Construction of WO3 quantum dots / TiO2 nanowire arrays type II heterojunction via electrostatic self-assembly for efficient solar-driven photoelectrochemical water splitting

Ning Zhang ^{abd#}, Huili Li ^{c#}, Bo Yao ^a, Shiyan Liu ^a, Jun Ren ^a, Yawei Wang ^c, Zebo Fang ^{a*}, Rong Wu ^{bd*}, Shunhang Wei ^{a*}

^a Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing 312000, China.

^b School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, China.

^c College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

d Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, Xinjiang 830017, China

e School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang 332005, China

E-mail: csfzb@usx.edu.cn; wurongxju@sina.com; wshusx@163.com

Equal contributions.

Characterization

The crystalline phases of the prepared samples were examined by a DX-2700BH Xray powder diffractometer (XRD). The morphology was recorded by a field emission scanning electron microscope (FESEM, SIGMA 300) and a high-resolution transmission electron microscope (HRTEM, JEM-2100F) equipped with an energy dispersive X-ray spectrometer (EDS). The elemental chemical states of the samples were examined using an X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) with a monochromatic Al K α source (1486.6 eV). All the binding energies were calibrated using the C1s peak at 284.8 eV as the reference. The diffuse reflection spectra (DRS) of the samples were recorded using a scan UV-vis spectrophotometer (Shimadzu UV-3600 plus) equipped with an integrating sphere assembly, and BaSO₄ was used as the reference.

Fig. S1 XRD pattern of the as-prepared samples.

Fig. S2 FESEM images (top view) of the (a)TiO₂ nanowire arrays and (b) $WO_3@TiO_2$ 2h samples.

Fig. S3 Photocurrent density-potential curves of the WO₃ electrode.

Figure S4. J_{max} and J_{abs} of the TiO₂ and WO₃@TiO₂ 2h electrodes under AM 1.5G irradiation. J_{max} curve is calculated using a trapezoidal integration of AM 1.5G spectrum. The J_{abs} curve was obtained via multiply the AM 1.5G solar spectrum with absorption spectrum and then integrate.

Fig.S5 Photocatalytic performance of different electrodes (methanol (10 vol.%) as sacrificial agent; 300W Xenon lamp; photodeposition of Pt (2 wt.%)).

Fig. S6 (a) Steady-state photocurrent density at 0.2 V vs. Ag/AgCl (0.82 V vs. RHE) for the TiO₂ and WO₃@TiO₂ 2h photoanodes; (b) Photoelectrocatalytic overall water splitting with the TiO₂ and WO₃@TiO₂ 2h as photoanodes at 0.2 V vs. Ag/AgCl (0.82 V vs. RHE).

Photoanode	Light	Photocurrent	H ₂ yield rate	O ₂ yield rate	Ref.
		density at 1.23	(µmol h ⁻¹)	(µmol h ⁻¹)	
		V _{RHE} (mA cm ⁻²)	at 1.23 V_{RHE}	at 1.23 V_{RHE}	
γ -graphyne/TiO ₂	AM1.5 G	0.75	/	/	1
	(100 mW cm^{-2})				
WO ₃ /TiO ₂	AM1.5 G	0.25	/	/	2
nanoplates	(100 mW cm ⁻²)				
TiO ₂ @g-CN	AM1.5 G	0.91	/	/	3
nanorods arrays	(100 mW cm^{-2})				
WO ₃ @a-Fe ₂ O ₃	AM1.5 G	1.66	/	/	4
	(100 mW cm^{-2})				
WO _{3-x} @TiO _{2-x}	500 W Xe lamp	~3.2	56	27	5
	(100 mW cm^{-2})				
TiO ₂ /BiVO ₄ /SnO ₂	AM1.5 G	~2.3	/	/	6
	(100 mW cm ⁻²)				
WO _{3-x} /TiO ₂	300 W Xe lamp	4.16	69.6	~34.8	7
	(320 mW cm ⁻²)		(1.2 V _{RHE})	(1.2 V _{RHE})	
BN ZnO/TiO ₂	AM1.5 G	2.75	45.6	21.8	8
	(100 mW cm^{-2})				
α-Fe ₂ O ₃ /Au/TiO ₂	AM1.5 G	1.05	18.67	9.24	9
	(100 mW cm^{-2})				
WO ₃ @TiO ₂ 2h	AM1.5 G	~ 1.5	14.42	7.25	This
	(100 mW cm^{-2})				work

Table S1 Summary of PEC performance of WO3-based and TiO2-based photoanodes

Reference

- 1. D. Qiu, C. He, Y. Lu, Q. Li, Y. Chen and X. Cui, *Dalton T.*, 2021, **50**, 15422-15432.
- 2. K. I. Liu and T. P. Perng, ACS Appl. Energy Mater., 2020, **3**, 4238-4244.
- 3. L. Wang, R. Wang, L. Feng and Y. Liu, J. Am. Ceram. Soc., 2020, 103, 6272-6279.
- Y. Li, L. Zhang, R. Liu, Z. Cao, X. Sun, X. Liu and J. Luo, *ChemCatChem*, 2016, 8, 2765-2770.
- 5. K. Yuan, Q. Cao, H.-L. Lu, M. Zhong, X. Zheng, H.-Y. Chen, T. Wang, J.-J. Delaunay, W.

Luo and L. Zhang, J. Mater. Chem. A, 2017, 5, 14697-14706.

- S. W. Hwang, J. U. Kim, J. H. Baek, S. S. Kalanur, H. S. Jung, H. Seo and I. S. Cho, *J. Alloy. Compd.*, 2019, **785**, 1245-1252.
- S. Lin, H. Ren, Z. Wu, L. Sun, X.-G. Zhang, Y.-M. Lin, K. H. Zhang, C. J. Lin, Z. Q. Tian and J. F. Li, *J. Energy Chem.*, 2021, 59, 721-729.
- T. Zhou, J. Wang, S. Chen, J. Bai, J. Li, Y. Zhang, L. Li, L. Xia, M. Rahim and Q. Xu, *Appl. Catal. B: Environ.*, 2020, 267, 118599.
- Y. Fu, C. L. Dong, W. Zhou, Y. R. Lu, Y. C. Huang, Y. Liu, P. Guo, L. Zhao, W. C. Chou and S. Shen, *Appl. Catal. B: Environ.*, 2020, 260, 118206.