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Section A. Materials and instruments

2,4,6-tris(4-aminophenyl)-1,3,5-triazine was purchased from Alfa, 2,5-dihydroxyterephthalaldehyde was 

purchased from Sanbang Chemical. Used all solvents were purchased from Aladdin.

Fourier transform Infrared (FT-IR) spectra were recorded on a Perkin-elmer model FT-IR-frontier 

infrared spectrometer. For all FT-IR tests, a small amount of sample can be directly mixed with potassium 

bromide and ground into a powder, and then compressed, and the pressed product can be directly tested. 

The solid-state UV-visible analyzer was used for Jasco V-770 spectrometer. Solid-state 13C CP/MAS NMR 

measurements were recorded using a Bruker AVANCE III 400 WB spectrometer at a MAS rate of 5 kHz 

and a CP contact time of 2 ms. X-ray photoelectron spectra (XPS) were recorded on an ESCALAB250Xi 

electron spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Field-emission scanning 

electron microscopy (FE-SEM) images were performed on a JEOL model JSM-6700 operating at an 

accelerating voltage of 5.0 kV. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model 

RINT Ultima III diffractometer by depositing powder on glass substrate, from 2θ = 2.5° up to 40° with 

0.02° increment. TGA analysis was carried out using a Q5000IR analyzer (TA Instruments) with an 

automated vertical overhead thermobalance. Before measurement, the samples were heated at a rate of 5 °C 

min-1 under nitrogen atmosphere. Nitrogen sorption isotherms were measured at 77 K with ASIQ (iQ-2) 

volumetric adsorption analyzer. Before measurement, the samples were degassed in vacuum at 120 °C for 

more than 10 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface 

areas and pore volume. The non-local density functional theory (NLDFT) method was applied for the 

estimation of pore size and pore size distribution.

Electrochemical measurement was carried out in a standard three electrode system with a 1 M H2SO4 

aqueous solution at 25 °C in a CHI 760 Eelectrochemical work station (CH instrument, USA). Active 

material (100 μg) coated carbon cloth, Pt wire and a saturated calomel electrodes were considered as 

working, counter and reference electrodes, respectively. The cyclic voltammograms (CVs) were recorded 

within a potential window of 0 V to 1 V in the scan rate range of 20 to 100 mV s-1. Galvanostatic charge 
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discharge (GCD) activity of electrode material was studied with different constant current density in a 

potential window of 0 V to 1 V. The electrochemical impedance spectra (EIS) were recorded by applying a 

sinusoidal perturbation of 5 mV in a frequency domain 0.01 to 10000 Hz.

Calculations of specific capacitance

Based on the GCD data, the gravimetric specific capacitance (Cm, F g-1) was calculated using the following 

equation:

where I is the discharge current (A), t is the discharge time (s), m is the mass of the active material (g), and 

ΔV is the potential change during the discharge process (V).
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Section B. Synthetic procedures

Synthesis of θ-Al2O3

Weigh nano-Al2O3 (8.5 g) and put it into corundum container, then the container was placed in tube 

furnace, heated at 1200 °C for 2 h under the nitrogen atmospheres. After cooling to room temperature, θ-

Al2O3 was obtained as a white solid powder (yield: 27%).

Synthesis of θ-Al2O3-NH2

Firstly, θ-Al2O3 (2 g, 19.62 mmol) was added to the flask, and then hydrochloric acid solution was added to 

the flask. The activated θ-Al2O3 powder was obtained by gently stirring and soaking for 5 h, and then 

filtering, washing the filter cake with water for three times, freeze drying. Then, APTES (0.9829 g, 0.444 

mmol) and activated θ-Al2O3 (0.4612 g, 4.52 mmol) were weighed and placed in the flask, and anhydrous 

toluene was used as the solvent and heated at 100 °C for 3 h under the nitrogen atmospheres. After cooling 

to room temperature, the obtained solid was filtered and washed with methanol, water and acetone for three 

times respectively, to get θ-Al2O3-NH2 (yield: 79%).

Synthesis of θ-Al2O3-CHO

θ-Al2O3-NH2 (0.015 g) and 1,3,5-benzenetricarboxaldehyde (0.015 g, 0.0925 mmol) were weighed and 

placed in polytetrafluoroethylene reactor, followed by 1,4-dioxane (15 mL) was added, and then the 

mixture was heated at 150 °C for 1 h in a constant temperature oven. After cooling to room temperature, 

the obtained solid was washed with methanol, water, and acetone for 3 times, respectively, to get θ-Al2O3-

CHO (yield: 83%).

Synthesis of Al2O3@DHTA-COFs

A Pyrex tube was charged with θ-Al2O3-CHO (2 mg, or 10 mg, or 15 mg), 2,4,6-tris(4-aminophenyl)-1,3,5-

triazine (40 mg, 0.112 mmol), and 2,5-dihydroxyterephthalaldehyde (20 mg, 0.145 mmol) in a mixed 

solution of 1,2-dichlorobenzene (1.6 mL), ethanol (0.5 mL), and acetic acid (6 M, 0.2 mL). The tube was 

frozen and vacuumed at 77 K (liquid nitrogen bath), and then sealed with flame. The mixture was heated at 

120 °C for 72 h to afford a red precipitate, which was isolated by filtration, washed with anhydrous acetone 
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for 5 times, and vacuum drying at 85 °C to afford 20%Al2O3@DHTA-COF, 50%Al2O3@DHTA-COF and 

75%Al2O3@DHTA-COF, red powders with 82-87% isolated yield.

Preparation of DHTA-COF, θ-Al2O3-CHO and Al2O3@DHTA-COFs electrode materials

The electrode composed of DHTA-COF, θ-Al2O3-CHO and Al2O3@DHTA-COFs were fabricated by 

mixing the particular DHTA-COF, θ-Al2O3-CHO or Al2O3@DHTA-COFs (80%), Super-P carbon (10%) 

and polyvinylidene fluoride (PVDF) (10 % in N-methyl-2-pyrrolidone) as binder. Spread evenly on carbon 

cloth and dry at 60 ℃ for 12 h. The typical area and weights of electrode materials are 0.5×0.5 cm2 and 

0.1 mg, respectively.
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Section C. Powder X-ray diffraction patterns

Fig. S1 Powder X-ray diffraction profiles of DHTA-COF, θ-Al2O3-CHO, and Al2O3@DHTA-COFs.
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Section D. The solid-UV spectra

Fig. S2 Solid state UV spectra of (a) DHTA, TAPT, and DHTA-COF, (b) DHTA-COF, θ-Al2O3-CHO, and 

50%Al2O3@DHTA-COF.
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Section E. Stability

Fig. S3 TGA curves of DHTA-COF, 50%Al2O3@DHTA-COF.

Fig. S4 PXRD patterns of the DHTA-COF and 50%Al2O3@DHTA-COF before and after soaked in 1.0 M 

H2SO4.
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Section F. SEM images

Fig. S5 The SEM picture of θ-Al2O3-CHO.

Fig. S6 (a) The corresponding elemental mapping images of (b) carbon, (c) nitrogen, and (d) oxygen in 

DHTA-COF.
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Section G. N2 adsorption isotherms

Fig. S7 (a) N2 adsorption isotherms and (b) pore size distributions of DHTA-COF, θ-Al2O3-CHO, 

50%Al2O3@DHTA-COF at 77 K.
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Section H. Electrochemical study

Fig. S8 GCD curves of the 50%Al2O3@DHTA-COF and Super P carbon.
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Fig. S9 CV curves of the (a) DHTA-COF, and (b) θ-Al2O3-CHO.
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Fig. S10 GCD curves of the (a) DHTA-COF, and (b) θ-Al2O3-CHO.
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Section I. Comparison of specific capacitance of 50%Al2O3@DHTA-COF with reported 

COF-based supercapacitors in literature

Table S1. Comparison of 50%Al2O3@DHTA-COF with some reported COF-based supercapacitors.

Polymers

Specific 

capacitance

(F g−1)

Current density Electrolyte Refs.

50%Al2O3@DHTA-COF 261.5 0.5 A g−1 1 M H2SO4 This work

TpOMe-DAQ

Dq1Da1Tp

135

111

0.35 A g−1

1.56 mA cm-2

3 M H2SO4

1 M H2SO4

S1

S2

BFTB-PyTA 71 1 A g-1 1 M KOH S3

TPA-COFs 263.1 0.1 A g-1 1 M H2SO4 S4

TaPa-Py COF 209 0.5 A g-1 1 M H2SO4 S5

Phos-COF-1 100 1 A g-1 3 M Na2SO4 S6

MWCNT@COFTTA–DHTA 92.4 0.4 A g-1 1 M Na2SO4 S7

C/rGO 234 0.8 A g-1 6 M KOH S8

COF 211 1 A g-1 6 M KOH S9

TDFP-1 418 0.5 A g-1 0.1 M H2SO4 S10

TFP-NDA-COF 348 0.5 A g-1 1 M H2SO4 S11
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