Supporting Information

Highly efficient yellow emission and abnormal thermal quenching

in Mn²⁺ doped Rb₄CdCl₆

Dayu Huang^{a,b,#}, Qiuyun Ouyang^{b,#}, Youchao Kong^c, Bo Wang^{c*}, Ziyong Cheng^a, Abdulaziz A. AI Kheraif^d, Hongzhou Lian^{a*} and Jun Lin^{a*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^b Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and College of Physics and Opotoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

^c Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China.

^d Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia

Dayu Huang and Qiuyun Ouyang contributed equally.

(Email: jlin@ciac.ac.cn, hzlian@ciac.ac.cn)

Computational details

All the calculations are performed in the framework of the density functional theory with the projector augmented plane-wave method, as implemented in the Vienna ab initio simulation package¹. The generalzied gradient approximation proposed by Perdew, Burke, and Ernzerhof is selected for the exchange-correlation potential². The cut-off energy for plane wave is set to 500 eV. The energy criterion is set to 10^{-6} eV in iterative solution of the Kohn-Sham equation. The unit cell of Rb₄CdCl₆ and Rb₄CdCl₆:Mn²⁺ is relaxed until the residual forces on the atoms have declined to less than 0.01 eV/Å. The Brillouin zone integration is performed using dense $6 \times 12 \times 4$ Monkhorst-Pack grids for electronic structure calculation. The band structure is calculated with hybrid PBE0 functional.

Figure S1. (a) SEM mapping of $Rb_4CdCl_6:Mn^{2+}$. (b-f) Corresponding elemental mapping analysis for Cd, Cl, Mn and Rb.

Figure S2. (a-e) XPS spectra corresponding to Rb₄CdCl₆, Rb, Cd, Mn and Cl. (f) XPS spectrum of Cl in Rb₄CdCl₆:Mn²⁺.

(c) Rb₄CdCl₆ Debye temperature: 179 K

Figure S3. (a) UV-vis reflection spectra for $Rb_4CdCl_6:Mn^{2+}$. (b) Relationship of $[\alpha hv]^{1/2}$ and photon energy hv showing indirect band gaps for $Rb_4CdCl_6:Mn^{2+}$. (c) Debye temperature and calculated electronic structure for Rb_4CdCl_6 .

Reference

1. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **1999**, 59 (3), 1758-1775.

2. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865-3868.