SUPPLEMENTARY INFORMATION

Never a dull moment with praseodymium metal

Zhifang Guo, ^{a,b} Glen B. Deacon, ^a Peter C. Junk ^{b*}

"School of Chemistry, Monash University, Clayton 3800, Australia.

^bCollege of Science, Technology & Engineering, James Cook University, Townsville 4811, Qld, Australia.
*Corresponding authors: glen.deacon@monash.edu; peter.junk@jcu.edu.au

Contents

- 1. ¹⁹F NMR Spectra for complexes
- 2. Experimental
- 3. Supplementary structural discussion
- 4. SEM/EDS of Pr Metal
- 5. X-ray crystallography
- 6. References

1.¹⁹F NMR Spectra for complexes

Fig. S1. ¹⁹F{¹H} NMR spectra of the reaction mixture of $Pr + Bi(C_6F_5)_3 + DippFormH$ in

2

Fig. S2. ¹⁹F{¹H} NMR spectra of the reaction mixture $Pr + Bi(C_6F_5)_3 + DippFormH$ in C_6D_6 (reaction time one week)

Fig. S3. ¹⁹F{¹H} NMR spectra of the reaction mixture $Bi(C_6F_5)_3 + DippFormH$ in C_6D_6

Fig. S4. Typical ${}^{19}F{}^{1}H$ NMR spectra of the reaction mixture of 8 in C₆D₆

2. Experimental

The compounds described here are highly air- and moisture sensitive, hence were prepared and were handled using vacuum-nitrogen line techniques and a dry box under an atmosphere of purified nitrogen. DippFormH was prepared by literature methods.¹ Praseodymium metal was from Santoku. Large chunks were filed in the drybox before use. All other reagents were purchased from Sigma and used without purification. Solvents (thf, toluene, 1,4-dioxane, diethyl ether, C_6D_6) were pre-dried by distillation over sodium or sodium benzophenone ketyl before being stored under an atmosphere of nitrogen. Proton decoupled ¹⁹F NMR spectra were recorded with a Bruker 400MHz instrument. Crystals were immersed in crystallography oil and were examined on a Rigaku SynergyS diffractometer or the MX1 beamlines at the Australian Synchrotron. Crystal data and refinement details are given in Table S1. CCDC 2243049-2243053 for compound 1-5 and CCDC 2243054 for compound 7, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Tris(pentafluorophenyl)bismuth(III) as the 1,4-dioxane solvate was synthesized by the reported method.²

Complexes 1-6

Praseodymium powder (2.00 mmol), trispentafluorophenylbismuth $[Bi(C_6F_5)_3]$ ·0.5diox (0.50 mmol) and DippFormH (1.50 mmol) were ultrasonicated in dry thf (10 ml) under nitrogen for 3 days. After filtration of the reaction mixture, a small (0.3ml) aliquot was monitored by ¹⁹F NMR, ¹⁹F NMR (C_6D_6 , ppm): δ = -105.65, -108.65, -139.63 (m, 6F, C_6F_5H F-2, 6), -141.59 (m, 1F,-o-HC₆F₄O(CH₂)₄DippForm), -152.81, -155.28 (m, 3F, C₆F₅H F-4), -158.17(m, 1F,-o-HC₆F₄O(CH₂)₄DippForm), -161.78(m, 1F,-*o*-HC₆F₄O(CH₂)₄DippForm), -163.28 (m, 6F, C₆F₅H F-3, 5), -169.85 (m, 1F,-o-HC₆F₄O(CH₂)₄DippForm), which confirmed the consumption of Bi $(C_6F_5)_3$ on completion and formation of C_6F_5H , o-HC $_6F_4O(CH_2)_4DippForm$, p-HC₆F₄DippForm and other minor products, and the ratio of C₆F₅H and o-HC₆F₄O(CH₂)₄DippForm is 3:1. After filtration of the reaction mixture, the filtrates were evaporated to half volume under vacuum. Different kinds of crystals were obtained at -20 °C overnight. Orange crystals of 1 and 2, green-yellow crystals of 3, and colourless crystals of 5 were handpicked and identified by X-ray structures. Because compounds 3 and 4 are in the similar colour, and we could not successfully distinguish them under a microscope, the filtrates were dried under vacuum and recrystallized from toluene, and green crystals of 4 was obtained. **6** was identified by ¹⁹F NMR only.

The same reaction was carried out under the same condition, except the reaction time was one week, after filtration of the reaction mixture, a small (0.3ml) aliquot was monitored by ¹⁹F NMR, ¹⁹F NMR (C₆D₆, ppm): δ = -139.69 (m, 4F, C₆F₅H F-2, 6), -141.69 (m, 1F,-*o*-HC₆F₄O(CH₂)₄DippForm), -155.32 (m, 2F, C₆F₅H F-4), -158.16(m, 1F, -*o*-HC₆F₄O(CH₂)₄DippForm), -161.82(m, 1F,-*o*-HC₆F₄O(CH₂)₄DippForm), -163.29 (m, 4F, C₆F₅H F-3, 5), -169.84 (m, 1F,-*o*-HC₆F₄O(CH₂)₄DippForm), which confirmed the consumption of Bi(C₆F₅)₃ on completion and formation of C₆F₅H and *o*-HC₆F₄O(CH₂)₄DippForm is 2:1.

[Bi₂(Ph₂pz)₄]·dioxane 7

Bi(C₆F₅)₃ (0.355 g, 0.50 mmol), Ph₂pzH (0.330 g, 1.50 mmol) and praseodymium powder (0.282 g, 2 mmol) were treated in THF (10 ml) for 3 days. The green solution was filtered. ¹⁹F NMR (THF, ext. CFCl₃, ppm): δ = -140.18 (m, 2F, C₆F₅H F-2, 6), -156.35 (m, 1F, C₆F₅H F-4), -164.20 (m, 2F, C₆F₅H F-3, 5). Orange crystals (0.128 g, 37.0 %, M.p.238-240 °C) were obtained at -20 °C. IR (Nujol): 1605s, 1538m, 1263s, 1222m, 1178m, 1157m, 1065vs, 1027s, 981s, 960s, 910s, 874w, 842w, 806s, 759vs, 722m, 694s, 667m cm⁻¹. Unit cell: *a*=9.730(2) Å,

b=12.096(2) Å, *c*=12.680(3) Å, α=117.21(3)°, β=90.85(3) °, γ=101.57(3) °, *V*=1290.5(6) Å³, different from the reported unsolvated [Bi₂(Ph₂pz)₄], Unit cell: *a*=10.095 Å, *b*=10.808 Å, *c*=12.034 Å, α=84.30°, β=88.64°, γ=74.43°, *V*=1258.498 Å³.³

[Bi₂(*t*Bu₂pz)₄] 8

Bi(C₆F₅)₃ (0.355 g, 0.50 mmol), 'Bu₂pzH (0.270 g, 1.50 mmol), praseodymium powder (0.282 g, 2 mmol) and dry THF (10 ml) were placed in a Schlenk flask in a nitrogen- filled dry box. The mixture was ultrasonicated for 3 days. The solution was filtered. Orange crystals (0.235 g, 83 %, M.p.182-184 °C) were obtained at -20 °C. IR (Nujol): 1563m, 1510s, 1361s, 1304m, 1261s, 1222w, 1206w, 1155m, 1075s, 1021s, 1006m, 967m, 803m, 778w, 722s cm⁻¹. Elemental analysis calcd (%) for Bi₂C₄₄H₇₆N₈: C, 46.56; H, 6.75; N, 9.87. Found: C, 46.35; H, 6.86; N, 9.84. Unit cell: *a*=11.241(2) Å, *b*=22.535(5) Å, *c*=28.756(6) Å, α=83.29(3)°, β =84.04(3) °, γ =89.82(3) °, V=7195(3) Å³, similar to the reported unit cell: *a*=11.369 Å, *b*=23.075 Å, *c*=28.850 Å, α=83.92°, β =83.96 °, γ =89.82 °, V=7501.592 Å³.³

[Eu(tBu₂pz)₃(thf)₂] 9

[Bi₂(*t*Bu₂pz)₄] (0.114 g, 0.1 mmol), and europium powder (0.075g, 0.5 mmol) and dry THF (10 ml) were placed in a Schlenk flask in a nitrogen- filled dry box. The mixture was ultrasonic for 3 days. The solution was filtered. Colourless crystals (0.09 g, 75%, M.p.140-142 °C) were obtained at -20 °C. IR (Nujol): 1566m, 1503m, 1313m, 1260s, 1205m, 1096s, 1018s, 995m, 920m, 873m, 791s, 724s cm⁻¹. Unit cell: *a*=11.74 Å, *b*=19.79 Å, *c*=39.11 Å, β =98.14°, corresponds to the reported one *a*=11.723(2) Å, *b*=19.673(4)Å, *c*=38.943(8) Å, β =98.21(3)°.⁴

3. Supplementary Structural Discussion

The structure of the complex $[Bi^{II}_2(DippForm)_2(C_6F_5)_2]$ 2

Fig. S5. Molecular diagrams of $[Bi^{II}_2(DippForm)_2(C_6F_5)_2]$ (2) represented by 50% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

The structure of the complex [Bi₂(Ph₂pz)₄]·dioxane 7

 $[Bi_2(Ph_2pz)_4]$ ·dioxane (7) crystallized in the triclinic space group P-1. The inversion centre is at the midpoint of the Bi–Bi bond, indicating that the overall ligand arrangement around the Bi₂ core is found to be an almost perfect paddlewheel structure. Each bismuth atom is coordinated with four η^1 -Ph₂Pz ligands. The average Bi–N and Bi-Bi* bond length are 2.473 and 2.8722(7) Å, which is similar to those of the reported $[Bi_2(Ph_2pz)_4]$.³ The planes of 7 are almost perpendicular to each other, with an average dihedral angle close to 90° (N(1)-Bi(1)-N(3) 84.17(18)).

Fig. S6. Molecular diagrams of [Bi₂(Ph₂pz)₄] dioxane (7) represented by 50% thermal ellipsoids. The lattice dioxane molecules and hydrogen atoms have been omitted for clarity. Selected bond angles (°) and lengths (Å) Bi-N1 2.296(5), Bi-N2* 2.696(5), Bi-N3 2.400(5), Bi-N4* 2.501(5), Bi-Bi* 2.8722(7).

<mark>4. SEM/EDS</mark>

Element	Wt%	Wt% Sigma	Atomic %		
0	5.37	0.24	33.31		
Pr	94.63	0.24	66.69		
Total:	100.00		100.00		

Fig. S7. SEM-EDS of Pr metal

5. X-ray crystallography

Single crystals coated with viscous hydrocarbon oil were mounted on glass fibres or loops. Complexes 2 and 4 were measured on a Rigaku SynergyS diffractometer. The SynergyS operated using microsource Mo-K α radiation ($\lambda = 0.71073$ Å) at 123 K. Data processing was conducted using CrysAlisPro.55 software suite.⁵ Complexes (1, 3, 5, and 7) were measured at the Australian Synchrotron on the MX1 beamline, data integration was completed using Blueice ⁶ and XDS ⁷ software programs. Structural solutions were obtained by either direct methods ⁸ or charge flipping ⁹ methods and refined using full-matrix least-squares methods against F² using SHELX2018,¹⁰ in conjunction with the Olex2 ¹¹ graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in Table S1.

	1	2	3
	[Bi ₂ (DippForm) ₂]	[Bi ₂ (DippForm) ₂ (C ₆ F ₅) ₂]	[Bi(DippForm) ₂ (C ₆ F ₅)]
Formula	C ₅₀ H ₇₀ Bi ₂ N ₄	$C_{62}H_{70}Bi_2F_{10}N_4$	C ₅₆ H ₇₀ BiF ₅ N ₄
M _r	1145.06	1479.18	1103.14
Space group	Pnnm	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	18.348(4)	11.32528(13)	10.980(2)
<i>b</i> (Å)	19.217(4)	12.25378(12)	12.580(3)
<i>c</i> (Å)	10.939(2)	12.54848(12)	21.130(4)
α (°)	90	105.9880(9)	73.17(3)
β (°)	90	106.5627(10)	77.93(3)
γ (°)	90	102.5770(9)	70.19(3)
$V(Å^3)$	3857.0(14)	1519.42(3)	2608.3(11)
Ζ	2	1	2
$ ho_{\rm calc}, {\rm g \ cm^{-3}}$	0.986	1.617	1.405
μ , mm ⁻¹	4.579	5.854	3.437
N_{τ}	45171	49963	45146
$N(R_{int})$	3524(0.0931)	10875(0.0399)	9171(0.0317)
$R_1(I > 2\sigma(I))$	0.0839	0.0242	0.0214
wR_2 (all data)	0.2102	0.0570	0.0520
GOF	1.121	1.086	1.042

Table S1 Crystal data and structural refinement for complexes 1-7

	4	5	7
	[Pr(DippForm) ₂ F(thf)]·PhMe	$[p-HC_6F_4(DippForm)] \cdot 0.5thf$	[Bi ₂ (Ph ₂ pz) ₄]·dioxane
Formula	C ₆₁ H ₈₆ FN ₄ OPr	$C_{33}H_{40}F_4N_2O_{0.5}$	$C_{64}H_{52}Bi_2N_8O_2$
M_r	1051.24	548.67	1383.09
Space group	$P2_1/c$	$P2_1/n$	<i>P</i> -1
a (Å)	12.0787(2)	11.020(2)	9.7300(19)
b (Å)	13.8725(2)	19.180(4)	12.096(2)
<i>c</i> (Å)	33.8375(5)	14.340(3)	12.680(3)
α (°)	90	90	117.21(3)

β (°)	92.9560(10)	97.09(3)	90.85(3)
γ (°)	90	90	101.57(3)
$V(Å^3)$	5662.33(15)	3007.8(11)	1290.5(6)
Ζ	4	4	1
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.233	1.212	1.780
μ , mm ⁻¹	0.905	0.089	6.865
$N_{ au}$	95583	69721	23882
$N(R_{int})$	19825(0.0458)	5111(0.0308)	4548(0.0771)
$R_1(I > 2\sigma(I))$	0.0328	0.0456	0.0346
wR_2 (all data)	0.0772	0.1285	0.0909
GOF	1.047	1.023	1.080

6. References

- 1. R. M. Roberts, J. Org. Chem., 1949, 14, 277.
- 2. Z. Guo, V. Blair, G. B. Deacon, P. C. Junk, Chem. Eur. J., 2018, 24, 17464-17474.
- 3. M. Zhao, T. Hao, X. Zhang, J. Ma, J. Su, W. Zheng, *Inorg. Chem.*, 2017, 56, 12678–12681.
- 4. Z. Guo, V. Blair, G. B. Deacon, P. C. Junk, Chem. Eur. J., 2022, 28, e202103865(1-11).
- 5. CrysAlisPRO v.39. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.
- T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, J. P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401-406.
- 7. W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
- 8. G. M. Sheldrick, Acta Crystallogr. Sect. A. 2008, 64, 112-122.
- 9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- 10. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- 11. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189-191.