Supporting information for:

Template synthesis of an intermediate in silver salt metathesis using a calix[4]arene-based diphosphine ligand

Jack Emerson-King and Adrian B. Chaplin.

Contents

1.	General experimental methods.	. 2
2.	Preparation [{Rh(biph)Cl} ₂ (μ -CxP ₂) ₂] 2	. 2
3.	NMR scale reaction between 2 and Ag[Al(OR ^F) ₄]	. 4
4.	Attempted isolation of [Rh(biph)(CxP ₂)(ClAg)][Al(OR ^F) ₄] 1-ClAg	. 5
5.	Preparation of [Rh(biph)(CxP ₂)(OH ₂)][Al(OR ^F) ₄] 1-OH₂	. 7
6.	References	. 8

1. General experimental methods.

All manipulations were performed under argon using standard Schlenk line and glove box techniques unless otherwise stated. Glassware was oven dried at 150 °C overnight and flamed under vacuum prior to use. 3 Å molecular sieves were activated by heating at 300 °C in vacuo overnight prior to use. Anhydrous solvents were obtained from commercial sources. Hexane was further dried over Na/ K_2 alloy, vacuum-distilled, and freeze-pump-thaw degassed before being placed under argon over a potassium mirror. CH₂Cl₂ was further dried over CaH₂ overnight, vacuum-distilled, and freeze-pump-thaw degassed three times before being placed under argon over activated 3 Å molecular sieves. 1,2-Difluorobenzene (DFB) was stirred over neutral alumina, filtered, stirred over CaH₂ overnight, vacuum-distilled, and freezepump-thaw degassed three times before being placed under argon over activated 3 Å molecular sieves.¹ CD₂Cl₂ was placed over activated 3 Å molecular sieves and freeze-pump-thaw degassed three times before being placed under argon. [Rh(biph)(dtbpm)Cl]² and CxP₂³ were prepared using literature procedures, or minor variations thereof. For convenience, we have documented the full multi-step procedure for the latter in the supporting information of a preceding publication.⁴ Ag[Al(OR^F)₄] was purchased from IoLiTec (https://iolitec.de/) and used as received. All other reagents and solvents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. Virtual coupling constants are reported as the separation between the first and third lines.⁵ In some instances, ³¹P{¹H} NMR spectra were referenced using an internal sealed capillary of a 25 mM solution of trimethylphosphate in C₆D₆ (δ_{31P} 3.7).⁶ Microanalyses were performed by Stephen Boyer at London Metropolitan University.

2. Preparation of [{Rh(biph)Cl}₂(µ-CxP₂)₂] 2

A solution of [Rh(biph)(dtbpm)Cl] (50.0 mg, 84.0 μ mol) and CxP₂ (84.1 mg, 85.0 μ mol) in CH₂Cl₂ (5 mL) was stirred at RT for 3 h. Excess Et₂O (*ca.* 45 mL) was added with stirring and the resulting precipitate isolated by filtration and dried *in vacuo.* Yield: 78.0 mg (30.5 μ mol, 73%, amorphous yellow solid).

¹**H NMR** (CD₂Cl₂, 500 MHz): δ 7.33–7.28 (m, 4H, 6-biph), 7.31 (t, ${}^{3}J_{HH} = 7.4, 8H, p-Ph$), 7.09 (t, ${}^{3}J_{HH} = 7.6, 16H, m-Ph$), 7.03–6.95 (m, 16H, *o*-Ph), 6.80–6.76 (m, 8H, 3-biph+4-biph), 6.72–6.67 (m, 4H, 5-biph), 6.22 (s, 8H, *m*-Ar^P), 6.02 (t, ${}^{3}J_{HH} = 7.6, 4H, p-Ar^{H}$), 5.63 (d, ${}^{3}J_{HH} = 7.6, 8H, m-Ar^{H}$), 4.05 (d, ${}^{2}J_{HH} = 13.0, 8H, ArCH_{2}Ar^{P}$), 3.78 (br t, ${}^{3}J_{HH} = 8.2, 8H, Ar^{P}OC\underline{H}_{2}$), 3.64 (br, 8H, CH₂P), 3.45 (br t, 8H, ${}^{3}J_{HH} = 6.9, Ar^{H}OC\underline{H}_{2}$), 2.62 (d, ${}^{2}J_{HH} = 13.3, 8H ArC\underline{H}_{2}Ar^{P}$), 1.81–1.68 (m, 16H, C<u>H</u>₂CH₃), 0.99 (t, ${}^{3}J_{HH} = 7.4, 12H, CH_{2}C\underline{H}_{3}$), 0.79 (t, ${}^{3}J_{HH} = 7.4, 12H, CH_{2}C\underline{H}_{3}$).

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 163.7 (dt, ¹J_{RhC} = 33, ²J_{PC} = 8, 1-biph), 156.9 (s, *i*-Ar^P), 155.5 (s, *i*-Ar^H), 152.6 (s, 2-biph), 136.9 (s, *o*-Ar^P), 134.9 (vt, J_{PC} = 10, *o*-Ph), 133.33 (s, *o*-Ar^H), 133.25 (s, 6-biph), 131.0 (s, *m*-Ar^P), 130.1 (s, *p*-Ph), 129.0 (vt, J_{PC} = 44, *i*-Ph), 127.8 (vt, J_{PC} = 8, *m*-Ph), 127.7 (s, *m*-Ar^H), 127.7 (s, *m*-Ar^H), 125.0 (s, 5-biph), 123.1 (s, 4-biph), 122.1 (s, *p*-Ar^H), 121.7 (s, 3-biph), 77.5 (s, OCH₂), 76.7 (s, OCH₂), 31.0 (s, Ar<u>C</u>H₂Ar^P), 30.1 (vt, J_{PC} = 20, CH₂P), 24.0 (s, <u>C</u>H₂CH₃), 23.2 (s, <u>C</u>H₂CH₃), 11.1 (s, CH₂<u>C</u>H₃).

³¹**P**{¹**H**} **NMR** (CD₂Cl₂, 162 MHz): δ 29.9 (d, ¹*J*_{RhP} = 114).

Anal. Calcd for $C_{156}H_{156}Cl_2O_8P_4Rh_2$ (2559.76 g·mol⁻¹): C, 73.20; H, 6.14; N, 0.00. Found: C, 73.12; H, 5.99; N, 0.00.

Figure S4. Variable temperature ¹H and ³¹P{¹H} NMR spectra of 2 (CD₂Cl₂, 600/243 MHz).

3. NMR scale reaction between 2 and Ag[Al(OR^F)₄]

A suspension of $[{Rh(biph)Cl}_2(\mu-CxP_2)_2]$ (6.4 mg, 2.5 µmol) and Ag[Al(OR^F)_4] (5.4 mg, 5 µmol) in CD₂Cl₂ (0.5 mL) was agitated within a J. Young's valve NMR tube at RT. Analysis by NMR spectroscopy indicated complete conversion into $[Rh(biph)(CxP_2)(ClAg)][Al(OR^F)_4]$ within 48 h.

100 40 30 20 10 -10 -20 -30 -40 -60 90 80 70 60 50 0 -50 -70 -80 -90 -100 Figure S6. ³¹P{¹H} NMR spectrum collected during the reaction between 2 and Ag[Al(OR^F)₄] with internal O=P(OMe)₃ standard (CD₂Cl₂, 162 MHz).

4. Attempted isolation of [Rh(biph)(CxP₂)(CIAg)][Al(OR^F)₄] 1-CIAg

A suspension of $[{Rh(biph)Cl}_2(\mu-CxP_2)_2]$ (20 mg, 7.8 µmol) and Ag[Al(OR^F)_4] (16.8 mg, 15.6 µmol) in CH₂Cl₂ (5 mL) was stirred at RT for 48 h. The solution was filtered through a dried glass microfibre filter and volatiles removed in vacuo. The residue was extracted into CD₂Cl₂ to afford the product in *ca.* 85% purity which characterised *in situ* by NMR spectroscopy. Attempted purification by recrystallisation from CH₂Cl₂/hexane lead to complete conversion into [Rh(biph)(CxP₂)(OH₂)][Al(OR^F)_4]. On one occasion, when the reaction was carried out in DFB, we were able to obtain a sample of [Rh(biph)(CxP₂)(L)][Al(OR^F)_4] (L = AgCl, H₂O) suitable for X-ray diffraction following filtration and diffusion of hexane at RT.

¹**H NMR** (CD₂Cl₂, 400 MHz, selected data): δ 7.38 (t, ³J_{HH} = 7.3, 4H, *p*-Ph), 7.32 (t, ³J_{HH} = 7.5, 4H, *p*-Ar^H), 7.18 (t, ³J_{HH} = 7.3, 8H, *m*-Ph), 7.11 (d, ³J_{HH} = 7.5, 8H, *m*-Ar^H), 6.79–6.71 (m, 8H, *o*-Ph), 6.50 (s, 4H, *m*-Ar^P), 4.51 (d, ²J_{HH} = 13.1, 4H, ArCH₂Ar^P), 4.52–4.43 (m, 4H, ArOC<u>H</u>₂), 3.68 (t, ³J_{HH} = 7.3, 4H, ArOC<u>H</u>₂), 3.30 (br, 4H, CH₂P), 3.21 (d, ²J_{HH} = 13.1, 4H, ArCH₂Ar^P), 2.18 – 2.03 (m, 4H, C<u>H</u>₂CH₃), 1.92 (app sex, ³J_{HH} = 7.4, 4H, C<u>H</u>₂CH₃), 1.04 (t, ³J_{HH} = 7.5, 6H, CH₂C<u>H</u>₃), 0.99 (t, ³J_{HH} = 7.3, 6H, CH₂C<u>H</u>₃), ³¹P{¹H} NMR (CD₂Cl₂, 162 MHz): δ 14.0 (d, ¹J_{RhP} = 120).

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ -75.7 (s).

Figure S9. ³¹P{¹H} NMR spectrum of **1-CIAg** (CD₂Cl₂, 162 MHz). Insert with sine bell and without exponential apodization to show presence of **1-OH**₂.

Figure S10. ¹⁹F $\{^{1}H\}$ NMR spectrum of **1-CIAg** (CD₂Cl₂, 377 MHz).

5. Preparation of [Rh(biph)(CxP₂)(OH₂)][Al(OR^F)₄] 1-OH₂

A suspension of $[{Rh(biph)Cl}_2(\mu$ -CxP₂)₂] (128.8 mg, 50 µmol) and Ag[Al(OR^F)₄] (107.5 mg, 100 µmol) in CH₂Cl₂ (10 mL) was vigorously stirred at RT for 18 h. H₂O (2.7 µL, 150 µmol) was added, precipitating AgCl, and the yellow solution filtered in air. The solvent was concentrated *in vacuo* to *ca*. 5 mL and layered with wet hexane (*ca*. 45 mL) in air to afford the product along with further AgCl precipitate. The product was extracted into CH₂Cl₂ (*ca*. 5 mL) and the recrystallisation procedure repeated until no further AgCl precipitate was observed. Yield: 171 mg (76.7 µmol, 77%, orange crystalline blocks). Spectroscopic data are consistent with the literature.⁴

³¹P{¹H} NMR (CD₂Cl₂, 162 MHz): δ 13.2 (d, ¹J_{RhP} = 120).

6. References

- ¹ S. D. Pike, M. R. Crimmin and A. B. Chaplin, *Chem. Commun.*, 2017, **53**, 3615–3633.
- ² C. N. Iverson and W. D. Jones, *Organometallics*, 2001, **20**, 5745–5750.
- ³ X. Fang, B. L. Scott, J. G. Watkin, C. A. G. Carter and G. J. Kubas, *Inorg. Chim. Acta.*, 2001, **317**, 276–281.
- J. Emerson-King, S. Pan, M. R. Gyton, R. Tonner-Zech and A. B. Chaplin. *Chem. Commun.*, 2023, 59, 2150–2152.
- ⁵ P. S. Pregosin, *NMR in Organometallic Chemistry*, Wiley-VCH, 2012, pp. 251–254.
- ⁶ R. Streck and A. J. Barnes, *Spectrochim. Acta A*, 1999, **55**, 1049–1057.