Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Boron phosphide as an efficient metal-free catalyst for

nitrate electroreduction to ammonia

Nana Zhang ^{1#}, Guike Zhang ^{1#}, Ye Tian ², Yali Guo ¹, Ke Chu ^{1*}

¹ School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

² Department of Physics, College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China

*Corresponding author. E-mail address: chuk630@mail.lzjtu.cn (K. Chu)

[#]These authors contributed equally to this work.

Experimental Section

Synthesis of BP

BP was synthesized based on a vacuum-sealed strategy. A mixture of B and P powders (B:P molar ratio: 1:1.2) with a total weight of 200 mg was placed in a silica tube which was vacuum-sealed. The sealed silica tube was then thermally annealed in a muffle furnace at 1000 °C for 10 h. Afterwards, the as-prepared powder was washed with 0.1 M HCl and deionized water to remove impurities, obtaining BP.

Electrochemical measurements

Electrochemical measurements were carried out on a CHI-760E electrochemical workstation with a standard three-electrode system, where catalyst coated on carbon cloth (CC, 0.5 mg cm⁻²) was used as working electrode, graphite rod as counter electrode and Ag/AgCl as reference electrode. All potentials were referenced to reversible hydrogen electrode (RHE) according to the equation: E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. The NO₃RR measurements were carried out in 0.5 M Na₂SO₄ + 0.1 M NaNO₃ electrolyte using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. Prior to NO₃RR electrolysis, the cathodic compartment was purged with Ar for 30 min. After each chronoamperometry test for 1 h, the produced NH₃ and other possible by-products (NO₂⁻ and N₂H₄) were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products were analyzed by gas chromatography (Shimadzu GC2010).

Determination of NH₃

 NH_3 in electrolyte was quantitatively determined by the indophenol blue method[1]. The electrolyte was collected and diluted to the detection range. Coloring solution was prepared by dissolving $C_7H_6O_3$ (5 wt.%), $C_6H_5Na_3O_7$ (5 wt.%), NaClO (1 mL, 0.05 M) and $C_5FeN_6Na_2O$ (0.2 mL, 1wt.%) in 2 mL NaOH solution (1 M). Then, the coloring solution was added to 2 mL diluted electrolyte. After the incubation for 2 h at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 655 nm wavelength. The concentration-

absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations, and the NH₃ yield rate and NH₃-Faradaic efficiency were calculated by the following equation[2]:

$$NH_{3} \text{ yield } (\mu g \text{ h}^{-1} \text{ mg}_{cat.}^{-1}) = \frac{c_{NH_{3}} \times V}{t \times A}$$
(1)

NH₃-Faradaic efficiency (%) =
$$\frac{8 \times F \times c_{\text{NH}_3} \times V}{17 \times Q} \times 100\%$$
 (2)

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time, A (cm⁻²) is the surface area of CC (1×1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Determination of NO₂-

NO₂⁻ in electrolyte was quantitatively determined by a Griess test[3]. The electrolyte was collected and diluted to the detection range. Coloring solution was prepared by dissolving N-(1-naphthyl) ethylenediamine dihydrochloride (0.2 g), p-aminobenzenesulfonamide (4.0 g) and H₃PO₄ (10 mL, $\rho = 1.685$ g mL⁻¹) in 50 ml deionized water. Then, 0.2 mL coloring solution was added to 2 mL diluted electrolyte. After the incubation for 20 min at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 540 nm wavelength. The concentration-absorbance curves were calibrated by the standard KNO₂ solution with a series of concentrations.

Characterizations

X-ray diffraction (XRD) patterns were recorded on a Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis was performed on a PHI 5702 spectrometer. Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were performed on a Tecnai G² F20 microscope.

Calculation details

Density functional theory (DFT) calculations were carried out using a Cambridge sequential total energy package (CASTEP) with projector augmented wave pseudopotentials. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional was used for the exchange-correlation potential. The DFT-D correction method was used to describe the van der Waals interactions throughout the calculations. The convergence tolerance was set to be 1.0×10^{-5} eV for energy and 0.02 eV Å⁻¹ for force. The Brillouin zones of the supercells were sampled by $4 \times 4 \times 1$ uniform k point mesh, and a plane-wave basis set with an energy cut-off of 480 eV was employed. BP (111) was modeled by a 3×3 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs.

The adsorption energy (ΔE) is defined as

$$\Delta E = E_{\rm ads/s\,lab} - E_{\rm ads} - E_{\rm slab} \tag{3}$$

where $E_{ads/slab}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab, adsorbed species and isolated slab, respectively.

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{4}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. Given that it is difficult to directly calculate the energy of charged NO₃⁻, the adsorption free energy of NO₃⁻ ($\Delta G(*NO_3)$) was calculated with assistance of the gaseous HNO₃ as follows[4]

$$\Delta G(*NO_3) = G(*NO_3) - G(*) - [G(HNO_3) - 0.5 \times G(H_2)] + \Delta G_{correct}$$
(5)

where G(*) and $G(*NO_3)$ are the Gibbs free energies of the bare catalyst and that with the adsorbed NO₃⁻, respectively. $G(HNO_3)$ and $G(H_2)$ represent the Gibbs free energies of HNO₃ and H₂ molecule, respectively.

The Gibbs free energy of adsorption hydrogen atom is calculated by the following equation[5].

 $\Delta G^* H = E[surface+*H] - E[surface] - 1/2E[H_2] + \Delta E_{ZPE} - T\Delta S_H \quad (6)$ where $E[surface+H^*]$ is the total energy of the system, including the adsorbed molecules and facet; E[surface] is the energy of the facet; $E(H_2)$ represents the total energy of a gas phase H₂ molecule; ΔE_{ZPE} denotes the zero-point energy of the system simplified as 0.05 eV; $-T\Delta S_H$ is the contribution from entropy at temperature K, which is taken as 0.20 eV at 298 K.

Fig. S1. (a) UV-vis absorption spectra of NH_4Cl assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

Fig. S2. (a) UV-vis absorption spectra of KNO_2 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of NO_2^- concentrations.

Fig. S3. (a) Potential-dependent chronoamperometry curve of BP after 1 h NO₃RR electrolysis, and corresponding (b) UV-vis spectra for detecting NH₃ (diluted by 50 times).

Fig. S4. UV-vis absorption spectra for detecting NH_3 in the electrolytes after 1 h NO_3RR electrolysis at different conditions (diluted by 50 times).

Fig. S5. ¹H NMR spectra of the electrolytes using ¹⁵NO₃⁻ and ¹⁴NO₃⁻ as nitrate sources.

Fig. S6. (a) Potential-dependent chronoamperometry curve, and corresponding UVvis absorption spectra for detecting NH_3 in the electrolytes after 1 h NO_3RR electrolysis at seven cycles (diluted by 50 times).

Fig. R7. XRD pattern of BP after stability test.

Fig. R8. XPS spectra of BP after stability test: (a) B1s, (b) P2p.

Fig. S9. Optimized structure of NO_3^- adsorption on BP.

Fig. S10. DOS of bulk BP

Fig. S11. Optimized adsorption configurations of the reaction intermediates in the NHO pathway on BP.

Catalyst	Electrolyte	NH ₃ yield rate (mg h ⁻¹ cm ⁻²)	FE _{NH3} (%)	Potential (V vs RHE)	Ref.
Fe-PPy SACs	0.1 M KOH	2.75	100	-0.7	[6]
	(0.1 M KNO ₃)				
Pd/TiO ₂	1 M LiCl	1.12	92.1	-0.7	[7]
	$(0.25 \text{ M K}^{15}\text{NO}_3)$				
Ni ₃ B@NiB _{2.74}	0.10 M KOH	3.37	100	-0.3	[8]
	(10 mM NO_2^-)				
a-RuO ₂	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	1.97	97.46	-0.35	[9]
	(200 ppm NO ₃ -)				
Ni ₃₅ /NC-sd	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	5.1	99	-0.5	[10]
	(0.3M NO_3^-)				
Poly-Cu ₁₄ cba	0.5 M K ₂ SO ₄	2.84	90	-0.15	[11]
	(250 ppm NO_3^-)				
Cu ₃ P NA/CF	0.1 M PBS	1.63	91.2±2.5	-0.5	[12]
	(0.1 M NaNO ₂)				
Ni ₂ P/NF	0.1 M PBS	2.69	90.2±3.0	-0.3	[13]
	(200ppm NO_2^-)				
PdCu/Cu ₂ O	$0.2 \text{ M} \text{ Na}_2 \text{SO}_4$	3.23	94.32	-0.8	[14]
	(100 ppm NO ₃ -)				
TiO ₂ NTs/CuO _x	0.5 M Na ₂ SO ₄	1.24	92.23	-0.75	[15]
	100 ppm KNO ₃				
10Cu/TiO _{2-x}	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	1.94	81.34	-0.75	[16]
	200 ppm NaNO ₃				
BP	0.5 M Na ₂ SO ₄	3.1	96.3	-0.8	This
	0.1 M NaNO ₃				work

Table S1. Comparison of the optimum NH_3 yield and FE_{NH3} for the recently reported state-of-the-art NO₃RR electrocatalysts at ambient conditions.

Supplementary references

- [1]. D. Zhu, L. Zhang, R. E. Ruther and R. J. J. N. m. Hamers, *Nat. Mater.*, 2013, **12**, 836-841.
- [2]. Y. Wang, C. Wang, M. Li, Y. Yu and B. Zhang, Chem. Soc. Rev., 2021, 50, 6720-6733.
- [3]. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. J. A. b. Tannenbaum, *Anal. Biochem.*, 1982, **126**, 131-138.
- [4]. D. Wu, P. Lv, J. Wu, B. He, X. Li, K. Chu, Y. Jia and D. Ma, J. Mater. Chem. A, 2023, 11, 1817-1828.
- [5]. J. Li, J. Hu, M. Zhang, W. Gou, S. Zhang, Z. Chen, Y. Qu and Y. Ma, *Nat. Commun.*, 2021, 12, 3502.
- [6]. P. Li, Z. Jin, Z. Fang and G. Yu, *Energy Environ. Sci.*, 2021, 14, 3522-3531.
- [7]. Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong and C. Zhi, *Energy Environ. Sci.*, 2021, 14, 3938-3944.
- [8]. L. Li, C. Tang, X. Cui, Y. Zheng, X. Wang, H. Xu, S. Zhang, T. Shao, K. Davey and S. Z. Qiao, Angew. Chem., Int. Ed., 2021, 133, 14250-14256.
- [9]. Y. Wang, H. Li, W. Zhou, X. Zhang, B. Zhang and Y. Yu, Angew. Chem., Int. Ed., 2022, e202202604.
- [10]. P. Gao, Z. H. Xue, S. N. Zhang, D. Xu, G. Y. Zhai, Q. Y. Li, J. S. Chen and X. H. Li, Angew. Chem., Int. Ed., 2021, 133, 20879-20884.
- [11]. Y. M. Wang, J. Cai, Q. Y. Wang, Y. Li, Z. Han, S. Li, C. H. Gong, S. Wang, S. Q. Zang and T. C. Mak, Angew. Chem., Int. Ed., 2022, 134, e202114538.
- [12]. J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani, D. Ma and X. Sun, *Green Chem.*, 2021, 23, 5487-5493.
- [13]. G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao and A. M. Asiri, J. Colloid Interface Sci., 2022, 606, 1055-1063.
- [14]. H. Yin, Z. Chen, S. Xiong, J. Chen, C. Wang, R. Wang, Y. Kuwahara, J. Luo, H. Yamashita and Y. Peng, *Chem Cata.*, 2021, 1, 1088-1103.
- [15]. W. Qiu, X. Chen, Y. Liu, D. Xiao, P. Wang, R. Li, K. Liu, Z. Jin and P. Li, *Appl. Catal.*, B, 2022, 315, 121548.
- [16]. X. Zhang, C. Wang, Y. Guo, B. Zhang, Y. Wang and Y. Yu, J. Mater. Chem. A, 2022, 10, 6448-6453.