# SUPPLEMENTARY INFORMATION Never a dull moment with praseodymium metal 

Zhifang Guo, ${ }^{\text {a,b }}$ Glen B. Deacon, ${ }^{\text {a Peter C. Junk }}{ }^{\text {b* }}$<br>${ }^{a}$ School of Chemistry, Monash University, Clayton 3800, Australia.<br>${ }^{b}$ College of Science, Technology \& Engineering, James Cook University, Townsville 4811, Qld, Australia.<br>*Corresponding authors: glen.deacon@monash.edu; peter.junk@jcu.edu.au

Contents

1. ${ }^{19} \mathrm{~F}$ NMR Spectra for complexes
2. Experimental
3. Supplementary structural discussion
4. SEM/EDS of Pr Metal
5. X-ray crystallography
6. References

## 1. ${ }^{19}$ F NMR Spectra for complexes



Fig. S1. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture of $\mathrm{Pr}+\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+$ DippFormH in


Fig. S2. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture $\mathrm{Pr}+\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+$ DippFormH in $\mathrm{C}_{6} \mathrm{D}_{6}$ (reaction time one week)


Fig. S3. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture $\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ + DippFormH in $\mathrm{C}_{6} \mathrm{D}_{6}$


Fig. S4. Typical ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction mixture of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

## 2. Experimental

The compounds described here are highly air- and moisture sensitive, hence were prepared and were handled using vacuum-nitrogen line techniques and a dry box under an atmosphere of purified nitrogen. DippFormH was prepared by literature methods. ${ }^{1}$ Praseodymium metal was from Santoku. Large chunks were filed in the drybox before use. All other reagents were purchased from Sigma and used without purification. Solvents (thf, toluene, 1,4-dioxane, diethyl ether, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) were pre-dried by distillation over sodium or sodium benzophenone ketyl before being stored under an atmosphere of nitrogen. Proton decoupled ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker 400MHz instrument. Crystals were immersed in crystallography oil and were examined on a Rigaku SynergyS diffractometer or the MX1 beamlines at the Australian Synchrotron. Crystal data and refinement details are given in Table S1. CCDC 2243049-2243053 for compound 1-5 and CCDC 2243054 for compound 7, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Tris(pentafluorophenyl)bismuth(III) as the 1,4-dioxane solvate was synthesized by the reported method. ${ }^{2}$

## Complexes 1-6

Praseodymium powder ( 2.00 mmol ), trispentafluorophenylbismuth $\left[\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \cdot 0.5$ diox $(0.50$ $\mathrm{mmol})$ and DippFormH ( 1.50 mmol ) were ultrasonicated in dry thf $(10 \mathrm{ml})$ under nitrogen for 3 days. After filtration of the reaction mixture, a small $(0.3 \mathrm{ml})$ aliquot was monitored by ${ }^{19} \mathrm{~F}$ NMR, ${ }^{19}$ F NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}$ ): $\delta=-105.65,-108.65,-139.63$ (m, 6F, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ F-2, 6), -141.59 (m, $1 \mathrm{~F},-o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}$ ), -152.81 , -155.28 (m, 3F, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ F-4), $-158.17(\mathrm{~m}, 1 \mathrm{~F},-o-$ $\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}$ DippForm $)$, $-161.78\left(\mathrm{~m}, 1 \mathrm{~F},-o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}\right)$, -163.28 (m, 6F, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ F-3, 5), $-169.85\left(\mathrm{~m}, 1 \mathrm{~F},-o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}\right)$, which confirmed the consumption of $\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ on completion and formation of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}, o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}$, $p-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{DippForm}$ and other minor products, and the ratio of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ and $o$ $\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}$ DippForm is $3: 1$. After filtration of the reaction mixture, the filtrates were evaporated to half volume under vacuum. Different kinds of crystals were obtained at $-20^{\circ} \mathrm{C}$ overnight. Orange crystals of $\mathbf{1}$ and $\mathbf{2}$, green-yellow crystals of $\mathbf{3}$, and colourless crystals of $\mathbf{5}$ were handpicked and identified by X-ray structures. Because compounds $\mathbf{3}$ and $\mathbf{4}$ are in the similar colour, and we could not successfully distinguish them under a microscope, the filtrates were dried under vacuum and recrystallized from toluene, and green crystals of $\mathbf{4}$ was obtained. 6 was identified by ${ }^{19}$ F NMR only.

The same reaction was carried out under the same condition, except the reaction time was one week, after filtration of the reaction mixture, a small ( 0.3 ml ) aliquot was monitored by ${ }^{19} \mathrm{~F}$ NMR, ${ }^{19} \mathrm{~F}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}$ ): $\delta=-139.69\left(\mathrm{~m}, 4 \mathrm{~F}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}\right.$ F-2, 6), -141.69 (m, $1 \mathrm{~F},-o-$ $\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}$ DippForm $), \quad-155.32 \quad\left(\mathrm{~m}, \quad 2 \mathrm{~F}, \quad \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H} \quad \mathrm{F}-4\right), \quad-158.16(\mathrm{~m}, \quad 1 \mathrm{~F}, \quad-o-$ $\left.\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}\right)$, $-161.82\left(\mathrm{~m}, 1 \mathrm{~F},-o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}\right)$, -163.29 (m, 4F, $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ F-3, 5), $-169.84\left(\mathrm{~m}, 1 \mathrm{~F},-o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{DippForm}\right)$, which confirmed the consumption of $\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ on completion and formation of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ and $o$ $\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}$ DippForm, and the ratio of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$ and $o-\mathrm{HC}_{6} \mathrm{~F}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4}$ DippForm is 2:1.

## $\left[\mathbf{B i}_{\mathbf{2}}\left(\mathbf{P h}_{2} \mathbf{p z}\right)_{4}\right] \cdot$ dioxane $\mathbf{7}$

$\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.355 \mathrm{~g}, 0.50 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{pzH}(0.330 \mathrm{~g}, 1.50 \mathrm{mmol})$ and praseodymium powder ( $0.282 \mathrm{~g}, 2 \mathrm{mmol}$ ) were treated in THF ( 10 ml ) for 3 days. The green solution was filtered. ${ }^{19} \mathrm{~F}$ NMR (THF, ext. $\left.\mathrm{CFCl}_{3}, \mathrm{ppm}\right): ~ \delta=-140.18\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H} F-2,6\right),-156.35\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}\right.$ F-4), $-164.20\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H} F-3\right.$, 5). Orange crystals ( $0.128 \mathrm{~g}, 37.0 \%$, M.p. $238-240{ }^{\circ} \mathrm{C}$ ) were obtained at $-20^{\circ} \mathrm{C}$. IR (Nujol): $1605 \mathrm{~s}, 1538 \mathrm{~m}, 1263 \mathrm{~s}, 1222 \mathrm{~m}, 1178 \mathrm{~m}, 1157 \mathrm{~m}, 1065 \mathrm{vs}, 1027 \mathrm{~s}$, $981 \mathrm{~s}, 960 \mathrm{~s}, 910 \mathrm{~s}, 874 \mathrm{w}, 842 \mathrm{w}, 806 \mathrm{~s}, 759 \mathrm{vs}, 722 \mathrm{~m}, 694 \mathrm{~s}, 667 \mathrm{~m} \mathrm{~cm}^{-1}$. Unit cell: $a=9.730(2) \AA$,
$b=12.096(2) \AA, c=12.680(3) \AA, \alpha=117.21(3)^{\circ}, \beta=90.85(3)^{\circ}, \gamma=101.57(3)^{\circ}, V=1290.5(6) \AA^{3}$, different from the reported unsolvated $\left[\mathrm{Bi}_{2}\left(\mathrm{Ph}_{2} \mathrm{pz}\right)_{4}\right]$, Unit cell: $a=10.095 \AA, b=10.808 \AA$, $c=12.034 \AA, \alpha=84.30^{\circ}, \beta=88.64^{\circ}, \gamma=74.43^{\circ}, V=1258.498 \AA^{3} .{ }^{3}$

## $\left[\mathrm{Bi}_{2}\left(\text { t }^{\left(\mathrm{Bu}_{2} \mathrm{pz}\right.}\right)_{4}\right] \mathbf{8}$

$\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.355 \mathrm{~g}, 0.50 \mathrm{mmol}),{ }^{\mathrm{H}} \mathrm{Bu}_{2} \mathrm{pzH}(0.270 \mathrm{~g}, 1.50 \mathrm{mmol})$, praseodymium powder ( 0.282 $\mathrm{g}, 2 \mathrm{mmol})$ and dry THF ( 10 ml ) were placed in a Schlenk flask in a nitrogen- filled dry box. The mixture was ultrasonicated for 3 days. The solution was filtered. Orange crystals ( 0.235 g , $83 \%$, M.p. $182-184{ }^{\circ} \mathrm{C}$ ) were obtained at $-20^{\circ} \mathrm{C}$. IR (Nujol): $1563 \mathrm{~m}, 1510 \mathrm{~s}, 1361 \mathrm{~s}, 1304 \mathrm{~m}$, $1261 \mathrm{~s}, 1222 \mathrm{w}, 1206 \mathrm{w}, 1155 \mathrm{~m}, 1075 \mathrm{~s}, 1021 \mathrm{~s}, 1006 \mathrm{~m}, ~ 967 \mathrm{~m}, ~ 803 \mathrm{~m}, 778 \mathrm{w}, 722 \mathrm{~s} \mathrm{~cm}^{-1}$. Elemental analysis calcd (\%) for $\mathrm{Bi}_{2} \mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{8}$ : C, 46.56; H, 6.75; N, 9.87. Found: C, 46.35; H, 6.86; $\mathrm{N}, ~ 9.84$. Unit cell: $a=11.241(2) \AA, b=22.535(5) ~ \AA, c=28.756(6) \AA, \alpha=83.29(3)^{\circ}$, $\beta=84.04(3){ }^{\circ}, \gamma=89.82(3)^{\circ}, V=7195(3) \AA^{3}$, similar to the reported unit cell: $a=11.369 \AA$, $b=23.075 \AA, c=28.850 \AA, \alpha=83.92^{\circ}, \beta=83.96^{\circ}, \gamma=89.82^{\circ}, V=7501.592 \AA^{3} .3^{3}$

## $\left[\mathrm{Eu}\left(t \mathrm{Bu}_{2} \mathrm{pz}\right)_{3}(\mathrm{thf})_{2}\right] \mathbf{9}$

$\left[\mathrm{Bi}_{2}\left(t \mathrm{Bu}_{2} \mathrm{pz}\right)_{4}\right](0.114 \mathrm{~g}, 0.1 \mathrm{mmol})$, and europium powder $(0.075 \mathrm{~g}, 0.5 \mathrm{mmol})$ and dry THF $(10 \mathrm{ml})$ were placed in a Schlenk flask in a nitrogen- filled dry box. The mixture was ultrasonic for 3 days. The solution was filtered. Colourless crystals ( $0.09 \mathrm{~g}, 75 \%$, M.p. $140-142{ }^{\circ} \mathrm{C}$ ) were obtained at $-20^{\circ} \mathrm{C}$. IR (Nujol): 1566m, 1503m, 1313m, 1260s, 1205m, 1096s, 1018s, 995 m , $920 \mathrm{~m}, ~ 873 \mathrm{~m}, 791 \mathrm{~s}, 724 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. Unit cell: $a=11.74 \AA, b=19.79 \AA, c=39.11 \AA, \beta=98.14^{\circ}$, corresponds to the reported one $a=11.723(2) \AA, b=19.673(4) \AA, c=38.943(8) \AA, \beta=98.21(3)^{\circ} .{ }^{4}$

## 3. Supplementary Structural Discussion

## The structure of the complex $\left[\mathrm{Bi}^{\mathrm{H}} \mathbf{2}_{2}(\mathrm{DippForm})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right] \mathbf{2}$



Fig. S5. Molecular diagrams of $\left[\mathrm{BiI}_{2}(\mathrm{DippForm})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (2) represented by $50 \%$ thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

## The structure of the complex $\left[\mathrm{Bi}_{2}\left(\mathbf{P h}_{2} \mathbf{p z}\right)_{4}\right]$ dioxane 7

$\left[\mathrm{Bi}_{2}\left(\mathrm{Ph}_{2} \mathrm{pz}\right)_{4}\right]$ dioxane (7) crystallized in the triclinic space group P-1. The inversion centre is at the midpoint of the $\mathrm{Bi}-\mathrm{Bi}$ bond, indicating that the overall ligand arrangement around the $\mathrm{Bi}_{2}$ core is found to be an almost perfect paddlewheel structure. Each bismuth atom is coordinated with four $\eta^{1}-\mathrm{Ph}_{2} \mathrm{Pz}$ ligands. The average $\mathrm{Bi}-\mathrm{N}$ and $\mathrm{Bi}-\mathrm{Bi}^{*}$ bond length are 2.473 and $2.8722(7) \AA$, which is similar to those of the reported $\left[\mathrm{Bi}_{2}\left(\mathrm{Ph}_{2} \mathrm{pz}\right)_{4}\right] .{ }^{3}$ The planes of 7 are almost perpendicular to each other, with an average dihedral angle close to $90^{\circ}(\mathrm{N}(1)-\operatorname{Bi}(1)$ $\mathrm{N}(3)$ 84.17(18)).


Fig. S6. Molecular diagrams of $\left[\mathrm{Bi}_{2}\left(\mathrm{Ph}_{2} \mathrm{pz}\right)_{4}\right]$-dioxane (7) represented by $50 \%$ thermal ellipsoids. The lattice dioxane molecules and hydrogen atoms have been omitted for clarity. Selected bond angles $\left({ }^{\circ}\right)$ and lengths ( $\AA$ ) Bi-N1 2.296(5), Bi-N2* 2.696(5), Bi-N3 2.400(5), Bi-N4* 2.501(5), Bi-Bi* 2.8722(7).
4. SEM/EDS


| Element | $\mathrm{Wt} \%$ | $\mathrm{Wt} \%$ Sigma | Atomic \% |
| :--- | ---: | ---: | ---: |
| O | 5.37 | 0.24 | 33.31 |
| Pr | 94.63 | 0.24 | 66.69 |
| Total: | 100.00 |  | 100.00 |

Fig. S7. SEM-EDS of Pr metal

## 5. X-ray crystallography

Single crystals coated with viscous hydrocarbon oil were mounted on glass fibres or loops. Complexes 2 and 4 were measured on a Rigaku SynergyS diffractometer. The SynergyS operated using microsource Mo-K $\alpha$ radiation $(\lambda=0.71073 \AA)$ at 123 K . Data processing was conducted using CrysAlisPro. 55 software suite. ${ }^{5}$ Complexes ( $\mathbf{1 , 3}, \mathbf{5}$, and 7) were measured at the Australian Synchrotron on the MX1 beamline, data integration was completed using Blueice ${ }^{6}$ and XDS ${ }^{7}$ software programs. Structural solutions were obtained by either direct methods ${ }^{8}$ or charge flipping ${ }^{9}$ methods and refined using full-matrix least-squares methods against $\mathrm{F}^{2}$ using SHELX2018, ${ }^{10}$ in conjunction with the Olex $2{ }^{11}$ graphical user interface. All hydrogen atoms were placed in calculated positions using the riding model. Crystal data and refinement details are given in Table S1.

Table S1 Crystal data and structural refinement for complexes 1-7

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
|  | [ $\mathrm{Bi}_{2}$ (DippForm) ${ }_{2}$ ] | $\left[\mathrm{Bi}_{2}(\text { DippForm })_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ | $\left[\mathrm{Bi}(\text { DippForm })_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ |
| Formula | $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{Bi}_{2} \mathrm{~N}_{4}$ | $\mathrm{C}_{62} \mathrm{H}_{70} \mathrm{Bi}_{2} \mathrm{~F}_{10} \mathrm{~N}_{4}$ | $\mathrm{C}_{56} \mathrm{H}_{70} \mathrm{BiF}_{5} \mathrm{~N}_{4}$ |
| $M_{r}$ | 1145.06 | 1479.18 | 1103.14 |
| Space group | Pnnm | $P-1$ | $P-1$ |
| $a(\AA)$ | 18.348(4) | 11.32528(13) | 10.980(2) |
| $b(\AA)$ | 19.217(4) | 12.25378(12) | 12.580(3) |
| $c(\AA)$ | 10.939(2) | 12.54848(12) | 21.130(4) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 105.9880(9) | 73.17(3) |
| $\beta\left({ }^{\circ}\right)$ | 90 | 106.5627(10) | 77.93(3) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 102.5770(9) | 70.19(3) |
| $V\left(\AA^{3}\right)$ | 3857.0(14) | 1519.42(3) | 2608.3(11) |
| Z | 2 | 1 | 2 |
| $\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$ | 0.986 | 1.617 | 1.405 |
| $\mu, \mathrm{mm}^{-1}$ | 4.579 | 5.854 | 3.437 |
| $N_{\tau}$ | 45171 | 49963 | 45146 |
| $N\left(R_{\text {int }}\right)$ | 3524(0.0931) | 10875(0.0399) | 9171(0.0317) |
| $R_{1}(I>2 \sigma(I))$ | 0.0839 | 0.0242 | 0.0214 |
| $w R_{2}$ (all data) | 0.2102 | 0.0570 | 0.0520 |
| GOF | 1.121 | 1.086 | 1.042 |


|  | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | :--- |
|  | $\left[\operatorname{Pr}(\mathrm{DippForm})_{2} \mathrm{~F}(\mathrm{thf})\right] \cdot \mathrm{PhMe}$ | $\left[p-\mathrm{HC}_{6} \mathrm{~F}_{4}(\mathrm{DippForm})\right] \cdot 0.5$ thf | $\left[\mathrm{Bi}_{2}\left(\mathrm{Ph}_{2} \mathrm{pz}\right)_{4}\right] \cdot$ dioxane |
| Formula | $\mathrm{C}_{61} \mathrm{H}_{86} \mathrm{FN}_{4} \mathrm{OPr}$ | $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{0.5}$ | $\mathrm{C}_{64} \mathrm{H}_{52} \mathrm{Bi}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}$ |
| $M_{r}$ | 1051.24 | 548.67 | 1383.09 |
| Space group | $P 2_{1} / \mathrm{c}$ | $P 2_{1} / \mathrm{n}$ | $P-1$ |
| $a(\AA)$ | $12.0787(2)$ | $11.020(2)$ | $9.7300(19)$ |
| $b(\AA)$ | $13.8725(2)$ | $19.180(4)$ | $12.096(2)$ |
| $c(\AA)$ | $33.8375(5)$ | $14.340(3)$ | $12.680(3)$ |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 90 | $117.21(3)$ |


| $\beta\left({ }^{\circ}\right)$ | $92.9560(10)$ | $97.09(3)$ | $90.85(3)$ |
| :--- | :--- | :--- | :--- |
| $\gamma\left(^{\circ}\right)$ | 90 | 90 | $101.57(3)$ |
| $V\left(\AA^{3}\right)$ | $5662.33(15)$ | $3007.8(11)$ | $1290.5(6)$ |
| $Z$ | 4 | 4 | 1 |
| $\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$ | 1.233 | 1.212 | 1.780 |
| $\mu, \mathrm{~mm}^{-1}$ | 0.905 | 0.089 | 6.865 |
| $N_{\tau}$ | 95583 | 69721 | 23882 |
| $N\left(R_{\text {int }}\right)$ | $19825(0.0458)$ | $5111(0.0308)$ | $4548(0.0771)$ |
| $R_{1}(I>2 \sigma(I))$ | 0.0328 | 0.0456 | 0.0346 |
| $w R_{2}($ all data $)$ | 0.0772 | 0.1285 | 1.0090 |
| GOF | 1.047 | 1.023 |  |

## 6. References

1. R. M. Roberts, J. Org. Chem., 1949, 14, 277.
2. Z. Guo, V. Blair, G. B. Deacon, P. C. Junk, Chem. Eur. J., 2018, 24, 17464-17474.
3. M. Zhao, T. Hao, X. Zhang, J. Ma, J. Su, W. Zheng, Inorg. Chem., 2017, 56, 12678-12681.
4. Z. Guo, V. Blair, G. B. Deacon, P. C. Junk, Chem. Eur. J., 2022, 28, e202103865(1-11).
5. CrysAlisPRO v.39. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.
6. T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, J. P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401-406.
7. W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
8. G. M. Sheldrick, Acta Crystallogr. Sect. A. 2008, 64, 112-122.
9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
10. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
11. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189-191.
