in CO_2 saturated 0.5% water/acetonitrile mixture.

Figure S38: UV-vis spectrum of *Re1* after 1 h electrolysis in CO₂ saturated 0.5% water/acetonitrile mixture. The pre-CPE concentration of *Re1* in the electrolyte (0.1 M Bu₄NBF₄) was 0.25 mM.

Figure S39: UV-vis spectrum of Re2 after 1 h electrolysis in CO_2 saturated 0.5% water/acetonitrile mixture. The pre-CPE concentration of Re2 in the electrolyte (0.1 M Bu_4NBF_4) was 0.25 mM.

Figure S40: Current vs. time plot for a 'Rinse test' to exclude catalytically active deposit formation on electrode. Black trace shows the current vs. time plot for electrolysis of **Re3**. After electrolysis, the glassy carbon working electrode was removed, rinsed with acetonitrile and reused for a 15-min controlled potential electrolysis without any catalyst (red trace). A very low current demonstrates that the catalysis is homogeneous in nature.

References:

- 1 S. A. Moya, R. Pastene, H. Le Bozec, P. J. Baricelli, A. J. Pardey and J. Gimeno, Inorganica Chim. Acta, 2001, **312**, 7–14.
- 2R. Kia and F. Safari, Inorganica Chim. Acta, 2016, 453, 357–368.
- 3 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J.
- E. Bercaw, and K, I. Goldberg, Organomet., 2010, 29, 2176–2179.

E = -742.316928619992 au

0 i1	naginary frequencie.	S	
Ν	2.189845000000	0.125053000000	-0.363231000000
Ν	-0.289042000000	1.444332000000	-0.391820000000
Ν	-2.662767000000	0.303166000000	-1.311087000000
С	3.320650000000	-0.508778000000	-0.673542000000
Η	3.339100000000	-1.577767000000	-0.485821000000
С	4.436100000000	0.127146000000	-1.206461000000
Η	5.327723000000	-0.438846000000	-1.442853000000
С	4.365858000000	1.496480000000	-1.424177000000
Η	5.205761000000	2.034981000000	-1.845481000000
С	3.195660000000	2.168464000000	-1.099796000000
Η	3.111206000000	3.232424000000	-1.274674000000
С	2.121253000000	1.448379000000	-0.569336000000
С	0.842396000000	2.133532000000	-0.215100000000
С	-1.460564000000	2.011473000000	-0.086846000000
С	-2.691737000000	1.196507000000	-0.311804000000
С	-3.749520000000	-0.434006000000	-1.538451000000
С	-1.542377000000	3.314542000000	0.413506000000
С	0.843401000000	3.439254000000	0.283993000000
С	-0.370200000000	4.031068000000	0.599699000000
Η	-0.402237000000	5.042010000000	0.986548000000
Η	1.771168000000	3.972966000000	0.437149000000
Η	-2.500204000000	3.763970000000	0.635444000000
С	-4.916678000000	-0.332386000000	-0.790056000000
С	-3.822914000000	1.363219000000	0.493175000000
С	-4.947449000000	0.587388000000	0.249413000000
Η	-3.687531000000	-1.140231000000	-2.360537000000
H	-5.769651000000	-0.957973000000	-1.018603000000
Η	-3.818822000000	2.074727000000	1.307399000000
H	-5.830346000000	0.697184000000	0.866908000000

2. L2

E = -973.313988510752 au 0 imaginary frequencies

0 u	naginary frequencie.	S	
Ν	2.136872000000	0.434943000000	-0.514697000000
Ν	-0.378926000000	1.607386000000	-0.162857000000
Ν	-2.828116000000	0.530311000000	-1.013177000000
С	3.260568000000	-0.103674000000	-0.987389000000
H	3.335452000000	-1.185132000000	-0.931150000000
С	4.301787000000	0.642748000000	-1.526760000000
Η	5.191717000000	0.151848000000	-1.898464000000
С	4.159537000000	2.022905000000	-1.574284000000
H	4.938840000000	2.646683000000	-1.994360000000

С	2.995855000000	2.595516000000	-1.080371000000
Η	2.856391000000	3.667153000000	-1.121917000000
С	1.999877000000	1.767958000000	-0.553507000000
С	0.729956000000	2.338519000000	-0.012434000000
С	-1.533060000000	2.086377000000	0.310967000000
С	-2.750084000000	1.242073000000	0.120177000000
С	-3.905676000000	-0.227922000000	-1.215232000000
С	-1.621296000000	3.321298000000	0.953610000000
С	0.722572000000	3.581894000000	0.620016000000
С	-0.474269000000	4.099213000000	1.118035000000
Η	1.640255000000	4.143221000000	0.722228000000
Η	-2.575032000000	3.671857000000	1.321655000000
С	-4.954019000000	-0.328665000000	-0.307862000000
С	-3.757135000000	1.199802000000	1.088507000000
С	-4.871181000000	0.401388000000	0.870126000000
Η	-3.935427000000	-0.781701000000	-2.148308000000
Η	-5.804515000000	-0.962395000000	-0.522690000000
Η	-3.662825000000	1.766620000000	2.004792000000
Η	-5.658206000000	0.347848000000	1.612201000000
С	-0.524423000000	5.420253000000	1.790486000000
С	-1.635094000000	6.259970000000	1.637119000000
С	0.537061000000	5.858142000000	2.592714000000
С	-1.680338000000	7.500188000000	2.262680000000
С	0.487207000000	7.095591000000	3.223729000000
С	-0.620480000000	7.922300000000	3.059875000000
Η	-2.460566000000	5.951354000000	1.008041000000
Η	1.399056000000	5.219759000000	2.740543000000
Η	-2.543799000000	8.139278000000	2.123044000000
Η	1.313942000000	7.412194000000	3.848128000000
Η	-0.657231000000	8.887969000000	3.549167000000

E = -1012.617136712920 *au*

2.144839000000	0.444352000000	-0.478228000000
-0.382655000000	1.606841000000	-0.162536000000
-2.825170000000	0.511465000000	-1.008025000000
3.273706000000	-0.095136000000	-0.937743000000
3.357622000000	-1.174449000000	-0.857531000000
4.309330000000	0.647899000000	-1.492312000000
5.203887000000	0.156474000000	-1.852075000000
4.155472000000	2.025525000000	-1.570268000000
4.930233000000	2.646342000000	-2.003041000000
2.986448000000	2.599102000000	-1.090293000000
2.837447000000	3.668330000000	-1.155258000000
1.996791000000	1.774909000000	-0.546423000000
0.721733000000	2.346287000000	-0.017767000000
	2.144839000000 - 0.382655000000 - 2.825170000000 3.273706000000 3.357622000000 4.309330000000 5.203887000000 4.155472000000 4.930233000000 2.986448000000 2.837447000000 1.996791000000 0.721733000000	$\begin{array}{llllllllllllllllllllllllllllllllllll$

С	-1.539968000000	2.086799000000	0.303331000000
С	-2.752693000000	1.234654000000	0.118518000000
С	-3.898826000000	-0.253802000000	-1.204553000000
С	-1.635586000000	3.327594000000	0.932876000000
С	0.706197000000	3.597711000000	0.597853000000
С	-0.493585000000	4.115709000000	1.089963000000
Η	1.621740000000	4.164025000000	0.691768000000
Η	-2.592218000000	3.674574000000	1.296674000000
С	-4.948361000000	-0.350857000000	-0.298147000000
С	-3.761561000000	1.197121000000	1.085189000000
С	-4.871379000000	0.391198000000	0.872741000000
Η	-3.924215000000	-0.816713000000	-2.132325000000
Η	-5.795246000000	-0.991050000000	-0.508163000000
Η	-3.671744000000	1.773887000000	1.995705000000
Η	-5.659554000000	0.341144000000	1.613878000000
С	-0.551294000000	5.442291000000	1.747549000000
С	-1.677474000000	6.262750000000	1.623399000000
С	0.521635000000	5.917029000000	2.514583000000
С	-1.726340000000	7.508831000000	2.238040000000
С	0.464024000000	7.158124000000	3.131365000000
С	-0.659894000000	7.981308000000	3.004444000000
Η	-2.518960000000	5.938294000000	1.023838000000
Η	1.402585000000	5.301513000000	2.648320000000
Η	-2.608930000000	8.126163000000	2.114505000000
Η	1.305969000000	7.493359000000	3.727168000000
С	-0.707574000000	9.328743000000	3.672129000000
Η	-1.660128000000	9.828265000000	3.491414000000
Η	-0.571768000000	9.238417000000	4.753284000000
Η	0.090805000000	9.979190000000	3.303976000000

E = -3546.759084658975 au

Ν	2.138119000000	0.436426000000	-0.508972000000
Ν	-0.376481000000	1.612040000000	-0.166316000000
Ν	-2.824321000000	0.525132000000	-1.008137000000
С	3.261594000000	-0.106037000000	-0.977613000000
Η	3.335576000000	-1.187185000000	-0.914665000000
С	4.303750000000	0.636274000000	-1.520940000000
Η	5.193474000000	0.142339000000	-1.889116000000
С	4.162794000000	2.016210000000	-1.576855000000
Η	4.942922000000	2.636700000000	-2.000245000000
С	2.999348000000	2.592923000000	-1.086967000000
Η	2.86098000000	3.664456000000	-1.134948000000
С	2.002479000000	1.769287000000	-0.555923000000
С	0.732531000000	2.343399000000	-0.018703000000
С	-1.531091000000	2.091974000000	0.304991000000
С	-2.747652000000	1.246054000000	0.119402000000
С	-3.901765000000	-0.234601000000	-1.205046000000
С	-1.619840000000	3.329413000000	0.942540000000

C	0.725237000000	3.589163000000	0.609377000000
С	-0.472376000000	4.106483000000	1.104749000000
Η	1.642847000000	4.150867000000	0.710758000000
Η	-2.573405000000	3.681260000000	1.309710000000
С	-4.951120000000	-0.327674000000	-0.297975000000
С	-3.755537000000	1.211770000000	1.087148000000
С	-4.869489000000	0.411837000000	0.874138000000
Η	-3.930593000000	-0.796172000000	-2.133458000000
Η	-5.801493000000	-0.962992000000	-0.508508000000
Η	-3.662099000000	1.785783000000	1.999009000000
Η	-5.657259000000	0.364511000000	1.615842000000
С	-0.524689000000	5.426140000000	1.778214000000
С	-1.635796000000	6.264125000000	1.628563000000
С	0.532013000000	5.864555000000	2.584421000000
С	-1.695973000000	7.499850000000	2.260052000000
С	0.482973000000	7.094629000000	3.228244000000
С	-0.634115000000	7.900815000000	3.058831000000
Η	-2.461416000000	5.963252000000	0.996572000000
Η	1.399025000000	5.233903000000	2.733400000000
Η	-2.560335000000	8.135266000000	2.122406000000
Η	1.305331000000	7.409590000000	3.856178000000
Br	-0.710778000000	9.599376000000	3.944836000000

E = -2391.766938733877 au

Ν	2.138271000000	0.444137000000	-0.709081000000
Ν	-0.393384000000	1.599335000000	-0.374721000000
Ν	-2.836872000000	0.567435000000	-1.303494000000
С	3.274154000000	-0.074086000000	-1.175992000000
Η	3.355714000000	-1.156173000000	-1.148532000000
С	4.319989000000	0.693429000000	-1.675146000000
Η	5.220034000000	0.218852000000	-2.043649000000
С	4.168988000000	2.073520000000	-1.687967000000
Η	4.951714000000	2.713099000000	-2.076881000000
С	2.992643000000	2.624723000000	-1.200227000000
Η	2.844733000000	3.695889000000	-1.214543000000
С	1.993096000000	1.776813000000	-0.713589000000
С	0.711219000000	2.327502000000	-0.179376000000
С	-1.554177000000	2.065375000000	0.099723000000
С	-2.770113000000	1.231649000000	-0.140939000000
С	-3.913098000000	-0.180441000000	-1.547882000000
С	-1.653989000000	3.276337000000	0.781714000000
С	0.694189000000	3.546779000000	0.496189000000
С	-0.510784000000	4.052696000000	0.990346000000
Η	1.616848000000	4.086253000000	0.652041000000
Η	-2.619228000000	3.618899000000	1.125400000000
С	-4.971327000000	-0.316568000000	-0.656995000000
С	-3.788288000000	1.151653000000	0.813577000000

С	-4.900833000000	0.364898000000	0.550685000000
Η	-3.933525000000	-0.695287000000	-2.503265000000
Η	-5.819972000000	-0.939977000000	-0.906610000000
Η	-3.701879000000	1.681297000000	1.752700000000
Η	-5.696445000000	0.282331000000	1.280857000000
Fe	-1.041702000000	7.201111000000	0.916372000000
С	0.517729000000	6.249921000000	1.905807000000
С	-0.342106000000	7.928813000000	-0.906066000000
С	-0.566773000000	5.330355000000	1.713230000000
С	0.049553000000	7.339416000000	2.686346000000
С	-0.838717000000	9.000815000000	-0.109983000000
С	-1.411183000000	7.014440000000	-1.125939000000
С	-1.710256000000	5.888016000000	2.377623000000
С	-1.325832000000	7.115876000000	2.978012000000
С	-2.213552000000	8.747402000000	0.162164000000
С	-2.567621000000	7.518268000000	-0.465293000000
Η	1.518347000000	6.143117000000	1.518848000000
Η	0.669868000000	7.820063000000	-1.264020000000
Η	0.630601000000	8.198526000000	2.983540000000
Η	-0.268183000000	9.846068000000	0.242660000000
Η	-1.349788000000	6.088099000000	-1.675971000000
Η	-2.695722000000	5.452766000000	2.418743000000
Η	-1.971676000000	7.773832000000	3.538340000000
Η	-2.866151000000	9.367211000000	0.757230000000
Η	-3.536301000000	7.044243000000	-0.431991000000

E = -3734.835146463211 *au*

Re	0.274653000000	-0.879752000000	-0.076046000000
Br	0.813799000000	-0.272336000000	2.495956000000
0	-2.385549000000	-2.185616000000	0.786550000000
0	1.433536000000	-3.700067000000	0.310963000000
0	-0.301282000000	-1.591578000000	-3.007923000000
Ν	2.169979000000	0.138151000000	-0.555618000000
Ν	-0.227075000000	1.335982000000	-0.239063000000
Ν	-2.852761000000	0.480544000000	-1.410382000000
С	-1.414477000000	-1.659726000000	0.454208000000
С	0.999103000000	-2.638924000000	0.163904000000
С	-0.092650000000	-1.297773000000	-1.907592000000
С	3.312022000000	-0.508401000000	-0.836072000000
Η	3.268001000000	-1.587321000000	-0.844327000000
С	4.496225000000	0.151365000000	-1.107673000000
Η	5.387343000000	-0.419411000000	-1.329561000000
С	4.502666000000	1.539443000000	-1.091883000000
Η	5.407835000000	2.093183000000	-1.304608000000
С	3.326588000000	2.211694000000	-0.806221000000
Η	3.312435000000	3.290510000000	-0.805815000000
С	2.165281000000	1.488023000000	-0.537177000000
С	0.868668000000	2.136993000000	-0.261911000000

-1.440029000000	1.908982000000	-0.084022000000
-2.689647000000	1.109285000000	-0.240100000000
-4.000425000000	-0.163250000000	-1.623805000000
-1.578130000000	3.273384000000	0.157935000000
0.779755000000	3.509153000000	-0.046300000000
-0.455699000000	4.081683000000	0.191401000000
-0.543319000000	5.143942000000	0.378321000000
1.667293000000	4.122400000000	-0.049713000000
-2.566876000000	3.689168000000	0.290600000000
-5.031460000000	-0.214542000000	-0.692186000000
-3.669435000000	1.118112000000	0.751760000000
-4.85780000000	0.438266000000	0.520206000000
-4.103637000000	-0.657193000000	-2.584441000000
-5.943402000000	-0.751710000000	-0.918037000000
-3.498658000000	1.638787000000	1.684725000000
-5.633181000000	0.419839000000	1.275936000000
	-1.44002900000 -2.68964700000 -4.00042500000 -1.57813000000 0.77975500000 -0.45569900000 -0.54331900000 1.66729300000 -2.56687600000 -3.66943500000 -4.10363700000 -5.94340200000 -5.94340200000 -3.49865800000 -5.63318100000	-1.440029000001.908982000000-2.6896470000001.109285000000-4.000425000000-0.163250000000-1.5781300000003.2733840000000.7797550000003.509153000000-0.4556990000004.081683000000-0.5433190000005.1439420000001.6672930000004.122400000000-2.5668760000003.689168000000-5.031460000000-0.214542000000-3.6694350000000.438266000000-4.103637000000-0.657193000000-5.9434020000001.638787000000-5.6331810000000.419839000000

E = -3965.832843722565 au 0 imaginary frequencies

0 u	naginary frequencie	S	
Re	0.254279000000	-0.716825000000	-0.341322000000
Br	1.082775000000	-0.64206000000	2.227088000000
0	-2.273687000000	-2.274559000000	0.499850000000
0	1.490448000000	-3.512536000000	-0.660113000000
0	-0.656264000000	-0.852047000000	-3.270981000000
Ν	2.071939000000	0.443214000000	-0.808184000000
Ν	-0.277529000000	1.462845000000	0.017525000000
Ν	-3.001867000000	0.843371000000	-1.058099000000
С	-1.354200000000	-1.651124000000	0.189436000000
С	1.024413000000	-2.461223000000	-0.544039000000
С	-0.319213000000	-0.772481000000	-2.165989000000
С	3.171081000000	-0.090021000000	-1.363311000000
Η	3.130892000000	-1.142761000000	-1.601193000000
С	4.306448000000	0.651447000000	-1.632355000000
Η	5.164069000000	0.171923000000	-2.083526000000
С	4.306661000000	2.003424000000	-1.317759000000
Η	5.172719000000	2.620396000000	-1.518845000000
С	3.173887000000	2.559750000000	-0.748413000000
Η	3.154212000000	3.614113000000	-0.519372000000
С	2.061614000000	1.756917000000	-0.496748000000
С	0.802420000000	2.283619000000	0.068237000000
С	-1.466736000000	1.962159000000	0.416295000000
С	-2.723587000000	1.185439000000	0.205662000000
С	-4.161994000000	0.234077000000	-1.303838000000
С	-1.583624000000	3.229517000000	0.973088000000
С	0.733042000000	3.561552000000	0.605272000000
С	-0.469643000000	4.057336000000	1.103714000000
Η	1.618521000000	4.176263000000	0.637967000000
Η	-2.558512000000	3.559719000000	1.301397000000
С	-5.092720000000	-0.062743000000	-0.314244000000

С	-3.595600000000	0.931049000000	1.263193000000
С	-4.798655000000	0.291357000000	0.995189000000
Η	-4.359995000000	-0.024185000000	-2.339021000000
Η	-6.020820000000	-0.557094000000	-0.570159000000
Η	-3.332690000000	1.222887000000	2.271343000000
Η	-5.492728000000	0.073993000000	1.797407000000
С	-0.560146000000	5.399578000000	1.718915000000
С	-1.717995000000	6.176443000000	1.582533000000
С	0.511545000000	5.918201000000	2.457576000000
С	-1.798449000000	7.435755000000	2.163718000000
С	0.424854000000	7.173591000000	3.046104000000
С	-0.728915000000	7.938187000000	2.899294000000
Η	-2.552905000000	5.806388000000	1.001091000000
Η	1.409226000000	5.328269000000	2.593481000000
Η	-2.697307000000	8.026935000000	2.038282000000
Η	1.258898000000	7.552719000000	3.623954000000
Η	-0.794225000000	8.918429000000	3.355395000000

E = -4005.136265536305 au

		-	
Re	0.254032000000	-0.712366000000	-0.333985000000
Br	1.074575000000	-0.624302000000	2.237161000000
0	-2.279174000000	-2.263251000000	0.503684000000
0	1.492559000000	-3.509727000000	-0.628718000000
0	-0.643231000000	-0.865467000000	-3.266952000000
Ν	2.074056000000	0.444578000000	-0.800781000000
Ν	-0.277967000000	1.469648000000	0.010010000000
Ν	-3.001230000000	0.843478000000	-1.062074000000
С	-1.357591000000	-1.642147000000	0.194595000000
С	1.024459000000	-2.458285000000	-0.521923000000
С	-0.310845000000	-0.779150000000	-2.160977000000
С	3.175569000000	-0.093099000000	-1.346901000000
Η	3.136658000000	-1.147951000000	-1.575375000000
С	4.311686000000	0.646296000000	-1.618131000000
Η	5.171420000000	0.162976000000	-2.061097000000
С	4.309841000000	2.001182000000	-1.316206000000
Η	5.176201000000	2.616829000000	-1.519919000000
С	3.174700000000	2.562031000000	-0.756090000000
Η	3.153600000000	3.618429000000	-0.536964000000
С	2.061969000000	1.760969000000	-0.500707000000
С	0.801293000000	2.291606000000	0.057851000000
С	-1.467058000000	1.971321000000	0.407159000000
С	-2.724272000000	1.194428000000	0.199618000000
С	-4.161563000000	0.233551000000	-1.305108000000
С	-1.583282000000	3.239486000000	0.960922000000
С	0.731679000000	3.572080000000	0.588009000000
С	-0.470283000000	4.070612000000	1.088357000000
Η	1.617361000000	4.186505000000	0.614893000000

Η	-2.557762000000	3.569232000000	1.290312000000
С	-5.094119000000	-0.055368000000	-0.314908000000
С	-3.598166000000	0.947853000000	1.257572000000
С	-4.801519000000	0.307615000000	0.992416000000
Η	-4.358234000000	-0.031980000000	-2.338689000000
Η	-6.022316000000	-0.550571000000	-0.568709000000
Η	-3.336387000000	1.246060000000	2.264115000000
Η	-5.496879000000	0.096585000000	1.795183000000
С	-0.562292000000	5.411111000000	1.702192000000
С	-1.737535000000	6.166571000000	1.621345000000
С	0.525319000000	5.961693000000	2.395494000000
С	-1.819172000000	7.423292000000	2.208173000000
С	0.433435000000	7.212098000000	2.986478000000
С	-0.739585000000	7.970308000000	2.903940000000
H	-2.592245000000	5.784553000000	1.077426000000
Η	1.443561000000	5.396895000000	2.497386000000
H	-2.738940000000	7.990113000000	2.120410000000
H	1.286254000000	7.605883000000	3.528183000000
С	-0.824883000000	9.327717000000	3.545464000000
Η	-1.815956000000	9.765039000000	3.420403000000
Η	-0.610243000000	9.270723000000	4.615973000000
Η	-0.093475000000	10.014664000000	3.110426000000

E = -6539.277625232964 au

Re	0.255110000000	-0.714429000000	-0.336620000000
Br	1.079574000000	-0.624375000000	2.232384000000
0	-2.274909000000	-2.267214000000	0.507410000000
0	1.498322000000	-3.509291000000	-0.633067000000
0	-0.648590000000	-0.868397000000	-3.267703000000
Ν	2.072659000000	0.444428000000	-0.807479000000
Ν	-0.278919000000	1.467609000000	0.010128000000
Ν	-3.001184000000	0.836501000000	-1.060966000000
С	-1.354535000000	-1.645811000000	0.195685000000
С	1.027964000000	-2.459058000000	-0.525766000000
С	-0.313710000000	-0.781979000000	-2.162624000000
С	3.172553000000	-0.090237000000	-1.359540000000
Η	3.134352000000	-1.144593000000	-1.590428000000
С	4.306382000000	0.651792000000	-1.633919000000
Η	5.164835000000	0.170859000000	-2.081956000000
С	4.304038000000	2.005908000000	-1.328856000000
Η	5.168516000000	2.623334000000	-1.535169000000
С	3.170452000000	2.563717000000	-0.762395000000
Η	3.148014000000	3.619647000000	-0.540891000000
С	2.060424000000	1.760016000000	-0.504298000000
С	0.801125000000	2.288113000000	0.058983000000
С	-1.468473000000	1.967328000000	0.407262000000
С	-2.724919000000	1.189310000000	0.200237000000

С	-4.160644000000	0.224593000000	-1.303030000000
С	-1.585319000000	3.235679000000	0.962160000000
С	0.732609000000	3.566508000000	0.595256000000
С	-0.470315000000	4.061543000000	1.092848000000
Η	1.618469000000	4.180707000000	0.628957000000
Η	-2.559870000000	3.566507000000	1.290873000000
С	-5.092489000000	-0.064566000000	-0.312144000000
С	-3.598097000000	0.943196000000	1.258823000000
С	-4.800409000000	0.300549000000	0.994676000000
Η	-4.357147000000	-0.042537000000	-2.336212000000
Η	-6.019926000000	-0.561613000000	-0.565140000000
Η	-3.336571000000	1.243250000000	2.264902000000
Η	-5.495277000000	0.089397000000	1.797835000000
С	-0.559664000000	5.401144000000	1.712766000000
С	-1.712647000000	6.183354000000	1.577285000000
С	0.507652000000	5.912888000000	2.460249000000
С	-1.801847000000	7.438008000000	2.165720000000
С	0.428326000000	7.161187000000	3.062626000000
С	-0.728540000000	7.912638000000	2.907472000000
Η	-2.548213000000	5.825955000000	0.989487000000
Η	1.405901000000	5.325071000000	2.598856000000
Η	-2.697256000000	8.031312000000	2.039774000000
Η	1.258334000000	7.533091000000	3.647604000000
Br	-0.844089000000	9.636236000000	3.736055000000

10.Re5

E = -5384.286714240699 *au*

Re	0.258215000000	-0.742999000000	-0.329794000000
Br	1.045967000000	-0.636532000000	2.251553000000
0	-2.287587000000	-2.284880000000	0.486267000000
0	1.490537000000	-3.547121000000	-0.587500000000
0	-0.590122000000	-0.916129000000	-3.276143000000
Ν	2.084636000000	0.411677000000	-0.776613000000
Ν	-0.281107000000	1.439616000000	-0.010738000000
Ν	-2.990066000000	0.808696000000	-1.112527000000
С	-1.360741000000	-1.668167000000	0.183711000000
С	1.028099000000	-2.491686000000	-0.494507000000
С	-0.277785000000	-0.822278000000	-2.164764000000
С	3.196121000000	-0.129610000000	-1.298714000000
Η	3.161585000000	-1.186127000000	-1.520204000000
С	4.336999000000	0.608041000000	-1.553793000000
Η	5.205076000000	0.121816000000	-1.97691000000
С	4.329196000000	1.965193000000	-1.261557000000
Η	5.199241000000	2.579587000000	-1.453111000000
С	3.183631000000	2.529643000000	-0.727129000000
Η	3.158052000000	3.587655000000	-0.516077000000
С	2.066582000000	1.729996000000	-0.485950000000
С	0.796090000000	2.264012000000	0.046746000000

С	-1.474900000000	1.944099000000	0.372892000000
С	-2.729888000000	1.167389000000	0.150648000000
С	-4.147793000000	0.198571000000	-1.367658000000
С	-1.599341000000	3.213405000000	0.918578000000
С	0.721206000000	3.545061000000	0.571781000000
С	-0.487313000000	4.047809000000	1.054951000000
Η	1.613034000000	4.147586000000	0.631285000000
Η	-2.581784000000	3.550424000000	1.214583000000
С	-5.094459000000	-0.082947000000	-0.388815000000
С	-3.618907000000	0.927899000000	1.197803000000
С	-4.819429000000	0.287715000000	0.920212000000
Η	-4.330543000000	-0.073365000000	-2.402155000000
Η	-6.019675000000	-0.578683000000	-0.652374000000
Η	-3.370496000000	1.231765000000	2.206053000000
Η	-5.526077000000	0.082512000000	1.714641000000
Fe	-1.077046000000	7.176431000000	0.767728000000
С	0.488963000000	6.318271000000	1.827879000000
С	-0.372149000000	7.830518000000	-1.080651000000
С	-0.577500000000	5.367488000000	1.679684000000
С	-0.009127000000	7.439277000000	2.539425000000
С	-0.894984000000	8.928651000000	-0.338967000000
С	-1.423074000000	6.888555000000	-1.267995000000
С	-1.740338000000	5.941412000000	2.297702000000
С	-1.383582000000	7.206628000000	2.829621000000
С	-2.267584000000	8.663722000000	-0.068303000000
С	-2.594389000000	7.401340000000	-0.641828000000
Η	1.497096000000	6.207783000000	1.462137000000
Η	0.645031000000	7.723465000000	-1.424044000000
Η	0.551884000000	8.325273000000	2.792701000000
Η	-0.342249000000	9.797656000000	-0.017070000000
Η	-1.340788000000	5.940541000000	-1.777028000000
Η	-2.717662000000	5.490140000000	2.356320000000
Η	-2.047363000000	7.884287000000	3.343505000000
Η	-2.936535000000	9.298283000000	0.492159000000
Η	-3.555042000000	6.912367000000	-0.595221000000