Bimetallic Polymerization of Lactide with Binaphthol-Derived Bisheteroscorpionate Dizinc and Dimagnesium Complexes

Maxym Tansky, Robert J. Comito*
Department of Chemistry, The University of Houston, 4800 Calhoun Road, Houston, Texas 77004
Supporting Information

Contents

S1. General information S3
S2. Preparation of ligands S5
S3. Spectral data for ligands S14
S4. Synthesis of metal complex 5 S31
S5. Spectral data of metal complex 5 S32
S6. X-ray crystallography data for $\mathbf{5}$ S34
S7. In situ NMR analysis of $\mathbf{1}-\mathrm{Me}_{2}$ and $\mathrm{Mg}(\mathrm{HMDS})_{2}$ and $\mathrm{Zn}(\mathrm{HMDS})_{2}$ S36
S8. Polymerization S38
S9. Chromatograms and physical characterization data for polymers S45
S10. Kinetics S54
S11. Computational models S63

S1. General Information. All reactions with metal complexes were performed in an atmosphere of dry, oxygen-free dinitrogen using standard Schlenk techniques or in a nitrogen glovebox. The rac-lactide and ε-caprolactone were obtained from Millipore Sigma. L-lactide and meso-lactide were purchased from Natureworks, LLC. Lactides were recrystallized from toluene then sublimated twice before use. ε-Caprolactone was distilled from CaH_{2} followed by three freeze-pump-thaw cycles before use. Other commercial reagents were purified prior to use following the guidelines of Perrin and Armarego. ${ }^{1}$ All solvents were purified according to the method of Grubbs. ${ }^{2}$ Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished using force-flow chromatography on Silicycle silica gel according to the method of Still. ${ }^{3}$ Thin-layer chromatography (TLC) was performed on Silicycle $250 \mu \mathrm{~m}$ silica gel plates. Compounds were visualized by irradiation with UV light, treatment with a solution of potassium permanganate followed by heating, or exposure to iodine. Yields refer to pure compounds, unless otherwise indicated.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL 400 MHz NMR spectrometer and are internally referenced relative to residual protio solvent signals $\left(\mathrm{CDCl}_{3}\right)$ at $\delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ at $\delta=7.16 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and to carbon signals $\left(\mathrm{CDCl}_{3}\right)$ at $\delta=77.00 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ at $\delta=128 \mathrm{ppm}$ $\left({ }^{13} \mathrm{C}\right)$. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{ap}=$ apparent $)$, integration, and coupling

[^0]constant (Hz). ${ }^{13} \mathrm{C}$ spectra were recorded on a JEOL $(101 \mathrm{MHz})$ and are referenced relative to CDCl_{3} at $\delta 77.16 \mathrm{ppm}$ or $\mathrm{DMSO}-\mathrm{d}_{6}$ at 39.52 ppm . Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift and multiplicity where appropriate. Infrared (IR) spectra were recorded on a Bruker Platinum ATR spectrometer with monolithic diamond crystal plate and are reported in terms of wavenumber of absorption $\left(\mathrm{cm}^{-1}\right)$. Differential Scanning Calorimetry (DSC) was conducted on a TA-DSC 2500 operated between $-90^{\circ} \mathrm{C}$ and $250{ }^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} /$ minute for heating and cooling cycle under nitrogen atmosphere. All thermal data reported were taken from the second heat curve. Gel Permeation Chromatography (GPC) analyses were performed using a Tosoh high performance GPC system HLC-8320 equipped with an auto injector, a dual differential refractive index (RI) detector, and three TSKgel HHR series columns connected in series $(7.8 \times 300 \mathrm{~mm}$ TSKgel G5000HHR, TSKgel G4000HHR, TSKgel G3000HHR). GPC analyses were carried out in HPLC grade tetrahydrofuran with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ at $40^{\circ} \mathrm{C}$. Relative molecular weights (M_{n} and M_{w}) and molecular weight distributions ($Đ$) were calculated using conventional column calibration with polystyrene (PS) standards. High resolution mass spectra were obtained from the University of Illinois Urbana-Champaign School of Chemical Sciences Mass Spectrometry Laboratory on a Waters Synapt G2-Si with an ESI source, or a Bruker Daltonics UltrafleXtreme MALDI TOFTOF using a DCTB/NaTFA matrix.

S2. Preparation of Ligands

(\pm)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene. To a stirring suspension of sodium hydride $(2.10 \mathrm{~g}, 87.5 \mathrm{mmol}, 5$ equivalents) and N, N-dimethylformamide (40 mL) in a round bottom flask was added (\pm)-2,2'-hydroxy-1,1'-binaphthalene ($5.0 \mathrm{~g}, 18 \mathrm{mmol}, 1$ equivalent). After 10 minutes, methyl chloromethyl ether ($4.0 \mathrm{~mL}, 52 \mathrm{mmol}, 3$ equiv) was added in one portion. The resulting suspension was then stirred at room temperature for another 4 hours and then the reaction mixture was partitioned between dichloromethane (200 mL) and saturated sodium bicarbonate (200 mL) solution. The organic phase was washed twice with sodium bicarbonate solution, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was separated by silica gel column chromatography using $0-20 \%$ diethyl ether in hexanes to obtain the desired material as a white solid $\left(6.20 \mathrm{~g}, 16.6 \mathrm{mmol}, 95 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}$, $\mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (t, J = 7.4 Hz, 2H), 7.17 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.15 (s, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 152.7,134.1,123.0,129.5,128.0,126.4,125.7$, $124.2,121.4,117.4,95.3,56.0$. These NMR data are consistent with those reported for this compound. ${ }^{4}$ Note that the racemic product has much lower solubility than its enantioenriched counterpart, which meant that procedures for synthesis of enantioenriched BINOL derivatives had to be modified for use on the racemate.

[^1]
(\pm)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3,3'-dicarbaldehyde. To a room temperature solution of $(\pm)-2,2^{\prime}$-bis(methoxymethoxy)-1,1'-binaphthalene ($955 \mathrm{mg}, 2.55 \mathrm{mmol}$, 1 equivalent) in anhydrous diethyl ether (43 mL) under nitrogen was added n-butyllithium (2.5 M in hexanes, $3.06 \mathrm{~mL}, 7.65 \mathrm{mmol}, 3$ equivalents) dropwise. The resulting suspension was stirred for 3 hours and then anhydrous tetrahydrofuran (28 mL) was added by syringe and stirred for another 30 minutes. After cooling the solution to $0^{\circ} \mathrm{C}$ using an ice bath, $\mathrm{N}, \mathrm{N}-$ dimethylformamide ($1.0 \mathrm{~mL}, 13 \mathrm{mmol}, 5$ equivalents) was injected rapidly. After stirring for 30 \min at $0^{\circ} \mathrm{C}$ the solution was allowed to warm to room temperature and then quenched by the careful addition of saturated ammonium chloride solution $(30 \mathrm{~mL})$. The mixture was then extracted twice with diethyl ether, the combined organic layer washed once with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was separated by silica gel column chromatography using $20-50 \%$ ethyl acetate in hexanes to obtain the desired material as a light yellow solid ($599 \mathrm{mg}, 1.39 \mathrm{mmol}, 55 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.53(\mathrm{~s}, 2 \mathrm{H}), 8.60$ ($\mathrm{s}, 2 \mathrm{H}$), $8.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 190.8,154.2,136.8,132.4,130.4,130.2,129.8,129.0,126.4,126.2,126.0,100.7$, 57.1. These NMR data are consistent with those reported for this compound. ${ }^{5}$

[^2]
(\pm)-2,2'-bis(hydroxy)-[1,1'-binaphthalene]-3,3'-dicarbaldehyde (2). A stirring solution of (\pm)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3,3'-dicarbaldehyde ($656 \mathrm{mg}, 1.52 \mathrm{mmol}, 1$ equivalent) and tetrahydrofuran $(11 \mathrm{~mL})$ was treated with concentrated $\mathrm{HCl}(4.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and then gradually allowed to warm to room temperature. The resulting suspension was stirred for 6 hours and then poured into ice water (40 mL), filtered, and the bright yellow solid washed with water until the washings were neutral by pH paper. Drying in vacuo gave the desired material as a bright yellow solid ($520 \mathrm{mg}, 1.51 \mathrm{mmol}, 99 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.57(\mathrm{~s}$, $2 \mathrm{H}), 10.18(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9,153.7,138.6,137.5,130.8,130.1,127.7,124.9$, $124.6,122.2,116.6$. These NMR data are consistent with those reported for this compound. ${ }^{5}$

3-H, 3-Me ${ }_{2}$, 3-iPr, and 3-Ph were all prepared according to the previously reported method. ${ }^{6}$

1-H.
A suspension of $2(200 \mathrm{mg}, 0.584 \mathrm{mmol}, 1$ equivalent), 3-H ($190 \mathrm{mg}, 1.17 \mathrm{mmol}, 2$ equivalents), DMAP ($14 \mathrm{mg}, 12 \mathrm{mmol}, 0.20$ equivalent), and tetrahydrofuran (10 mL) was packed under nitrogen into a vial equipped with a stir bar. The vial was tightly sealed and heated to $70^{\circ} \mathrm{C}$ with stirring for 24 hours. The reaction was next cooled to room temperature, and all volatiles
removed in vacuo. Then the residue redissolved in dichloromethane (30 mL). The resulting solution was washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was separated on silica gel column chromatography using an eluent of 1:1 ethyl acetate : hexanes. The isolate was recrystallized by dissolving in boiling isopropanol and then cooling to room temperature, and then dried in vacuo to give the product as a colorless solid ($172 \mathrm{mg}, 0.297 \mathrm{mmol}, 51 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H})$, 7.27-7.35 (m, 4H), $7.09(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5$, $140.9,140.7,134.4,130.4,130.1,130.0,129.0,128.5,128.1,124.8,124.5,124.4,114.8,106.6$, 106.5, 75.1. IR (Diamond ATR) 3140, 3122, 3057, 1624, 1599, 1514, 1436, 1384, 1362, 1292, $1209,1191,1176,1142,1090,1052,1014,974,918,909,891,826,803,788,743,711,653$, $615,568,559,541,525,467,440 \mathrm{~cm}^{-1}$. HRMS (based on formula $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Na}$) m/z: expected: $601.2076 \mathrm{amu}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: 601.2064 amu , difference: -2.0 ppm . Elemental analysis (based on formula $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2}$): C (69.89% found, 70.58% expected, -0.7% difference), $\mathrm{H}(4.58 \%$ found, 4.53% expected, 0.05% difference), N (18.89% found, 19.37% expected, -0.5% difference).

2
 THF, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$

1-Me ${ }_{2}$.
A solution of $2(223 \mathrm{mg}, 0.651 \mathrm{mmol}, 1$ equivalent $), 3-\mathrm{Me}_{2}(284 \mathrm{mg}, 1.30 \mathrm{mmol}, 2$ equivalents), quinuclidine ($15 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.20$ equivalent), and tetrahydrofuran (10 mL) was packed under nitrogen into a vial equipped with a stir bar. The vial was tightly sealed and heated to $70^{\circ} \mathrm{C}$
with stirring for 24 hours. The reaction was next cooled to room temperature and all volatiles removed in vacuo. The resulting residue was separated on silica gel column chromatography using an eluent of 1:2 ethyl acetate : hexanes. Excess 3,5-dimethylpyrazole was removed by sublimation ($110^{\circ} \mathrm{C}, 0.1$ Torr), leaving behind the product as a light yellow solid ($289 \mathrm{mg}, 0.418$ mmol, 64% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.6,148.6,147.8,140.9,140.1,134.4,128.9,128.8,128.2$, $127.5,125.8,124.6,123.8,113.1,107.0,106.6,70.5,14.0,13.4,11.1,10.1$. IR (Diamond ATR) $3053,2958,2923,2654,1626,1605,1558,1503,1463,1435,1417,1378,1350,1331,1305$, $1242,1208,1169,1146,1108,1096,1027,974,932,908,871,853,843,820,791,777,755$, $731,712,661,632,607,566,549,531,488,460,440 \mathrm{~cm}^{-1}$. HRMS (based on formula $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Na}$) m/z: expected: $713.3328 \mathrm{amu}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: 713.3309 amu , difference: -2.7 ppm. Elemental analysis (based on formula $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{2}$): C (73.08% found, 73.02% expected, 0.1% difference), H (6.12% found, 6.13% expected, -0.01% difference $), \mathrm{N}(16.09 \%$ found, 16.22% expected, -0.1% difference).

(S)-1-Me ${ }_{2}$.

Prepared in an identical manner as $\mathbf{1}-\mathrm{Me}_{2}$ using (S) $\mathbf{- 2}$ ($342 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1 equivalent), 3- Me_{2} ($436 \mathrm{mg}, 2.00 \mathrm{mmol}, 2$ equivalent), quinuclidine ($55 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.20$ equivalent) to obtain a light yellow solid ($504 \mathrm{mg}, 0.730 \mathrm{mmol}, 73 \%$ yield). NMR Data matched that for racemic 1-Me ${ }_{2}$. This compound exhibits significantly higher solubility in organic solvents than the racemic 1-
Me_{2}. HRMS (based on formula $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Na}$) m/z: expected: $713.3328 \mathrm{amu}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: 713.3313 amu , difference: $-2.1 \mathrm{ppm} .[\alpha]_{\mathrm{D}}=-18.0\left(0.0484, \mathrm{CHCl}_{3}, 21^{\circ} \mathrm{C}\right)$.

(R)-1-Me ${ }_{2}$.

Prepared in an identical manner as $\mathbf{1}-\mathrm{Me}_{2}$ using (R)-2 ($252 \mathrm{mg}, 0.736 \mathrm{mmol}, 1$ equivalent), $\mathbf{3}-\mathrm{Me}_{2}$ ($321 \mathrm{mg}, 1.47 \mathrm{mmol}, 2$ equivalents), quinuclidine ($16 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.20$ equivalent). The crude product was isolated from column chromatography using an eluent of 1:2 ethyl acetate : hexanes and then recrystallized by dissolving in boiling toluene and hexanes and then cooling to room temperature, giving the title compound as a light yellow solid ($215 \mathrm{mg}, 0.310 \mathrm{mmol}, 42 \%$ yield). NMR data matched that for racemic 1-Me ${ }_{2}$. This compound exhibits significantly higher solubility in organic solvents than the racemic 1-Me 2 . HRMS (based on formula $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{2}$) m/z: expected: $691.3509 \mathrm{amu}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: 691.3514 amu , difference: $-0.7 \mathrm{ppm} \cdot[\alpha]_{\mathrm{D}}=+18.5$ (0.0452, $\left.\mathrm{CHCl}_{3}, 21^{\circ} \mathrm{C}\right)$.

1-Ph.
In a sealed vial with a stir bar, a solution of $\mathbf{2}(100 \mathrm{mg}, 0.292 \mathrm{mmol}, 1$ equivalent), 3-Ph (184 mg , $0.584 \mathrm{mmol}, 2$ equivalents), quinuclidine ($6.5 \mathrm{mg}, 0.058 \mathrm{mmol}, 0.20$ equivalents), and tetrahydrofuran (4 mL) was heated to $70^{\circ} \mathrm{C}$ and stirred for 24 hours under nitrogen. The reaction was cooled to room temperature and all volatiles removed in vacuo. The resulting residue was separated on silica gel column chromatography using an eluent of 1:8:8 ethyl acetate : hexanes : dichloromethane to obtain the desired material as a pale yellow solid ($70 \mathrm{mg}, 0.079 \mathrm{mmol}, 27 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55$ (br, 2H), 7.97 ($\mathrm{s}, 2 \mathrm{H}$), 7.70-7.75 (m, 14H), 7.66 (s , $2 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 14 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 152.7,152.7,150.4,134.4,132.7,132.7,131.6,131.4,130.8,129.0,128.7,128.7$, 128.6, 128.2, 128.1, 126.0, 126.0, 124.7, 124.6, 124.4, 116.0, 104.0, 104.0. IR (Diamond ATR) $3136,3115,3062,3035,2958,2920,2851,1743,1657,1626,1604,1583,1529,1499,1457$, $1403,1381,1355,13214,1301,1283,1262,1230,1214,1179,1149,1098,1074,1048,1025$, $948,916,896,863,829,808,747,691,609,571,509,475,434 \mathrm{~cm}^{-1}$. HRMS (based on formula $\mathrm{C}_{58} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{2}$) m/z: expected: $883.3509 \mathrm{amu}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: 883.3501 amu , difference: -0.9 ppm.

1-iPr.
In a sealed vial with a stir bar, $2(150 \mathrm{mg}, 0.438 \mathrm{mmol}, 1$ equivalent $), 3-\mathrm{iPr}(216 \mathrm{mg}, 0.876$ $\mathrm{mmol}, 2.00$ equivalents), $\mathrm{DBU}(13 \mathrm{~mL}, 0.088 \mathrm{mmol}, 0.020$ equivalents), and tetrahydrofuran was heated to $70^{\circ} \mathrm{C}$ for 24 hours under nitrogen. The reaction mixture was cooled to room temperature and all volatiles removed in vacuo. The resulting residue was separated on silica gel column chromatography using an eluent of 10% ethyl acetate in dichloromethane to obtain the desired material as a pale yellow solid, which was further purified by recrystallization from boiling hexanes/pentane (1:1) and cooling to $-20^{\circ} \mathrm{C}$ giving colorless crystals. ($40 \mathrm{mg}, 0.054$ $\mathrm{mmol}, 12 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{br}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}$, 2H), 7.67 (s, 2H), $7.59(\mathrm{q}, \mathrm{J}=2.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.88-3.01(\mathrm{~m}, 4 \mathrm{H}), 1.17-1.22(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,160.4,150.4,134.8,131.1,130.6,130.5,128.7,128.4,127.8,125.0$, $124.8,124.1,117.6,103.2,77.5$ (overlaps with solvent signal), 27.9, 27.9, 22.8, 22.8, 22.7. IR (Diamond ATR) 3122, 2963, 2929, 2871, 2629, 1627, 1602, 1565, 1523, 1473, 1457, 1440, $1403,1380,1353,1288,1258,1239,1195,1149,1111,1098,1069,1048,1021,991,945,898$, $826,805,749,720,692,628,603,565,526,476,461,437,423 \mathrm{~cm}^{-1}$. HRMS (based on formula $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{2}$) m/z: expected: $747.4135 \mathrm{amu}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: 747.4119 amu , difference: -2.1
ppm. 2-bis(3,5-dimethylpyrazol-1-yl)methylphenol (4) Prepared according to the previously reported method. ${ }^{6}$

[^3]
S3. Spectral Data for Ligands

Figure S3.2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (\pm)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3,3'dicarbaldehyde, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.4. ${ }^{13} \mathrm{C}$-NMR of (\pm)-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3,3'dicarbaldehyde, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.6. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 2, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.8. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{H}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.9. Infrared spectrum of 1-H, diamond ATR.

Figure S3.10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{Me}_{2}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.11. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{Me}_{2}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.12. Infrared spectrum of $\mathbf{1}-\mathrm{Me}_{2}$, diamond ATR.

Figure S3.13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(R)-1-\mathrm{Me}_{2}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.14. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(R)-1-\mathrm{Me}_{2}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{Ph}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.16. ${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 - P h}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.17. Infrared spectrum of $\mathbf{1 - P h}$, diamond ATR.

Figure S3.18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $1-\mathrm{iPr}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S3.19. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1}-\mathrm{iPr}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3.20. Infrared spectrum of 1-iPr, diamond ATR.

2-bis(3,5-dimethylpyrazol-1-ly)methyphenol (4)

Figure S3.21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 4, DMSO-d6, 400 MHz .

Figure S3.22. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 4, DMSO-d6, 100 MHz .

S4. Synthesis of metal complex 5.

Diethyl dizinc complex with $(\boldsymbol{R}) \mathbf{- 1}-\mathbf{M e}_{\mathbf{2}}$ (5). In a nitrogen glovebox, a vial was charged with (R)-1-Me ${ }_{2}$ ($100 \mathrm{mg}, 0.145 \mathrm{mmol}, 1$ equivalent), diethylzinc ($30 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 2$ equivalents), and dichloromethane (5 mL). After 18 hours all volatiles were removed in vacuo giving a yellow microcrystalline solid. This material was resuspended in 1:1 toluene/hexanes and filtered, rinsing with hexanes ($2 \times 2 \mathrm{~mL}$) and drying, giving the desired material as a yellow solid ($103 \mathrm{mg}, 0.117$ $\mathrm{mmol}, 81 \%$ yield). Crystals of sufficient quality for X-ray diffraction analysis were grown by dissolving the solid in a minimal amount of dichloromethane followed by storage at $-37{ }^{\circ} \mathrm{C}$ for a few days giving yellow blocks. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 7.57-7.60 (m, 4H), $7.15(\mathrm{~s}, 2 \mathrm{H})$, 6.94-6.99 (m, 6H), $5.98(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~s}$, $6 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 6 \mathrm{H}),-0.06(\mathrm{q}, \mathrm{J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.0$, $151.1,149.0,141.0,140.7,135.9,129.2,127.6,126.2,125.4,125.4,124.5,123.9,119.5,106.6$, 106.0, 73.3, 12.9, 12.9, 12.1, 11.6, 11.5, -2.6. IR (Diamond ATR) 3133, 3050, 2983, 2920, 2884, $2846,2810,1616,1584,1557,1485,1454,1419,1357,1318,1244,1181,1166,1145,1108$, $1042,1020,981,943,917,851,835,780,762,735,711,695,629,606,557,528,515,459 \mathrm{~cm}^{-1}$. Elemental analysis (based on formula $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{2}$): C (61.57% found, 62.95% expected, -1.4% difference), H (5.54% found, 5.74% expected, -0.2% difference), $\mathrm{N}(12.78 \%$ found, 12.77% expected, 0.01% difference). Note that although we could isolate a complex from racemic 1-Me ${ }_{2}$, we could not obtain diffraction-quality crystals from racemic 5.

S5. Spectral data of metal complex 5.

Figure S5.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}$.

Figure S5.2. ${ }^{13} \mathrm{C}$-NMR of $\mathbf{5}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}$.

Figure S5.3. Infrared spectrum of 5, diamond ATR.

S6. X-ray crystallography data for 5.

Table S6.1 Crystal data and structure refinement for complex 5.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/ \AA
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$

MT7-058_XW383
$\mathrm{C}_{50} \mathrm{Cl}_{8} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn}_{2} \mathrm{H}_{58}$
1217.38

123(2)
orthorhombic
P2 ${ }^{2}{ }_{1}{ }^{2} 1$
11.8551(4)
11.8538(4)
38.9071(11)

90
90
90
5467.5(3)

4
1.479
$\mu / \mathrm{mm}^{-1} \quad 5.050$
$\mathrm{F}(000)$
2504.0

Crystal size $/ \mathrm{mm}^{3}$
$0.28 \times 0.24 \times 0.04$
Radiation
2Θ range for data collection $/{ }^{\circ}$
$\mathrm{CuK} \alpha(\lambda=1.54178)$

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
2.27 to 132.22
$-13 \leq \mathrm{h} \leq 14,-13 \leq \mathrm{k} \leq 14,-45 \leq 1 \leq 45$
55221
$9444\left[\mathrm{R}_{\text {int }}=0.0431, \mathrm{R}_{\text {sigma }}=0.0339\right]$
9444/624/671

Final R indexes [all data]
1.076
$\mathrm{R}_{1}=0.0400, \mathrm{wR}_{2}=0.1118$

Largest diff. peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.1119$
0.62/-0.41

S7. In situ NMR analysis of $\mathbf{1 - M e} \mathbf{M}_{2}$ and $\operatorname{Mg}(H M D S)_{2}$ and $\mathbf{Z n}(H M D S)_{2}$.

S7.1. Reaction between 1-Me $\mathbf{M a}_{2}$ and $\mathbf{Z n}(\mathbf{H M D S})_{2}$. In a nitrogen glovebox, $\mathbf{1 - M e} \mathbf{M}_{2}(25 \mathrm{mg}, 0.036$ mmol, 1 equivalent), $\mathrm{Zn}(\mathrm{HMDS})_{2}(28 \mathrm{mg}, 0.072 \mathrm{mmol}, 2$ equivalents) and benzene-d6 (2 mL) were stirred in a sealed vial for 12 hours. The resulting solution was transferred to an NMR tube and analyzed by ${ }^{1} \mathrm{H}$-NMR. The resulting spectrum shows the clean formation of a single complex as evidenced by peaks corresponding to the proposed structure with proper peak integration. However, the expected sharp singlet for the $-\mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ moiety bonded to zinc is overlapped with the signal for free $\mathrm{HN}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ generated as a byproduct of proton exchange with 1 - Me_{2}. No significant peak corresponding to unreacted $\mathrm{Zn}(\mathrm{HMDS})_{2}$ is observed at 0.2 ppm , indicating complete consumption of starting material and suggesting the binding of two Zn per $\mathbf{1 - M e} \mathbf{e}_{2}$.
Figure S7.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of a mixture of $\mathbf{1 - M e} \mathrm{e}_{2}, \mathrm{Zn}(\mathrm{HMDS})_{2}$, and $\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$.

S7.2. Reaction between 1-Me $\mathbf{M e}_{2}$ and $\mathbf{M g}(\mathbf{H M D S})_{2}$. In a nitrogen glovebox, $\mathbf{1}-\mathrm{Me}_{2}(25 \mathrm{mg}, 0.036$ mmol, 1 equivalent $), \mathrm{Mg}(\mathrm{HMDS})_{2}(25 \mathrm{mg}, 0.072 \mathrm{mmol}, 2$ equivalents) and benzene- $\mathrm{d} 6(2 \mathrm{~mL})$ were stirred in a sealed vial for 12 hours. Then the resulting solution was transferred to an NMR tube and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The resulting spectrum shows the formation of the major desired complex as evidenced by peaks corresponding to the proposed structure with correct integration. Additionally, peaks corresponding to the $-\mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ moiety bonded to Mg are resolved from the peaks for the $\mathrm{HN}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$ byproduct. However, unlike the analogous dizinc complex (Figure S7.1), small peaks corresponding to a minor product with lower symmetry are also observed. This is in agreement with the increased tendency of Mg complexes to partake in Schlenk-type rearrangements.

Figure S7.2. in situ ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1 - M e} \mathbf{M e}_{2}$ and $\mathrm{Mg}(\mathrm{HMDS})_{2}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$.

S8. Polymerization.

S8.1 Catalyst Optimization.

General procedure. In the glovebox, ligand was dissolved in a vial in anhydrous degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and treated with $\mathrm{M}(\mathrm{HMDS})_{2}\left(\mathrm{M}^{2+}=\mathrm{Zn}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}\right)$. This solution was sealed and stirred vigorously for 30 minutes and then treated with alcohol as a freshly prepared stock solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 equivalent per metal, $1 \% \mathrm{v} / \mathrm{v}$). This solution was sealed again and stirred another 30 minutes. This solution was then taken by syringe or pipette and injected all at once into a rapidly stirring solution of rac-lactide ($144 \mathrm{mg}, 1.00 \mathrm{mmol}, 100$ equivalents per metal) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in a vial. 0.2 mL aliquots were taken at 10 minutes and 30 minutes by syringe and quenched by injecting into 0.1 M solution of benzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Particularly slow reactions were also run out to 24 hours and quenched by injecting into 0.1 M solution of benzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. For particularly fast polymerizations, the first aliquot was collected after five minutes. The quenched aliquots were dried in vacuo and the resulting residue redissolved in CDCl_{3}. Assay conversions were determined by comparing the integrations for the polymer signal with remaining monomer signal in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Polymer material for GPC analysis was obtained by precipitation of the quenched reaction solution from methanol at $-20^{\circ} \mathrm{C}$, filtration, and vacuum drying.

Table S8.1. Catalyst Optimization.

Entry	catalyst	alcohol	$\begin{aligned} & \hline \text { Conversi } \\ & \text { on }(10 \\ & \min)^{\mathrm{a}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Conversi } \\ & \text { on }(30 \\ & \mathrm{min})^{\mathrm{a}} \\ & \hline \end{aligned}$	Convers ion $(24 \mathrm{hr})^{\mathrm{a}}$	$M_{N}{ }^{\text {b }}$	$M_{\mathrm{W}} / M_{\mathrm{N}}{ }^{\text {b }}$	DP ${ }^{\text {b }}$
1	$\begin{aligned} & \hline 1-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	none	0\%	0\%	99\%	44248	1.87	307
2	$\begin{aligned} & \hline \mathbf{1 -} \mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	p-cresol	<1\%	<1\%	--	--	--	--
3	$\begin{aligned} & \hline \mathbf{1 -} \mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	TFE*	56\%	90\%	--	11426	1.09	79
4	$\begin{aligned} & 1-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	HFIP*	<1\%	<1\%	--	--	--	--
5	$\begin{aligned} & \hline 1-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	benzyl alcohol	64\%	93\%	--	11340	1.08	79
6	$\begin{aligned} & 1-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	2-methoxyethanol	37\%	77\%	--	11092	1.10	77
7	$\begin{aligned} & \hline 1-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	MeOH	28\%	76\%	--	13680	1.12	95
8	$\begin{aligned} & \hline \mathbf{1 - M e _ { 2 } + 2} \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	iPrOH	45\%	86\%	--	11260	1.04	78
9	$\begin{aligned} & \text { 1-Me } \mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	72\%	95\%	--	13512	1.08	94
10	$\begin{aligned} & \mathbf{1 - H}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	47\%	89\%	--	12209	1.14	85
11	$\begin{aligned} & \text { 1-Ph + } 2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	7\%	21\%	99\%	17460	1.84	121

12	$\begin{aligned} & \hline \mathbf{1}-\mathrm{i} \operatorname{Pr}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	20\%	67\%	99\%	17880	1.08	124
13	$4+\mathrm{Zn}(\mathrm{HMDS})_{2}$	nPrOH	29\%	69\%	--	8945	1.05	62
14	$\begin{aligned} & \mathrm{Zn}(\mathrm{HMDS})_{2} \\ & \text { only } \end{aligned}$	nPrOH	0\%	2\%	58\%	4308	1.33	30
15	5 (ethylzinc complex)	none	0\%	0\%	3\%	--	--	--
16	5 (ethylzinc complex)	n-propanol	0\%	<1\%	34\%	4162	1.03	29
17	$\begin{aligned} & \text { 1- }-\mathrm{Me}_{2}+2 \\ & \mathrm{Mg}(\mathrm{HMDS})_{2} \end{aligned}$	none	7\%	42\%	97\%	12271	1.71	85
18	$\begin{aligned} & \text { 1- }-\mathrm{Me}_{2}+2 \\ & \mathrm{Mg}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	$60 \%{ }^{\text {d }}$	98\%	--	17333	1.45	120
19	$\begin{aligned} & 4+ \\ & \mathrm{Mg}(\mathrm{HMDS})_{2} \end{aligned}$	nPrOH	8\% ${ }^{\text {d }}$	29\%	--	4518	1.05	31
20	$\begin{aligned} & \mathrm{Mg}(\mathrm{HMDS})_{2} \\ & \text { only } \end{aligned}$	nPrOH	20\%	96\%	99\%	12955	2.06	90
21	$\begin{aligned} & \mathbf{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Ca}(\mathrm{HMDS})_{2}(\mathrm{TH} \\ & \mathrm{F})_{2} \end{aligned}$	none	21\%	25\%	25\%	2147	1.99	15
22	$\begin{aligned} & \text { 1- } \mathrm{Me}_{2}+2 \\ & \mathrm{Ca}(\mathrm{HMDS})_{2}(\mathrm{TH} \\ & \mathrm{F})_{2} \end{aligned}$	nPrOH	16\%	37\%	--	4221	1.06	29
23	$\begin{aligned} & \mathbf{4 +} \\ & \mathrm{Ca}(\mathrm{HMDS})_{2}(\mathrm{TH} \\ & \mathrm{F})_{2} \end{aligned}$	nPrOH	19\%	44\%	--	5682	1.11	39
24	$\begin{aligned} & \mathrm{Ca}(\mathrm{HMDS})_{2}(\mathrm{TH} \\ & \mathrm{F})_{2} \text { only } \end{aligned}$	nPrOH	43\%	54\%	--	3356	1.47	23

Conditions as in section S8.1. ${ }^{2}$ Conversions obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ assay by integrating the polymer methine region relative to the signal for unreacted monomer. ${ }^{b}$ Number-average molecular weight (M_{N}), polydispersity index $\left(M_{\mathrm{M}} / M_{\mathrm{N}}\right)$, and degree of polymerization by gel permeation chromatography using the Mark-Houwink correction factor 0.58 for M_{N}. ${ }^{\mathrm{d}}$ Conversion measured at 5 minutes reaction time instead of 10 minutes.

4 = 2-bis(3,5-dimethylpyrazol-1-yl)methylphenol
*HFIP $=$ hexafluoroisopropanol, TFE $=$ trifluoroethanol

S8.2 Stereoselectivity.

General procedure. Polymer was prepared by the same method as in S8.1.
Assignment of P_{r} values was done by the comparison of integrated methine signals in the homodecoupled ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum by the equation $P_{r}=2 I_{1} /\left(I_{1}+I_{2}\right)$, where I_{1} is the integration interval from 5.20-5.25 ppm and I_{2} is the integration interval from 5.13-5.20 ppm, and represents the probability that an incoming monomer unit forms an r linkage upon propagation ${ }^{7}$.

[^4]Polymerization of l-lactide gave clearly isotactic poly(lactide) with no signs of racemization in all cases which is represented by $P_{\mathrm{m}}>0.99$.

Figure S8.1. Sample homodecoupled ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz})$ of poly $(\mathrm{rac}$-lactide).
Table S8.2. Polymerization of various lactides.

Entry	Catalyst	Monomer	$\begin{aligned} & \text { Conversio } \\ & \mathrm{n}(24 \mathrm{~h})^{\mathrm{a}} \end{aligned}$	Tacticity ${ }^{\text {b }}$	$M_{N}{ }^{\text {c }}$	$M_{\mathrm{M}} / M_{\mathrm{N}}{ }^{\text {c }}$	$\mathrm{DP}^{\text {c }}$
1	$\begin{aligned} & \mathbf{1 - M e}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}+2 \\ & \text { nPrOH } \end{aligned}$	rac-lactide	95\%	$P_{r}=0.63$	13510	1.08	94
2	$\begin{aligned} & \mathbf{1 - M e} e_{2}+2 \mathrm{Mg}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \end{aligned}$	rac-lactide	98\%	$P_{r}=0.58$	17330	1.45	120
3	$4+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$	rac-lactide	69\%	$P_{r}=0.55$	4308	1.33	30
4	$4+\mathrm{Mg}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$	rac-lactide	99\%	$P_{r}=0.51$	12955	2.06	90
5	$\begin{aligned} & (R)-\mathbf{1 - M e} e_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	l-lactide	99\%	$P_{m}>0.99$	13425	1.52	93
6	$\begin{aligned} & (R)-\mathbf{1}-\mathrm{Me}_{2}+2 \mathrm{Mg}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	l-lactide	99\%	$P_{m}>0.99$	12813	1.96	89
7	$\begin{aligned} & (S)-\mathbf{1}-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	l-lactide	99\%	$P_{m}>0.99$	14236	1.30	99
8	$\begin{aligned} & (S)-\mathbf{1}-\mathrm{Me}_{2}+2 \mathrm{Mg}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	l-lactide	99\%	$P_{m}>0.99$	16705	2.19	116
9	$\begin{aligned} & (R)-\mathbf{1}-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	meso-lactide	100\%	$P_{r}=0.52$	3862	1.50	27
10	$\begin{aligned} & (R)-1-\mathrm{Me}_{2}+2 \mathrm{Mg}(\mathrm{HMDS})_{2}+ \\ & 2 \mathrm{nPrOH} \end{aligned}$	meso-lactide	100\%	$P_{r}=0.62$	6191	1.47	43
11	$4+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$	meso-lactide	99\%	$P_{r}=0.52$	9928	3.76	69
12	$4+\mathrm{Mg}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$	meso-lactide	99\%	$P_{r}=0.51$	14189	1.24	98

Conditions as in Section S8.2. ${ }^{\text {a }}$ Conversions obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ assay by integrating the polymer methine region relative to the signal for unreacted monomer. ${ }^{\mathrm{b}}$ Isolated tacticity obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ as described in section S8.2. ${ }^{\mathrm{c}}$ Number-average molecular weight $\left(M_{\mathrm{N}}\right)$,
polydispersity index $\left(M_{\mathrm{M}} / M_{\mathrm{N}}\right)$, and degree of polymerization by gel permeation chromatography using the Mark-Houwink correction factor 0.58 for M_{N}.

S8.3. Block Copolymerization.

$\varepsilon^{\text {-caprolactone homopolymerization general procedure. In the glovebox, } 1-\mathrm{Me}_{2}(3.5 \mathrm{mg}, 0.005}$ mmol, 1 equivalent) was dissolved in a vial in anhydrous de-gassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and treated with $\mathrm{M}(\mathrm{HMDS})_{2}\left(\mathrm{M}^{2+}=\mathrm{Zn}^{2+}, \mathrm{Mg}^{2+}\right)$. This solution was sealed and stirred vigorously for 30 minutes and then treated with alcohol as a freshly prepared stock solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 equiv. per metal, $1 \% \mathrm{v} / \mathrm{v}$). This solution was sealed again and stirred another 30 minutes. This solution was then taken by syringe or pipette and injected all at once into a rapidly stirring solution of ε^{-} caprolactone ($111 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 100$ equivalents per metal) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in a vial. The reaction was stirred for 24 hours and then an aliquot for NMR analysis was withdrawn and quenched using 0.1 M benzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The reaction mixture was then similarly quenched. The quenched aliquot was dried in vacuo and the resulting residue redissolved in CDCl_{3}. Assay conversions in ε-caprolactone were determined by comparing the polymer signal to the residual monomer signal in the ${ }^{1} \mathrm{H}$ NMR spectrum. Polymer material for GPC analysis was obtained by precipitation of the quenched reaction solution from methanol at $-20^{\circ} \mathrm{C}$, filtration, and drying in vacuo.

Copolymerization general procedure. In a nitrogen glovebox, a solution of $\mathbf{1}-\mathrm{Me}_{2}(3.5 \mathrm{mg}, 0.005$ mmol, 1 equivalent) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was treated with $\mathrm{M}(\mathrm{HMDS})_{2}\left(\mathrm{M}^{2+}=\mathrm{Zn}^{2+}\right.$ or $\left.\mathrm{Mg}^{2+}\right)$. This solution was sealed and stirred vigorously for 30 minutes and then treated with alcohol as a freshly prepared stock solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 equivalent per metal, $1 \% \mathrm{v} / \mathrm{v}$). This solution was sealed again and stirred for another 30 minutes, and then injected all at once into a rapidly stirring solution of monomer $1\left(1.00 \mathrm{mmol}, 100\right.$ equivalents per metal) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in a vial. This solution was then stirred for 3 hours and then monomer $2(1.00 \mathrm{mmol}, 100$ equivalents per metal) was added either neat (ε-caprolactone) or as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ (l-lactide). This solution was stirred for an additional 3 hours and then quenched by injecting several drops of 0.1 M benzoic acid solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. An aliquot for NMR analysis was withdrawn and dried in vacuo and the resulting residue redissolved in CDCl_{3}. Assay conversions were determined by comparing the integrations for the polymer signals with remaining respective monomer signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. Polymer material for GPC analysis was obtained by precipitation of the quenched reaction solution from methanol at $-20^{\circ} \mathrm{C}$, filtration, and drying in vacuo.

Figure S8.3. Sample ${ }^{1} \mathrm{H}$-NMR spectrum of poly(ε-caprolactone-co-lactide) showing diagnostic signals.

Table S8.3. Block copolymerization.

Entry	Catalyst	First monomer	\% conversion of first monomer ${ }^{\text {a }}$	Second monomer	\% conversion of second monomer ${ }^{\text {a }}$	$M_{\text {N }}{ }^{\text {b }}$	$\begin{aligned} & M_{\mathrm{M}} / \\ & M_{\mathrm{N}}{ }^{\mathrm{b}} \end{aligned}$
1	$\begin{aligned} & \hline \mathbf{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2}+2 \\ & \text { nPrOH } \\ & \hline \end{aligned}$	ε-caprolactone	85\%	none	--	6800	1.09
2	$\begin{aligned} & \mathrm{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \\ & \hline \end{aligned}$	ε-caprolactone	83\%	l-lactide	72\%	19900	1.08
3	$\begin{aligned} & \mathrm{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Zn}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \\ & \hline \end{aligned}$	l-lactide	95\%	ε-caprolactone	0\%	16200	1.22
4	$\begin{aligned} & \mathrm{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Mg}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \\ & \hline \end{aligned}$	ε-caprolactone	91\%	none	--	8900	1.06
5	$\begin{aligned} & \mathrm{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Mg}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \end{aligned}$	ε-caprolactone	90\%	l-lactide	80\%	28800	1.12
6	$\begin{aligned} & \mathrm{1}-\mathrm{Me}_{2}+2 \\ & \mathrm{Mg}(\mathrm{HMDS})_{2}+2 \\ & \mathrm{nPrOH} \end{aligned}$	l-lactide	96\%	ε-caprolactone	0\%	16100	1.74

${ }^{\mathrm{a}}$ Assay conversion. ${ }^{\mathrm{b}}$ Number-average molecular weight $\left(M_{\mathrm{N}}\right)$, polydispersity index ($M_{\mathrm{M}} / M_{\mathrm{N}}$), and degree of polymerization by gel-permeation chromatography using the correction factors 0.58 for poly(lactide) and 0.56 for poly(ε-caprolactone).

S8.4. In situ $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of \quad 1- $\mathrm{Me}_{2} / \mathrm{Zn}(\mathrm{HMDS})_{2} / \mathrm{nPrOH} \quad$ and $\quad 1$ -
$\mathrm{Me}_{2} / \mathrm{Zn}(\mathrm{HMDS})_{2} / \mathrm{nPrOH} /$ lactide.

$\mathbf{1 - M e} / \mathbf{Z n}(\mathbf{H M D S})_{2} / \mathbf{n P r O H}$. In a nitrogen glovebox, $\mathbf{1}-\mathrm{Me}_{2}(10 \mathrm{mg}, 0.014 \mathrm{mmol}, 1$ equivalent), $\mathrm{Zn}(\mathrm{HMDS})_{2}(11.3 \mathrm{uL}, 0.028 \mathrm{mmol}, 2$ equivalents) and methylene chloride- $d 2$ (0.75 mL) were combined in a vial. After stirring for 30 minutes, nPrOH was added as a freshly prepared stock solution in methylene chloride- $d 2(3 \% \mathrm{v} / \mathrm{v} ; 933 \mathrm{uL}, 2$ equivalents) by micropipette, and then stirred another 30 minutes. The resulting solution was transferred into an airtight NMR tube and immediately analyzed. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is shown below:

Figure S8.4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of in situ-prepared $1-\mathrm{Me}_{2} / \mathrm{Zn}(\mathrm{HMDS})_{2} / \mathrm{nPrOH}$ in methylene chloride- $d 2$.

$\mathbf{1 - M e} / \mathbf{Z n}(\mathbf{H M D S})_{2} / \mathbf{n P r O H} / \mathbf{D L}-l a c t i d e . ~ I n ~ a ~ n i t r o g e n ~ g l o v e b o x, ~ 1-M e ~(10 ~ m g, ~ 0.014 ~ m m o l, ~ 1 ~$ equivalent), $\mathrm{Zn}(\mathrm{HMDS})_{2}(11.3 \mathrm{uL}, 0.028 \mathrm{mmol}, 2$ equivalents) and methylene chloride- $d 2$ (0.75 mL) were combined in a vial. After stirring for 30 minutes, nPrOH was added as a freshly prepared stock solution in methylene chloride- $d 2(3 \% \mathrm{v} / \mathrm{v} ; 933 \mathrm{uL}, 2$ equivalents) by micropipette, and then stirred another 30 minutes. Then, DL-lactide ($20 \mathrm{mg}, 0.14 \mathrm{mmol}, 10$ equivalents) was added to the solution as a solid. This solution was transferred into an NMR tube and immediately analyzed. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is shown below:

Figure S8.5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of in situ-prepared $1-\mathrm{Me}_{2} / \mathrm{Zn}(\mathrm{HMDS})_{2} / \mathrm{nPrOH} / \mathrm{DL}$-lactide in methylene chloride- $d 2$.

S9. Chromatograms and physical characterization data for polymers.

Figure S9.1. GPC Analyses from zinc-catalyst optimization (From Section S8.1).

Figure S9.2. GPC Analyses from magnesium-catalyst optimization (From Section S8.1).

Figure S9.3. GPC Analyses from calcium-catalyst optimization (From Section S8.1).

Figure S9.4. GPC Analyses from l-lactide polymerization (From Section S8.2).

Figure S9.5. GPC Analyses from meso-lactide polymerization (From Section S8.2).

Figure S9.6. GPC Analyses from block copolymerization of ε-caprolactone and then l-lactide with zinc (From Section S8.3).

Figure S9.7. GPC Analyses from block copolymerization of ε-caprolactone and then l-lactide with magnesium (From Section S8.3).

Figure S9.8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of block copolymer prepared by $1-\mathrm{Me}_{2}, 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and 2 $\mathrm{nPrOH}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Figure S9.9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of block copolymer prepared by $1-\mathrm{Me}_{2}, 2 \mathrm{Mg}(\mathrm{HMDS})_{2}$, and 2 ${ }^{\mathrm{nPrOH}}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Figure S9.10. ${ }^{1} \mathrm{H}$-DOSY NMR analysis of block copolymer prepared by $\mathbf{1 - M e}{ }_{2}, 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and $2 \mathrm{nPrOH}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Figure S9.11. ${ }^{1} \mathrm{H}$-DOSY NMR analysis of block copolymer prepared by $\mathbf{1}-\mathrm{Me}_{2}, 2 \mathrm{Mg}(\mathrm{HMDS})_{2}$, and $2 \mathrm{nPrOH}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

Figure S9.12. DSC heat-cool-heat trace (first heat cycle not shown) of block copolymer prepared by $1-\mathrm{Me}_{2}, 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and 2 nPrOH ,

Figure S9.13. DSC heat-cool-heat trace (first heat cycle not shown) of block copolymer prepared by $1-\mathrm{Me}_{2}, 2 \mathrm{Mg}(\mathrm{HMDS})_{2}$, and 2 nPrOH ,

Figure S9.14. MALDI-ToF MS spectrum of polymer prepared by $1-\mathrm{Me}_{2}, 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and 2 nPrOH . Example m / z calculation provided.

S10. Kinetics

S10.1. General procedure for kinetics experiments. In the glovebox, a solution of precatalyst and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~mL}\right.$, varying concentration) was treated with a solution of $\mathrm{M}(\mathrm{HMDS})_{2}\left(\mathrm{M}^{2+}=\mathrm{Zn}^{2+}\right.$, Mg^{2+}, or Ca^{2+}) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was sealed and stirred vigorously for 30 minutes and then treated with alcohol as a freshly prepared stock solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 equivalent per metal, 1% v / v). This solution was sealed again and stirred another 30 minutes, and then injected all at once into a rapidly stirring solution of rac -lactide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in a vial. 0.2 mL aliquots were taken at various time points by syringe and quenched by injecting into 0.1 M solution of benzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The quenched aliquots were dried in vacuo and the resulting residue redissolved in CDCl_{3}. Assay conversions were determined by comparing the integrations for the polymer signal with remaining monomer signal in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Initial rates were calculated by linear regression of a polymer yield versus time plot as slope. Deviation from linear behavior was generally observed above 50% conversion, and thus those points were removed from the linear fit. In all cases, we obtained positive x-intercepts indicating a lack of extrapolation to 0% conversion at 0 seconds, consistent with a short induction time.

S10.2. Conversion vs time plots for monometallic complex $4+\mathbf{Z n}(\mathbf{H M D S})_{2}+\mathbf{n P r O H}$. Each line represents an initial concentration of $\mathbf{4}$ for which individual time points were taken. For each concentration, the experiment was performed at least twice with aliquots taken at the same intervals. Individual data points therefore represents the average of at least two experiments at the same initial concentration of 4. All experiments were performed with an initial concentration of 0.33 M of rac-Lactide.

Figure S10.1. Polymer yield (\%) vs reaction time for the polymerization of rac-lactide by in-situ formed complex $\mathbf{4}+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$. Initial concentrations of $\mathbf{4}$ are indicated.

Table S10.1. Steady state rates obtained for $\mathbf{4}+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$.

Initial concentration of 4	1.67 mM	2.35 mM	3.33 mM	4.71 mM	6.67 mM
Rate $(\mathbf{d}[$ polymer]/dt) from slope (M/h)	0.267	0.378	0.514	0.574	1.24

S10.3. Conversion vs time plots for bimetallic complex 1-Me $\mathbf{2}_{2}+2 \mathrm{Zn}(\mathbf{H M D S})_{2}+2 \mathbf{n P r O H}$. Each line represents an initial concentration of $\mathbf{1}-\mathrm{Me}_{2}$ for which individual time points were taken. For each concentration, the experiment was performed at least twice with aliquots taken at the same intervals. Individual data points therefore represents the average of at least two experiments at the same concentration of $\mathbf{1}-\mathrm{Me}_{2}$. All experiments were performed with an initial concentration of 0.33 M of $r a c$-Lactide.

Figure S10.2. Polymer yield (\%) vs reaction time plot for the polymerization of rac-lactide by insitu formed complex 1-Me ${ }_{2}+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$. Initial concentrations of $\mathbf{1}-\mathrm{Me}_{2}$ are indicated.

Table S10.2. Steady state rates obtained for $\mathbf{1}-\mathrm{Me}_{2}+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$.

Initial concentration of 1-Me $\mathbf{2}_{\mathbf{2}}$	1.67 mM	2.35 mM	3.33 mM	4.71 mM	6.67 mM
Rate (d[polymer]/dt) from slope (M/h)	1.26	2.21	2.54	3.54	5.47

S10.4. $\ln (d[P] / d t)$ vs $\ln [$ catalyst $]$ plot for monometallic and bimetallic complexes. Steady-state rates from Sections 10.2 and 10.3 were plotted against catalyst concentration in a double logarithm plot. Assuming constant catalyst and lactide concentrations and a rate law of the form $\mathrm{d}[$ polymer $] / \mathrm{dt}=k[\mathrm{~L}][\text { catalyst }]^{\mathrm{n}}$, this double logarithm plot should be governed by the relationship $\ln \{\mathrm{d}[$ polymer $] / \mathrm{dt}\}=\ln \left\{k[\mathrm{~L}]_{0}\right\}+{ }^{\mathrm{n}}[\text { catalyst }]_{0}$, where $[\mathrm{L}]_{0}$ is initial lactide concentration and $[\text { catalyst }]_{0}=$ initial catalyst concentration. Thus the kinetic rate order (n) in each catalyst would be the slope of its particular line. Furthermore, the relative rates for the two catalysts $\left(k_{1} / k_{2}\right)$ should be obtained by comparing the intercepts of this plot $\left(\ln \left\{k_{1}[L]_{0}\right\}\right.$ and $\left.\ln \left\{k_{2}[\mathrm{~L}]_{0}\right\}\right)$ by the following equation: $k_{1} / k_{2}=\mathrm{e}^{\wedge}\left(\ln \left\{\mathrm{k}_{1}[\mathrm{~L}]_{0}\right\}-\ln \left\{\mathrm{k}_{2}[\mathrm{~L}]_{0}\right\}\right)$ since the same $[\mathrm{L}]_{0}$ was used in both cases. In this way, we obtained kinetic orders of 1.01 for $\mathbf{4} / \mathrm{Zn}(\mathrm{HMDS})_{2}$ and 0.98 for $\mathbf{1}-\mathrm{Me}_{2} / \mathrm{Zn}(\mathrm{HMDS})_{2}$, and a $k_{1} / k_{2}=5.34$.

Figure S10.3. $\ln (\mathrm{d}[\mathrm{P}] / \mathrm{dt})$ vs $\ln [$ catalyst] plot for the polymerization of rac-lactide by in-situ formed complexes 1-Me $2+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$ (top, blue) and $4+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$ (bottom, red).

S10.5. $\ln (\mathbf{d}[\mathbf{P}] / \mathbf{d t})$ vs $\ln [\mathbf{Z n}]$ plot for monometallic and bimetallic complexes. The data from Table S10.1 and S10.2 were replotted as a double logarithm plot of steady state rate versus zinc concentration to allow a comparison at constant metal concentration. By the method described in Section S10.4 we obtained a $k_{1} / k_{2}=2.71$.

Figure S10.4. $\ln (\mathrm{d}[\mathrm{P}] / \mathrm{dt})$ vs $\ln [\mathrm{Zn}]$ plot for the polymerization of rac-lactide by in-situ formed complexes $\mathbf{1}-\mathrm{Me}_{2}+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}($ top, blue $)$ and $4+\mathrm{Zn}(\mathrm{HMDS})_{2}+\mathrm{nPrOH}$ (bottom, red).

S10.6. Conversion vs time plots for bimetallic complex 1-Me $2 /(S)-1-\mathrm{Me}_{2} /(\boldsymbol{R})-1-\mathrm{Me}_{2}+2$ $\mathbf{Z n}(\mathbf{H M D S})_{2}+\mathbf{2} \mathbf{n P r O H}$ with \mathbf{L} or DL lactide. Each line represents a different precatalyst (rac-1- $\left.\mathrm{Me}_{2},(S) \mathbf{- 1}-\mathrm{Me}_{2},(R)-\mathbf{1}-\mathrm{Me}_{2}\right)$, for which individual time points were taken at a constant initial precatalyst concentration of 3.33 mM and an initial lactide (L or DL) concentration of 0.33 M . For each precatalyst, the experiment was performed at least twice with aliquots taken at the same intervals. Individual data points therefore represents the average of at least two experiments.

Figure S10.5. Polymer yield (\%) vs reaction time for the polymerization of rac-lactide by precatalyst $\left(\right.$ rac- $\mathbf{1}-\mathrm{Me}_{2},(S) \mathbf{1}-\mathrm{Me}_{2}$, or $\left.(R)-\mathbf{1}-\mathrm{Me}_{2}\right), 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and 2 nPrOH at $[\text { catalyst }]_{0}=3.33$ mM .

Figure S10.6. Polymer yield (\%) vs reaction time plot for the polymerization of L-lactide by precatalyst $\left(\operatorname{rac}-\mathbf{1}-\mathrm{Me}_{2},(S) \mathbf{1}-\mathrm{Me}_{2}\right.$, or $\left.(R)-\mathbf{1}-\mathrm{Me}_{2}\right), 2 \mathrm{Zn}(\mathrm{HMDS})_{2}$, and 2 nPrOH at $[\mathrm{catalyst}]_{0}=3.33$ mM .

Table S10.4. Observed steady-state rates of lactide polymerization by chiral ligands rac-1-Me ${ }_{2}$, (R)-1-Me ${ }_{2}$, and (S)-1- Me_{2}.

Entry ${ }^{\text {a }}$	Catalyst	Monomer	$k_{\text {obs }}$ (turnovers per hour)
1	$(R) \mathbf{- 1}-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	l-lactide	406
2	rac-1-Me ${ }_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	l-lactide	558
3	$(S)-1-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	l-lactide	851
4	$(R) \mathbf{- 1}-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	rac-lactide	754
5	rac-1-Me ${ }_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	rac-lactide	763
6	$(S)-1-\mathrm{Me}_{2}+2 \mathrm{Zn}(\mathrm{HMDS})_{2}$	rac-lactide	746

${ }^{\mathrm{a}}$ Conditions: $[l \text {-lactide }]_{0}=0.33 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, $[l \text {-lactide }]_{0} /[\mathrm{Zn} \text { or } \mathrm{Mg}]_{0} /[\mathrm{n} \text {-propanol }]_{0}=100 / 1 / 1$.

S11. Computational models.

S11.1. General. All computations were performed using the Gaussian 16 Software package ${ }^{8}$.

S11.2. Structural analysis for the formation of bimetallic $\mathbf{Z n}, \mathbf{M g}$, and $\mathbf{C a}$ hexamethyldisilazide complexes with 1-Me $\mathbf{2}_{2}$ (Scheme S11.1). All calculations were performed in the gas phase, using temperature $=298.15 \mathrm{~K}$, pressure $=1 \mathrm{~atm}$. A multiplicity of 0 and charge of 0 was assigned for all structures in this section. Geometries for the zinc, magnesium, and calcium complexes (S11-1, S11-2, and S11-3) were all optimized at the level of B3LYP/6-31G(d, p). Free energies of formation were then obtained by a single frequency calculation at this same level and are reported below, but were not the basis of our discussion and conclusions. The geometry optimization and frequency steps were performed together in a single calculation using the Gaussian keyword combination "Opt Freq." For all of the analyzed structures, the Opt Freq calculations resulted in no negative harmonic frequencies, confirming that the optimized structures were stable local minima on the energy surface.

[^5]

Figure S11.1. Optimized geometry for S11-1
XYZ coordinates for optimized structure S11-1.

C	0.263719	0.699633	2.14171
C	-0.368196	1.697181	2.932506
C	1.399301	0.991551	1.350731
C	1.89426	2.355075	1.369998
C	1.264285	3.319827	2.136756
C	0.135604	3.039484	2.933414
N	2.985517	2.831416	-0.867955
N	3.026074	1.671358	-1.579287
N	4.395195	2.28288	1.027453
N	4.741847	0.99575	0.747781
C	2.604155	3.878521	-1.659856
C	2.415759	3.360069	-2.926713
C	2.68277	1.979109	-2.832289
C	5.828058	0.726101	1.475958
C	6.182392	1.857591	2.239438
C	5.247603	2.831709	1.94472
C	3.108112	2.84891	0.595095
O	1.955703	0.035104	0.649239
Zn	3.463793	-0.085947	-0.530545
C	-0.263965	-0.699185	2.14169
C	-1.400778	-0.990797	1.352374
C	-1.894908	-2.354645	1.370892

C	-1.263504	-3.319801	2.135947
C	-0.133952	-3.039623	2.931435
C	0.369377	-1.697141	2.930841
O	-1.95935	-0.033763	0.653438
C	-3.109294	-2.848395	0.596782
N	-4.396128	-2.281813	1.02919
N	-4.744471	-0.995981	0.745738
N	-2.986956	-2.831592	-0.8663
N	-3.023972	-1.671459	-1.577635
C	-5.830335	-0.725312	1.474133
C	-6.1825	-1.854698	2.241675
C	-5.24684	-2.828662	1.949176
C	-2.681203	-1.980061	-2.830567
C	-2.418375	-3.361833	-2.925003
C	-2.608527	-3.879784	-1.658194
Zn	-3.464249	0.085812	-0.530613
H	1.645254	4.341033	2.138353
H	-1.64397	-4.341195	2.137088
C	-0.492239	4.036648	3.727462
C	-1.583184	3.735185	4.50681
C	-2.08622	2.408951	4.517446
C	-1.501437	1.42335	3.757333
C	1.503606	-1.423535	3.754388
C	2.089655	-2.409466	4.513114
C	1.58702	-3.735843	4.502222
C	0.495206	-4.037118	3.72401
H	1.893152	-0.41207	3.777776
H	2.950124	-2.170284	5.132442
H	2.063351	-4.50284	5.105583
H	0.093168	-5.048027	3.704183
H	-0.089872	5.04743	3.707846
H	-2.058537	4.501917	5.111281
H	-2.946016	2.169643	5.137657
H	-1.891312	0.412009	3.780472
H	3.199867	3.906641	0.831774
H	-3.201297	-3.906011	0.833898
N	4.061614	-1.645456	-1.466712
Zn	5.489876	-1.604815	-2.446722
Zn	3.123895	-3.071178	-1.100307
C	6.246511	0.141707	-2.476907
C	5.186193	-2.068618	-4.268941
C	6.872335	-2.767805	-1.839558

C	1.271279	-2.709812	-1.261886
C	3.448741	-3.657666	0.674332
C	3.482089	-4.545456	-2.252274
H	4.413635	-1.440636	-4.72538
H	4.871037	-3.110449	-4.380794
H	6.104765	-1.939872	-4.854826
H	5.558531	0.88575	-2.891943
H	7.147187	0.144253	-3.102302
H	6.538644	0.489365	-1.480702
H	3.195045	-4.33464	-3.287821
H	2.891905	-5.408177	-1.919376
H	4.532212	-4.854499	-2.251932
H	0.968848	-1.891159	-0.601027
H	0.679391	-3.592689	-0.990965
H	1.00732	-2.437319	-2.290686
H	7.201198	-2.51682	-0.825709
H	7.748831	-2.702401	-2.49605
H	6.553133	-3.815207	-1.827504
H	3.197166	-2.876749	1.400267
H	4.502727	-3.924723	0.817162
H	2.847049	-4.537992	0.929705
N	-4.061607	1.645295	-1.467153
Zn	-3.12447	3.070887	-1.098923
Zn	-5.488162	1.604267	-2.449577
C	-6.243817	-0.142637	-2.481535
C	-5.181639	2.068743	-4.27115
C	-6.872186	2.766531	-1.844594
C	-3.449392	3.654706	0.67659
C	-3.482999	4.546639	-2.248876
C	-1.271653	2.710529	-1.260609
H	-4.503322	3.921729	0.81992
H	-2.847517	4.534499	0.933364
H	-3.19786	2.872552	1.401215
H	-0.968932	1.891572	-0.60026
H	-0.680352	3.593524	-0.988766
H	-1.007206	2.439005	-2.289529
H	-4.408932	1.440491	-4.726981
H	-4.865651	3.110433	-4.382016
H	-6.099544	1.940959	-4.858298
H	-7.202917	2.515182	-0.831448
H	-7.747382	2.701043	-2.502811
H	-6.553326	3.814024	-1.831651

H	-5.555317	-0.885877	-2.897149
H	-7.144347	-0.145146	-3.107139
H	-6.535917	-0.491396	-1.485705
H	-4.533246	4.855252	-2.248363
H	-3.195587	4.337486	-3.284658
H	-2.893264	5.409112	-1.914543
C	-6.493988	0.61316	1.416681
C	-2.604507	-0.933363	-3.895441
C	6.489376	-0.613684	1.422625
C	2.609964	0.932454	-3.89763
H	7.0142	1.951882	2.921524
C	5.106161	4.217834	2.487508
H	-7.013425	-1.947704	2.925013
C	-5.103381	-4.213014	2.495918
H	-2.117147	-3.912045	-3.803789
C	-2.433573	-5.278802	-1.160438
H	2.113109	3.909386	-3.805572
C	2.4248	5.276858	-1.161898
H	2.762269	-0.059469	-3.467962
H	3.371149	1.097504	-4.667627
H	1.632237	0.957953	-4.388967
H	3.341685	5.679899	-0.716451
H	1.625793	5.340309	-0.415454
H	2.152409	5.924192	-1.997367
H	5.935412	4.425623	3.166177
H	4.173836	4.339141	3.049584
H	5.128027	4.976523	1.696898
H	5.876553	-1.320634	0.861033
H	6.639049	-1.005828	2.433199
H	7.472017	-0.551153	0.942927
H	-6.653207	1.003727	2.42636
H	-7.47233	0.549113	0.928401
H	-5.878088	1.322058	0.860927
H	-5.127798	-4.974206	1.707771
H	-5.930343	-4.418753	3.177994
H	-4.169153	-4.332426	3.055215
H	-1.623322	-0.955716	-4.380074
H	-2.76255	0.058127	-3.466849
H	-3.359826	-1.100915	-4.670623
H	-2.162999	-5.926784	-1.996
H	-3.351822	-5.679094	-0.715341
H	-1.634947	-5.344949	-0.413821

From the Opt Freq calculation (B3LYP/6-31G(d)):
Sum of electronic and thermal Free Energies= $\quad-7517.177136$ e.u.
Sum of electronic and thermal Enthalpies= $\quad-7516.964170$ e.u.
$\mathrm{E}($ RB3LYP $)=-7516.965114$ e.u.

Figure S11.2. Optimized geometry for S11-2.
XYZ coordinates for optimized structure S11-2.

C	-0.222511	-0.713169	2.105843
C	0.466214	-1.681871	2.887215
C	-1.331776	-1.069982	1.308887
C	-1.747356	-2.457388	1.31258
C	-1.069145	-3.393173	2.07145
C	0.040568	-3.051658	2.87394
N	-2.798184	-2.919746	-0.953886
N	-2.982146	-1.767164	-1.661762
N	-4.250998	-2.525278	0.956368
N	-4.692364	-1.250015	0.745994
C	-2.320087	-3.91662	-1.757744
C	-2.213938	-3.380232	-3.026817
C	-2.633174	-2.039352	-2.922907
C	-5.809072	-1.112584	1.466085
C	-6.08767	-2.311162	2.153958
C	-5.076506	-3.191255	1.820165
C	-2.926487	-2.990688	0.511126
O	-1.958758	-0.171929	0.596677

Mg	-3.485331	0.00691	-0.542835
C	0.222636	0.713084	2.105908
C	1.33181	1.069965	1.308863
C	1.747529	2.457325	1.312784
C	1.06949	3.393023	2.071916
C	-0.040152	3.051447	2.874481
C	-0.465906	1.68169	2.887562
O	1.958591	0.171997	0.596371
C	2.926661	2.990648	0.511341
N	4.251149	2.525038	0.956448
N	4.692334	1.249734	0.745941
N	2.798292	2.919942	-0.953677
N	2.982203	1.767475	-1.661753
C	5.809039	1.112076	1.465993
C	6.087834	2.310558	2.153955
C	5.076782	3.190821	1.820276
C	2.633214	2.039891	-2.922844
C	2.214037	3.380809	-3.026519
C	2.320252	3.916983	-1.757361
Mg	3.48518	-0.006846	-0.543111
H	-1.388393	-4.435259	2.06058
H	1.388832	4.435081	2.061216
C	0.728628	-4.018174	3.655336
C	1.804189	-3.662492	4.433746
C	2.22954	-2.309842	4.45779
C	1.58386	-1.351334	3.711612
C	-1.583444	1.351083	3.712078
C	-2.228939	2.309502	4.45853
C	-1.803494	3.662124	4.434666
C	-0.728022	4.017869	3.656159
H	-1.912498	0.318454	3.746212
H	-3.075321	2.027121	5.079048
H	-2.325108	4.406753	5.028457
H	-0.385881	5.050296	3.626543
H	0.386564	-5.050622	3.625574
H	2.32595	-4.40719	5.02732
H	3.075998	-2.027513	5.078229
H	1.912845	-0.318688	3.745883
H	-2.955718	-4.059963	0.708804
H	2.956005	4.059889	0.709182
N	-4.275727	1.606999	-1.451759
Si	-5.715148	1.467264	-2.398984

Si	-3.501067	3.119167	-1.079598
C	-6.344651	-0.332744	-2.410886
C	-5.493455	1.9327	-4.233885
C	-7.162809	2.530299	-1.759311
C	-1.616974	2.89473	-1.018587
C	-4.052332	3.791948	0.612314
C	-3.821418	4.505674	-2.347768
H	-4.698345	1.346044	-4.707287
H	-5.240796	2.989496	-4.362438
H	-6.418363	1.745144	-4.793371
H	-5.605805	-1.029278	-2.822609
H	-7.243107	-0.407529	-3.035096
H	-6.611901	-0.694244	-1.412437
H	-3.439385	4.24306	-3.340179
H	-3.305589	5.419602	-2.028201
H	-4.882485	4.754706	-2.454879
H	-1.313496	2.094081	-0.335355
H	-1.135012	3.818086	-0.673789
H	-1.214391	2.661417	-2.01181
H	-7.44218	2.260577	-0.734838
H	-8.052342	2.403702	-2.388544
H	-6.914656	3.597354	-1.757087
H	-3.788992	3.10123	1.421855
H	-5.137544	3.945061	0.643292
H	-3.575261	4.752331	0.842221
N	4.27541	-1.606851	-1.452332
Si	3.500567	-3.119005	-1.080483
Si	5.714892	-1.467123	-2.399468
C	6.344628	0.332806	-2.411024
C	5.493218	-1.932175	-4.234469
C	7.162378	-2.530483	-1.759941
C	4.051845	-3.792291	0.611224
C	3.820647	-4.505241	-2.349018
C	1.616507	-2.894323	-1.019302
H	5.137039	-3.945556	0.642101
H	3.574662	-4.752671	0.840909
H	3.788643	-3.101748	1.420959
H	1.313171	-2.093777	-0.335886
H	1.13444	-3.817687	-0.674675
H	1.213897	-2.660746	-2.012453
H	4.698258	-1.345268	-4.707811
H	5.240354	-2.988896	-4.36324

H	6.418199	-1.744698	-4.79386
H	7.441701	-2.261048	-0.735379
H	8.051975	-2.403841	-2.389073
H	6.914093	-3.597509	-1.757999
H	5.605868	1.029506	-2.822624
H	7.243094	0.407593	-3.03522
H	6.61192	0.694094	-1.412511
H	4.881672	-4.754412	-2.456234
H	3.438616	-4.242313	-3.341347
H	3.304688	-5.41917	-2.029663
C	6.575571	-0.173174	1.479822
C	2.706694	0.997495	-3.994236
C	-6.575785	0.172557	1.480051
C	-2.706739	-0.996785	-3.994126
H	-6.920262	-2.510113	2.81212
C	-4.844863	-4.594582	2.2824
H	6.920477	2.509333	2.812105
C	4.845353	4.594139	2.282647
H	1.870148	3.893529	-3.912293
C	1.978028	5.288461	-1.270371
H	-1.870042	-3.892786	-3.912684
C	-1.977756	-5.288157	-1.270991
H	-2.944592	-0.018532	-3.570792
H	-3.475158	-1.2453	-4.734074
H	-1.751227	-0.925323	-4.523106
H	-2.83939	-5.79864	-0.824957
H	-1.17329	-5.262006	-0.528598
H	-1.636449	-5.893382	-2.112636
H	-5.667927	-4.899696	2.931179
H	-3.915546	-4.685321	2.855063
H	-4.801655	-5.304139	1.448254
H	-6.041915	0.951379	0.931925
H	-6.728603	0.514746	2.508405
H	-7.563401	0.047845	1.02353
H	6.728436	-0.515437	2.508144
H	7.563163	-0.048579	1.023215
H	6.041543	-0.951891	0.931701
H	4.802172	5.303772	1.448564
H	5.668506	4.899093	2.931389
H	3.916092	4.684949	2.855389
H	1.751115	0.926065	-4.523102
H	2.944647	0.019189	-3.571083

H	3.475002	1.246167	-4.734246
H	1.636695	5.893836	-2.111898
H	2.839719	5.798829	-0.824315
H	1.173612	5.262235	-0.527927

From the Opt Freq calculation (B3LYP/6-31G(d)):
Sum of electronic and thermal Free Energies= Sum of electronic and thermal Enthalpies $=-4358.980723$ e.u. $E($ RB3LYP $)=-4358.981667$ e.u.

Figure S11.3. Optimized geometry for S11-3.
XYZ coordinates for optimized structure $\mathbf{S 1 1 - 3}$.

C	-0.101669	-0.735956	1.072766
C	0.842256	-1.617326	1.668931
C	-1.245694	-1.249066	0.414106
C	-1.474209	-2.677216	0.454396
C	-0.534652	-3.527872	0.99792
C	0.650116	-3.039635	1.598758
N	-3.215433	-2.925453	-1.406561
N	-4.19351	-2.007011	-1.647312
N	-3.880368	-3.212239	0.906422
N	-4.294185	-2.027728	1.453851
C	-2.730322	-3.45916	-2.564134
C	-3.435948	-2.862156	-3.594089
C	-4.337153	-1.970403	-2.978557

C	-5.163909	-2.355451	2.415531
C	-5.314104	-3.754727	2.490421
C	-4.482086	-4.27695	1.519348
C	-2.767577	-3.300176	-0.049149
O	-2.087156	-0.481815	-0.200671
Ca	-4.241202	0.020569	-0.093147
C	0.102263	0.737716	1.072598
C	1.24581	1.250488	0.41284
C	1.474946	2.678527	0.453234
C	0.536094	3.529477	0.997516
C	-0.648359	3.041605	1.599259
C	-0.840873	1.619352	1.669645
O	2.086331	0.483051	-0.203038
C	2.768398	3.300935	-0.050738
N	3.881212	3.212844	0.904786
N	4.294434	2.028336	1.45269
N	3.216103	2.925461	-1.407975
N	4.194017	2.006743	-1.64818
C	5.164569	2.356019	2.414033
C	5.316037	3.755203	2.487833
C	4.483609	4.277477	1.517125
C	4.337262	1.968964	-2.979439
C	3.43601	2.860325	-3.595486
C	2.730686	3.458224	-2.565838
Ca	4.240122	-0.020783	-0.09313
H	-0.700108	-4.605281	0.989184
H	0.701969	4.606823	0.988803
C	1.623285	-3.91693	2.147784
C	2.751423	-3.435157	2.770852
C	2.928371	-2.032202	2.889258
C	2.005956	-1.153436	2.361548
C	-2.004017	1.155837	2.363408
C	-2.925686	2.034885	2.891914
C	-2.748473	3.437775	2.773242
C	-1.620785	3.919209	2.149108
H	-2.128462	0.086757	2.502292

H	-3.784267	1.653054	3.440214
H	-3.483379	4.117653	3.192481
H	-1.453426	4.991349	2.071426
H	1.456164	-4.98912	2.070303
H	3.486888	-4.114805	3.189476
H	3.787265	-1.65011	3.436885
H	2.130133	-0.084308	2.500392
H	-2.573601	-4.370604	-0.11955
H	2.574804	4.371418	-0.121491
N	-6.071325	1.439277	-0.586686
Si	-7.693125	1.075014	-0.166756
Si	-5.481135	2.885929	-1.291451
C	-7.940871	-0.8194	-0.149296
C	-9.016131	1.760266	-1.354219
C	-8.17514	1.701865	1.569749
C	-3.572188	2.742495	-1.430853
C	-5.816011	4.469944	-0.290947
C	-6.084641	3.21645	-3.06776
H	-8.851341	1.419705	-2.382435
H	-9.020605	2.85634	-1.368233
H	-10.019549	1.43536	-1.053121
H	-7.829109	-1.238188	-1.156336
H	-8.942334	-1.087345	0.208449
H	-7.221453	-1.339041	0.496725
H	-5.845647	2.376079	-3.730088
H	-5.615748	4.114365	-3.488691
H	-7.169206	3.361721	-3.105844
H	-3.0552	2.679255	-0.463535
H	-3.175843	3.642382	-1.915902
H	-3.235401	1.902561	-2.057051
H	-7.514289	1.295004	2.344848
H	-9.204136	1.430593	1.836227
H	-8.095772	2.793707	1.623398
H	-5.380576	4.40029	0.712243
H	-6.891378	4.646862	-0.172001
H	-5.390281	5.355178	-0.779135

N	6.069748	-1.440539	-0.585881
Si	5.479171	-2.88663	-1.291457
Si	7.691561	-1.076849	-0.165507
C	7.940646	0.817405	-0.149918
C	9.015071	-1.764251	-1.351162
C	8.172013	-1.702304	1.571957
C	5.810177	-4.470635	-0.289631
C	6.085623	-3.218768	-3.066456
C	3.570665	-2.740908	-1.434631
H	6.885106	-4.648527	-0.168176
H	5.384691	-5.355671	-0.778395
H	5.372526	-4.40009	0.712529
H	3.051804	-2.676413	-0.468392
H	3.174113	-3.640591	-1.91988
H	3.236352	-1.900857	-2.061973
H	8.851283	-1.424976	-2.37996
H	9.019083	-2.860344	-1.363705
H	10.018379	-1.439377	-1.049665
H	7.510887	-1.294383	2.346251
H	9.200997	-1.431454	1.838917
H	8.091928	-2.794054	1.6265
H	7.830451	1.235076	-1.157593
H	8.941868	1.085026	0.208752
H	7.220797	1.338363	0.494557
H	7.169992	-3.365973	-3.102402
H	5.84936	-2.378295	-3.729631
H	5.615953	-4.11606	-3.487857
C	5.843804	1.307767	3.240721
C	5.352517	1.073323	-3.622678
C	-5.843616	-1.307158	3.241792
C	-5.352663	-1.075395	-3.622279
H	-5.945412	-4.313745	3.164978
C	-4.224984	-5.706576	1.161036
H	5.948118	4.314141	3.161732
C	4.227144	5.707091	1.158312
H	3.31335	3.048944	-4.65179

C	1.644382	4.484936	-2.607784
H	-3.313501	-3.051579	-4.650273
C	-1.643944	-4.485818	-2.6056
H	-5.799393	-0.392196	-2.894192
H	-6.15992	-1.662534	-4.074361
H	-4.897935	-0.478986	-4.419751
H	-1.948396	-5.428559	-2.133578
H	-0.740112	-4.135913	-2.097152
H	-1.390657	-4.706411	-3.644123
H	-4.89538	-6.346945	1.737316
H	-3.198059	-6.011941	1.392031
H	-4.40769	-5.90314	0.099312
H	-5.375601	-0.329341	3.1005
H	-5.781992	-1.556193	4.305425
H	-6.903348	-1.216051	2.982829
H	5.783365	1.557907	4.304162
H	6.903208	1.215244	2.980932
H	5.374596	0.330328	3.100768
H	4.409533	5.903077	0.096426
H	4.898132	6.34733	1.734044
H	3.200482	6.013136	1.389573
H	4.897505	0.476212	-4.419466
H	5.799417	0.390759	-2.894102
H	6.159674	1.659993	-4.075546
H	1.391119	4.705102	-3.646405
H	1.948889	5.427853	-2.136152
H	0.740523	4.135313	-2.099185

From the Opt Freq calculation (B3LYP/6-31G(d)):
Sum of electronic and thermal Free Energies= -5314.127528 e.u.
Sum of electronic and thermal Enthalpies $=\quad-5313.908839$ e.u.
$\mathrm{E}($ RB3LYP $)=-5313.909783$ e.u.

[^0]: ${ }^{1}$ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals. 3 ${ }^{\text {rd }}$ ed., Pergamon Press, Oxford, 1988. 2Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallic. 1996, $15,1518$. 3Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923.

[^1]: ${ }^{4}$ Wu, T. R.; Shen, L.; Chong, M. J. Asymmetric Allylboration of Aldehydes and Ketones using 3,3'-disubstituted Binaphthol-modified Boronates. Org. Lett. 2004, 6, 2701.

[^2]: ${ }^{5}$ Li, X.; Li, Q.; Wang, Y.; Quan, Y.; Chen, D.; Cheng, Y. Strong Aggregation-Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*-LCs). Chem. Eur. J. 2018, 24, 12607.

[^3]: ${ }^{6}$ Tansky, M.; Gu, Z.; Comito, R. J. Metal-free, mild, and selective synthesis of bis(pyrazolyl)alkanes by nucleophile-catalyzed condensation. J. Org. Chem. 2021, 86, 16011611.

[^4]: ${ }^{7}$ Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229.

[^5]: ${ }^{8}$ Gaussian 16, ES64L-G16RevC.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

