Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for article

Exceptional structural diversity of hybrid halocuprates(I)

with methylammonium and formamidinium cations

Daria E. Belikova^a, Sergey A. Fateev^a, Victor N. Khrustalev^{bc}, Ekaterina I. Marchenko^{ad}, Eugene A. Goodilin^{ac}, Shenghao Wang^{f*}, Alexey B. Tarasov^{ae*}

^{*a*} Laboratory of New Materials for Solar Energetics, Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.

^b Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation

^c Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia

^d Department of Geology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation

^e Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation

^f Materials Genome Institute, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China.

* Corresponding authors: <u>shenghaowang@shu.edu.cn</u> and alexey.bor.tarasov@yandex.ru

		1	1	1		
Phase	MACu ₂ Br ₃	$FA_2Cu_4Br_6$	MACuBr ₂	FACuBr ₂	FA ₃ CuBr ₄	DMFH ₂ Cu ₃ Br ₄
Empirical	CHD C N	CH ₅ Br ₃ Cu ₂ N ₂	CH ₆ Br ₂ CuN	CH ₅ Br ₂ CuN ₂	C ₃ H ₁₅ Br ₄ CuN ₆	C ₆ H ₁₅ Br ₄ Cu ₃ N ₂ O
formula	$CH_6Br_3Cu_2N$					2
M. g/mol	308 87	411.87	255.42	268.42	518 36	657.45
wi, g/moi	576.67	411.07	233.42	200.42	518.50	037.43
Crystal	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Tetragonal	Orthorhombic
system					Tettugonui	
Space					-	
groun	$P2_1/m$	C2/c	C2/m	C 2/m	$P42_1m$	Pccn
Broup	0.471(())	11 (100(5)	12 (072(0))	12.0102(2)	10.4047(6)	15 7000(0)
a, A	8.4716(6)	11.6122(5)	13.6073(8)	12.0193(3)	13.4047(6)	15.7900(9)
b, Å	5.5703(3)	11.5268(4)	5.4260(3)	9.1772(3)	13.4047(6)	15.8919(8)
c, Å	8.4791(9)	12.5098(6)	8.3933(5)	5.8643(2)	8.4141(6)	6.2660(3)
α, deg.	90.000	90.000	90	90.000	90.000	90.000
β, deg.	112.383(10)	110.171(5)	114.5389(15)	114.1620(10)	90.000	90.000
γ, deg.	90.000	90.000	90	90.000	90.000	90.000
V, Å ³	369.98(6)	1571.76(13)	563.73(6)	590.18(3)	1511.90(17)	1572.35(14)
Ζ	2	8	4	4	4	4
D (calc),	2 500	2 401	2.010	2.021	2.227	2 777
g/cm ³	3.380	3.481	3.010	3.021	2.221	2.///

Table S1. Parameters of the crystal structure refinement.

μ, mm ⁻¹	21.836	20.570	17.891	17.102	11.996	14.176
F(000)	364	1504	472	496	976	1232
Crystal	0.21×0.12×0.1	0.12×0.06×0.0	0 24×0 09×0 06	0 30×0 24×0 21	0 21×0 02×0 01	0 21×0 12×0 11
size, mm	1	6	0.24.0.09.00.00	0.50*0.24*0.21	0.21.0.02.001	0.21 0.12 0.11
Θ range						
for data	2 60 - 29 99	257 - 2800	4 10 - 32.60	289 - 3270	2 15 - 32 62	260 - 29.99
collection,	2.00 29.99	2.07 20.00		2.03 32.70	2.10 02.02	2.00 23.33
deg.						
Index	$-11 \le h \le 11$	$-15 \le h \le 15$	$-20 \le h \le 20$	$-18 \le h \le 18$	$-20 \le h \le 20$	$-23 \le h \le 23$
ranges	$-7 \le k \le 7$	$-15 \le k \le 15$	$-8 \le k \le 8$	$-13 \le k \le 13$	$-20 \le k \le 20$	$-24 \le k \le 24$
Tunges	$-9 \le l \le 11$	$-16 \le l \le 16$	$-12 \le l \le 12$	$-8 \le l \le 8$	$-12 \le l \le 12$	$-9 \le l \le 9$
Reflection						
S						
collected/i	3408/1111	11005/1885	9622/1110	7299/1146	37001/2865	29951/2860
ndepende						
nt						
R _{int}	0.1073	0.1146	0.0391	0.0509	0.1006	0.0961
Reflection						
s with	975	1654	1078	1106	1735	1705
I>2σ(I)						
Goodness-	1 046	1 064	1 033	1 019	1 005	1 001
of-fit on F	1.010	1.001	1.000	1.015	1.000	1.001
Final R	$R_1 = 0.0690$	$R_1 = 0.0573$	$R_1 = 0.0169$	$R_1 = 0.0222$	$R_1 = 0.0970$	$R_1 = 0.0788$
indices	$wR_2 = 0.1558$	$wR_2 = 0.1460$	$wR_2 = 0.0409$	$wR_2 = 0.0547$	$wR_2 = 0.1862$	$wR_2 = 0.0624$
[I>2σ(I)]					witz 0.1002	
R indices	$R_1 = 0.0731$	$R_1 = 0.0642$	$R_1 = 0.0177$	$R_1 = 0.0233$	$R_1 = 0.1521$	$R_1 = 0.0788$
(all data)	$wR_2 = 0.1590$	$wR_2 = 0.1514$	$wR_2 = 0.0413$	$wR_2 = 0.0551$	$wR_2 = 0.2154$	$wR_2 = 0.0768$
T_{\min} / T_{\max}	0.007 / 0.077	0.082 / 0.262	0.097 / 0.216	0.006 / 0.018	0.181 / 0.878	0.139/0.765
Largest						
diff.	2 248/-2 932	2 540/-1 994	0 625 / -0 706	1 115/-1 770	2 117/-2 241	1 359/-0 903
peak/hole,						
e/Å ³						

Figure S1. Hirshfeld surface of the $[Cu_2Br_6]^{4-}$ unit of the MACu₂Br₃.

Figure S2. Hirshfeld surface of the $[Cu_4Br_6]^2$ - unit of the $FA_2[Cu_4Br_6]$.

Phase	Cu-Br	Distortion	Br-Cu-Br	Bond	Shortest	Cu…Cu	Reference
	bond	index (bond	angles	angle	BrBr	distances	
	bolla	index (boild	angles,	aligie	DI DI	uistances,	
	length, Å	length) ¹	deg.	variance ²	distance	Å	
				, deg. ²	**, Å		
CsCu ₂ Br ₃	2.42658	0.02890	106.4096(0)	12.6846	3.880	2.90660	3
	2.57098		108.1509(0)				
	2.57098		116.4758(0)				
	2.42658		108.1509(0)				
			108.6056(0)				
			108.6056(0)				
MACu ₂ Br ₃	2.4436(14)	0.02251	112.03(4)	27.1412	3.929	2.754	This work
	2.5648(11)		109.74(6)			2.816	
	2.5452(13)		111.23(4)				
	2.4415(12)		105.57(6)				
			101.21(4)				
			115.99(5)				
CsCu ₂ I ₃	2.60353	0.01883	108.9107(0)	7.0799	4.1259	3.14327	3
	2.70349		107.0079(0)				
	2.70349		114.2395(0)				
	2.60353		107.0079(0)				
			109.7974(0)				
			109.7974(0)				
MACu ₂ I ₃	2.636(4)	0.01136	113.37(10)	17.3062	4.248(3)	2.883(9)	4
	2.636(4)		103.65(12)				
	2.710(4)		106.62(9)				
	2.683(4)		107.46(13)				
			111.49(15)				
			114.07(16)				
FACu ₂ I ₃	2.7126(5)	0.01353	106.29(3)	18.3261	4.5712(5)	4.5712(5)	5
	2.7126(5)		105.321(10)				
	2.6401(5)		114.97(3)				
	2.6401(5)		105.321(10)				
			112.369(7)				
			112.369(7)				
$FA_2[Cu_4Br_6]^*$	2.3848(14)	0.00266	121.28(5)	2.6449	3.896	2.8880	This work
	2.3971(12)		118.17(5)				
	2.4011(12)		120.55(5)				
MACuBr ₂	2.4898(4)	0.00014	106.139(8)	14.6801	4.029	2.639	This work
	2.4905(3) 2.4905(2)		106.139(8)			2.787	
	2.4903(3) 2 4898(4)		108.366(10)				
	2.1090(1)		108.366(10)				
			111.947(13)				
			116.000(14)				
FACuBr ₂	2.5177(6)	0.00613	112.246(19)	9.9354	4.367	2.758	This work
	2.4834(4)		110.482(10)			3.106	
	2.4739(4)		110.482(10)				
	2.4739(4)		103.201(18)				
			110.031(10)				
.	0.505(5)	0.00750	110.031(10)	16 2011	4.872	0.171	
FA ₃ CuBr ₄	2.506(5)	0.00778	116.52(15)	16.3814	4.563	8.174	This work
	2.458(3)		109.88(12)				
1	1 2.438(3)	1	105.4/(14)	1	1	1	1

Table S2. Parameters of the bond lengths and main distances in all studied structures.

2.450	(4)	105.47(14)		
		109.61(14)		
		109.61(14)		

* Distortion index and bond angle variance are calculated for three-coordinated copper atom.

** Shortest Br...Br distances for all structures are listed for bromine atoms of separate units (i.e. adjacent chains or clusters).

Figure S3. XRD pattern of the synthesized MACu₂Br₃ powder in comparison with the calculated pattern.

Figure S4. XRD pattern of the synthesized FA₂[Cu₄Br₆] powder in comparison with the calculated pattern.

Figure S5. XRD pattern of the synthesized FACuBr₂ powder in comparison with the calculated pattern.

Figure S6. XRD pattern of the synthesized MACuBr₂ powder in comparison with the calculated pattern.

Figure S7. XRD pattern of the synthesized MA₄[Cu₂Br₆] powder in comparison with the calculated pattern.

Figure S8. XRD pattern of the synthesized 'FA₃CuBr₄' powder in comparison with the calculated patterns of FACuBr₂ and FA₃CuBr₄.

Phase	PL maximum, eV	Optical bandgap, eV	Stokes Shift, eV	Reference
MACu ₂ Br ₃	1.89	3.63	1.74	This work
Cs ₂ CuBr ₃	2.23	3.64	1.41	6
FA ₂ [Cu ₄ Br ₆]	1.99	3.16	1.17	This work
[N(C ₄ H ₉) ₃ CH ₃] ₂ [Cu ₄ Br ₆]	1.99	3.01	1.02	7
MACuBr ₂	2.30	3.78	1.48	This work
FACuBr ₂	2.53	3.88	1.35	This work
PEACuBr ₂				
_{(PEA} ⁺ = phenylethylammonium)	-	3.87	-	8
MA ₄ [Cu ₂ Br ₆]	2.40	3.91	1.51	This work, ⁹
FA ₃ CuBr ₄	1.99; 2.52	3.23; 3.89	-	This work

Table S3. Optical properties of the studied phases in comparison with other known halocuprates

Table S4. Correlations of lattice distortions (A…Cu distances) with PLQY for inorganic and hybrid halocuprates with small organic cations.

Phase	Distortion	Bond angle	A…Cu distance, Å	PLQY at RT,	Reference
	index (bond	variance ² ,		%	
	length) ¹	deg. ²			
CsCu ₂ Cl ₃	0.26037	363.8477	4.1139	48.0	10
Cs ₃ Cu ₂ Br ₅	0.06466,	82.6758,	3.591(x2), 3.743,	50.1	11
	0.141130	246.73	4.012(x2), 4.093,		
			4.184(x2)		
K ₂ CuBr ₃	0.01217	14.8205	3.637(x2), 3.906,	55,	12,13
			3.976(x2), 3.987(x2)	87	
CsCu ₂ Br ₃	0.02890	12.6843	4.29809	18.3	10
MACu ₂ Br ₃	0.02251	27.1412	4.336, 4.513	0	This article
MACuBr ₂	0.00038	14.6206	4.402(x2), 4.525(x2)	0	This article
FACuBr ₂	0.00613	9.9354	3.8697	0	This article
FA ₂ [Cu ₄ Br ₆]	0.00266	2.6449	4.5457, 4.508	0	This article
MA ₄ [Cu ₂ Br ₆]	0.01429	13.4794	4.128, 4.205, 4.319,	93	9
			4.368, 4.459		
FA ₃ CuBr ₄	0.00778	16.3814	4.985, 4.96,	0?	This article
			4.12-4.39-4.76-5.00		
Cs ₃ Cu ₂ I ₅	0.04323,	53.2336,	3.89, 3.924(x2),	98.7	11
	0.12072	255.4036	4.146(x2), 4.437,		
			4.451(x3)		
CsCu ₂ I ₃	0.01782	8.2607	4.5860	3.23	10
MACu ₂ I ₃	0.01136	17.3062	4.65, 4.79	0	14
FACu ₂ I ₃	0.01006	27.5232	4.715*	0	5
	0.01319	40.4748			

Figure S9. The calculated band structures for MACu₂Br₃, MACuBr₂ and MA₄[Cu₂Br₆] phases.

Figure S10. The calculated band structures for FA₂[Cu₄Br₆], FACuBr₂ and FA₃CuBr₄ phases.

References

- 1 W. H. Baur, Acta Crystallogr B, 1974, **30**, 1195–1215.
- 2 K. Robinson, G. v Gibbs and P. H. Ribbe, *Science (1979)*, 1971, **172**, 567–570.
- 3 S. Hull and P. Berastegui, *J Solid State Chem*, 2004, **177**, 3156–3173.
- 4 A. A. Petrov, V. N. Khrustalev, Y. v. Zubavichus, P. v. Dorovatovskii, E. A. Goodilin and A. B. Tarasov, *Mendeleev Communications*, 2018, **28**, 245–247.
- 5 N. Ohashi, Y. Matsushita and N. Saito, *J Solid State Chem*, DOI:10.1016/j.jssc.2021.122778.
- 6 R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M. H. Du and B. Saparov, ACS Mater Lett, 2019, 1, 459–465.
- 7 S. Chen, J. Gao, J. Chang, Y. Li, C. Huangfu, H. Meng, Y. Wang, G. Xia and L. Feng, ACS Appl Mater Interfaces, 2019, 11, 17513–17520.
- 8 F. Ge, B. H. Li, P. Cheng, G. Li, Z. Ren, J. Xu and X. H. Bu, Angewandte Chemie International Edition, , DOI:10.1002/anie.202115024.

- 9 H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou and B. Zou, *Journal of Physical Chemistry Letters*, 2020, 11, 4703–4710.
- 10 R. Roccanova, A. Yangui, G. Seo, T. D. Creason, Y. Wu, D. Y. Kim, M.-H. Du and B. Saparov, ACS Mater Lett, 2019, 1, 459–465.
- R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M. H. Du and B. Saparov, ACS Appl Electron Mater, 2019, 1, 269–274.
- T. D. Creason, T. M. McWhorter, Z. Bell, M.-H. H. Du and B. Saparov, *Chemistry of Materials*, 2020, 32, 6197–6205.
- 13 W. Gao, G. Niu, L. Yin, B. Yang, J.-H. H. Yuan, D. Zhang, K.-H. H. Xue, X. Miao, Q. Hu, X. Du and J. Tang, ACS Appl Electron Mater, 2020, 2, 2242–2249.
- A. V. A. Petrov, S. A. Fateev, A. Yu. Grishko, A. A. Ordinartsev, A. V. A. Petrov, A. Yu. Seregin, P. v. Dorovatovskii, E. A. Goodilin and A. B. Tarasov, *Mendeleev Communications*, 2021, 31, 14–16.