Supplementary Information for:

Mapping the Influence of Ligand Electronics on the Spectroscopic and ${ }^{1} \mathrm{O}_{2}$ Sensitization Characteristics of $\mathrm{Pd}(I I)$ Biladiene Complexes Bearing Phenyl-Alkynyl Groups at the 2- and 18-Postions

Maxwell I. Martin, Trong-Nhan Pham, Kaytlin N. Ward, Anthony T. Rice, Phoebe R. Hertler, Glenn P. A. Yap, Philip H. Gilmartin, and Joel Rosenthal*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716

Index		Page
	General Methods and Synthetic Protocols	2-9
Figures S1-S21	${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectra for Synthesized Compounds	10-20
Figures S22-S25	Fully Labeled Crystal Structures for Pd[DMBil2-R] Derivatives	21-22
Figures S26-S30	Illustrations of Dihedral Angle Planes for Crystallized Pd[DMBil2-R] Derivatives	23-25
Table S1	Crystallographic Data for Pd[DMBil2-R] Derivatives	26
Figures S31-S32	Absorbance and Emission Spectra Recorded for Pd[DMBil2-R] Derivatives	27-28
Figure S33	Stacked DPVs Recorded for Pd[DMBil1] and Pd[DMBil2R] Derivatives	29
Figure S34	Scatter Plots for para-Hammett Values and Redox Properties of Pd[DMBil2-R] Derivatives	30
Figure S35	Changes in absorbance Spectra recorded for Pd[DMBil2$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$] upon addition of upto 500 equivalents of Trifluoroacetic Acid	31
	References	32

EXPERIMENTAL SECTION:

General Materials and Methods. Reactions requiring an inert atmosphere were carried out under positive pressure of N_{2} using flasks fitted with Suba-Seal rubber septa and standard Schlenk techniques. Air and moisture sensitive reagents were transferred using standard syringe or cannula techniques. Reagents and solvents were purchased from Sigma Aldrich, Acros, Fisher, Strem, Oakwood, or Cambridge Isotopes Laboratories. DMBil1, Pd[DMBil1], and Pd[DMBiIBr ${ }_{2}$] were synthesized according to published procedures. ${ }^{1-6}$ Solvents used for synthesis were of reagent grade or better. Anhydrous solvents were dried by passage through activated alumina and stored over $4 \AA$ molecular sieves prior to use. Column chromatography was performed with 40-63 $\mu \mathrm{m}$ silica gel from Silicycle.

Compound Characterization. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were measured at $25^{\circ} \mathrm{C}$ on a Bruker 400 MHz spectrometer with a cryogenic QNP probe. Proton spectra are refenced to the residual proton resonance of the deuterated solvent $\left(\mathrm{CDCl}_{3}=\delta 7.26\right)$ and carbon spectra are referenced to the carbon resonance of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.16\right) .{ }^{7}$ Fluorine spectra are referenced to an external trifluoroacetic acid standard (TFA $=\delta-76.55$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right) .{ }^{8}$ All chemical shifts are reported using the standard δ notation in parts-per-million; positive chemical shifts are to higher frequency from given reference. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, hept $=$ heptet, $\mathrm{m}=$ multiplet), coupling constants, and number or protons. High-resolution mass spectrometry analyses were performed by the University of Delaware Mass Spectrometry Laboratory in the Department of Chemistry and Biochemistry.

[^0]of anhydrous triethylamine (3 mL) and phenylacetylene ($164 \mathrm{ml}, 1.5 \mathrm{mmol}, 10$ equiv) and stirring for 15 minutes at room temperature. Positive pressure of nitrogen gas was then applied and the septum was removed in order to add palladium 2,18-dibromo-10,10-dimethyl-5,15dipentafluorophenylbiladiene ($\left.\left.\mathrm{Pd}_{\mathrm{D}} \mathrm{DMBilBr}_{2}\right]\right)(138 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) and tetrakispalladium(0) triphenylphosphine ($34 \mathrm{mg}, 0.030 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The septum was then replaced and anhydrous tetrahydrofuran (40 mL) was cannula transferred into the flask, where upon the solution was stirred at $75^{\circ} \mathrm{C}$ for 16 hours. After the time elapsed, the solution was cooled to room temperature then exposed to air and diluted with 50 mL of ethyl acetate. The resulting solution was washed once with saturated ammonium chloride solution and once with brine, then dried over sodium sulfate and concentrated via rotary evaporation. The crude material was purified by column chromatography on silica using $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield $121 \mathrm{mg}(0.13 \mathrm{mmol})$ target material as a maroon solid in 84% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ / ppm : 7.57 (s, $2 \mathrm{H}), 7.45(\mathrm{~d}, 4 \mathrm{H}), 7.28(\mathrm{~m}, 6 \mathrm{H}) 6.74(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.82(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ §/ppm: 168.4, 153.0, 136.0, 134.0, 132.3, 131.5, 129.8, 128.4, 128.1, 123.5, 118.1, 113.7, 91.9, 83.6, 42.1, 31.0. ${ }^{19} \mathrm{~F}$ NMR (251 MHz, CDCl $\left.{ }_{3}, 25^{\circ} \mathrm{C}\right) ~ \delta / p p m:-137.8(\mathrm{dt}, J=8.8,5.2,4 \mathrm{~F}),-151.2(\mathrm{dt}, J=8.8,5.0 \mathrm{~Hz}, 2 \mathrm{~F}),-$ 160.0 (dt, $J=10.1,3.8 \mathrm{~Hz}, 4 \mathrm{~F}$). HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{49} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{~F}_{10} \mathrm{Pd}$, 965.09758 ; found 965.09758 .

All other Pd[DMBil2-R] derivatives were synthesized using the same procedure, altering only the identity of the alkyne added and the chosen eluent for chromatography. Detailed methods of purification and characterization data for all other Pd[DMBil2-R] derivatives are provided below:

Palladium
2,18-Bis(para-cyano-phenylethynyl)-10,10-dimethyl-5,15dipentafluorophenylbiladiene (Pd[DMBil2-CN]): This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-cyanophenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 10\%
ethyl acetate in hexanes to yield $86 \mathrm{mg}(0.085 \mathrm{mmol})$ of target material as a maroon solid in 57% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta / \mathrm{ppm}: 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}) 7.49(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) ~ \delta / \mathrm{ppm}: 169.3,152.2,145.0(\mathrm{~d}, \mathrm{~J}=257.9 \mathrm{~Hz}), 136.5,133.9,133.1$, 132.3, 132.2, 132.2, 132.1, 131.7, 129.8, 128.7, 128.6, 128.5, 118.9, 118.7, 112.3, 111.2, 90.3 , 88.6, 42.4, 31.0. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}:-138.4$ (dd, $J=10.8,3.8,4 \mathrm{~F}$), -151.2 (t, $J=13.8,2 \mathrm{~F}),-160.3(\mathrm{dt}, J=13.8,3.8,4 \mathrm{~F})$. HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{51} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{~F}_{10} \mathrm{Pd}$, 1015.08593; found 1015.08828.

Palladium 2,18-Bis(para-trifluoromethyl-phenylethynyl)-10,10-dimethyl-5,15dipentafluorophenylbiladiene ($\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{CF}_{3}\right]$): This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-trifluoromethylphenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 10% ethyl acetate in hexanes to yield $127 \mathrm{mg}(0.12 \mathrm{mmol})$ of target material as a purple solid in 77% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ / ppm : 7.57 (s, 2H), 7.54 (s, 8 H), 6.78 (d, J $=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right) ~ \delta / p p m: ~ 168.9,152.4,136.2,133.8,132.7,131.4,129.7,129.6,128.6,127.3,125.3,125.2$, 125.1, 122.3, 118.5, 112.6, 90.4, 86.2, 42.2, 30.8. ${ }^{19} \mathrm{~F}$ NMR ($251 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}:-$ 62.2 ($\mathrm{s}, 6 \mathrm{~F}$), -137.9 (dd, $J=9.4,3.8,4 \mathrm{~F}),-150.9(\mathrm{t}, \mathrm{J}=12.6,2 \mathrm{~F}),-159.8(\mathrm{dt}, J=12.6,3.8,4 \mathrm{~F})$. HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{51} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{~F}_{16} \mathrm{Pd}$, 1101.07021; found 1101.07022.

Palladium 2,18-Bis(para-methyl-ester-phenylethynyl)-10,10-dimethyl-5,15-

 dipentafluorophenylbiladiene $\left(\mathbf{P d}\left[\mathrm{DMBil2}-\mathbf{C O}_{2} \mathbf{C H}_{3}\right]\right)$: This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-(methoxycarbonyl)phenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 10% ethyl acetate in hexanes to yield $118 \mathrm{mg}(0.11 \mathrm{mmol})$ of target material as a maroon solid in 73% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 7.96(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.57(\mathrm{~s}, 2 \mathrm{H})$,$7.49(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H})$, 1.83 (s, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ / ppm : 168.9, 168.7, 152.6, 136.3, 133.9, 132.7, 131.2, 129.9, 129.6, 129.2, 128.7, 128.3, 118.5, 112.9, 91.3, 87.0, 52.4, 42.3, 31.0. ${ }^{19} \mathrm{~F}$ NMR (251 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) ~ \delta / p p m:-137.8(\mathrm{dd}, J=9.4,3.8,4 \mathrm{~F}),-150.9(\mathrm{t}, J=13.8,2 \mathrm{~F}),-159.9$ (dt, $J=13.8,3.8,4 \mathrm{~F}$). HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{53} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{~F}_{10} \mathrm{O}_{4} \mathrm{Pd}$, 1025.11657 ; found 1025.11705.

Palladium

2,18-Bis(para-tert-butyl-phenylethynyl)-10,10-dimethyl-5,15dipentafluorophenylbiladiene (Pd[DMBil2-t-Bu]): This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-tert-butylphenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 10\% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes to yield $130 \mathrm{mg}(0.12 \mathrm{mmol})$ of target material as a maroon solid in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~J}=9.6 \mathrm{~Hz}$, $6 \mathrm{H}) 6.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta / \mathrm{ppm}: 168.2,153.2,151.3,145.0(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 141.9(\mathrm{~d}, J=248.4 \mathrm{~Hz})$, $137.5(\mathrm{~d}, \mathrm{~J}=254.7 \mathrm{~Hz}), 135.9,134.0,132.1,131.2,129.7,128.4,125.4,120.5,117.9,114.1$, 111.9 ($\mathrm{t}, \mathrm{J}=19.0 \mathrm{~Hz}$), 92.1, 82.9, 77.4, 42.1, 36.7, 34.9, 31.6, 31.3, 31.0. ${ }^{19} \mathrm{~F}$ NMR (251 MHz , $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}:-138.3(\mathrm{dd}, J=11.3,3.8,4 \mathrm{~F}),-151.8(\mathrm{t}, J=13.8,2 \mathrm{~F}),-160.6(\mathrm{dt}, J=13.8$, 3.8, 4F). HR-LIFDI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{57} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{~F}_{10} \mathrm{Pd}$, 1076.2128; found 1076.1862.

Palladium
2,18-Bis(para-methoxy-phenylethynyl)-10,10-dimethyl-5,15dipentafluorophenylbiladiene ($\mathrm{Pd}\left[\mathrm{DMBil2}-\mathbf{O C H}_{3}\right]$): This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-methoxyphenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 15% ethyl acetate in hexanes to yield $132 \mathrm{mg}(0.13 \mathrm{mmol})$ of target material as a purple solid in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
(100 MHz, CDCl $_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 168.2,152.8,145.0(\mathrm{~d}, \mathrm{~J}=251.0 \mathrm{~Hz}), 141.9(\mathrm{~d}, \mathrm{~J}=256.4 \mathrm{~Hz})$, $137.5(\mathrm{~d}, \mathrm{~J}=255.6 \mathrm{~Hz}) 136.2,134.1,132.5,131.8,131.5,129.9,129.4,128.4,128.0,123.6$, 117.8, 113.4, $111.9(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}), 91.7,83.9,61.9,42.1,31.0 .{ }^{19} \mathrm{~F}$ NMR ($251 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}\right) ~ \delta / p p m:-138.3(\mathrm{dd}, \mathrm{J}=10.0,3.8,4 \mathrm{~F}),-151.8(\mathrm{t}, \mathrm{J}=13.8,2 \mathrm{~F}),-160.6(\mathrm{dt}, \mathrm{J}=13.8,3.8,4 \mathrm{~F})$. HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{51} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{~F}_{10} \mathrm{O}_{2} \mathrm{Pd}$, 1081.10640; found 1081.11003.

Palladium 2,18-Bis(para\{N,N-dimethyl-amino\}-phenylethynyl)-10,10-dimethyl-5,15dipentafluorophenylbiladiene (Pd[DMBil2-N(CH3)2]): This compound was prepared on a 0.15 mmol scale from $\operatorname{Pd}\left[\mathrm{DMBilBr}_{2}\right]$ and 4-dimethylaminophenylacetylene following the method detailed for Pd[DMBil2-H]. The crude material was purified by column chromatography on silica using 10% ethyl acetate in hexanes to yield $102 \mathrm{mg}(0.097 \mathrm{mmol})$ of target material as a purple solid in 67% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 4 \mathrm{H})$, 6.70 (d, J = $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}$, $12 \mathrm{H}), 1.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 167.6,153.6,150.0,1465.0$ (d, $J=249.8 \mathrm{~Hz}$) , $137.5(\mathrm{~d}, J=256.4 \mathrm{~Hz}), 135.7,134.1,132.8,132.6,131.6,129.3,128.0,117.4$, 114.9, 111.9, 110.3, 93.2, 81.4, 41.9, 40.4, 31.0. ${ }^{19} \mathrm{~F}$ NMR ($251 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}:-137.8$ (dd, $J=11.3,3.8,4 \mathrm{~F}),-151.6(\mathrm{t}, J=13.8,2 \mathrm{~F}),-160.2(\mathrm{dt}, J=13.8,3.8,4 \mathrm{~F})$. HR-ESI-MS: $[\mathrm{M}+\mathrm{H}]^{+}$ m / z : calcd for $\mathrm{C}_{53} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{~F}_{10} \mathrm{Pd}$, 1051.17984; found 1051.18292.

Electrochemical Experiments. All cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experiments were performed using a CHI-620D potentiostat and a standard three-electrode setup consisting of a glassy-carbon disk working electrode (3.0 mm diameter), a platinum mesh counter electrode, and a leakless $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode (in 3.4 M KCl solution) purchased from eDAQ. Measurements were collected in anhydrous acetonitrile solutions containing 0.1 M TBAPF $_{6}$ as supporting electrolyte. Each of the $\mathbf{P d}[\mathrm{DMBil} 1]$ and $\operatorname{Pd}[D M B i l 2-R]$ derivatives were analyzed at a concentration of 1.0 mM . Solutions were sparged with argon for 20 minutes before data collection was performed while maintining positive pressure of argon over
the electrochemical cell. Freshly sublimed ferrocene was added to the electrolyte solutions at the end of the CV and DPV data collections as an internal standard. All reported potentials are referenced relative to $\mathrm{Fc} / \mathrm{Fc}^{+}$. Reported CV and DPV experiments were carried out at a scan rate of $v=100 \mathrm{mV} \mathrm{s}^{-1}$.

X-ray Structural Analysis. Crystals of Pd[DMBil2-H], Pd[DMBil2-OCH ${ }_{3}$], Pd[DMBil2CF_{3}]and Pd[DMBil2-CN] were obtained via slow evaporation of saturated solutions of the respective complexes in $50: 50$ mixtures of methanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Crystals were mounted on plastic mesh using viscous oil and cooled to the data collection temperature. Data were collected on either a Bruker-AXS Apex III DUO CCD diffractometer with graphite monochromated Mo-Ka radiation $(\lambda=0.71073 \AA$ Á) or on a D8 Venture with microfocused Cu-K Ka radiation $(\lambda=1.54178$ Á). Unit cell parameters were obtained from 36 data frames, $0.5^{\circ} \omega$, from different sections of the Ewald sphere or a hemisphere fast scan, $1^{\circ} \omega / \mathrm{s} .{ }^{9}$ The systematic absences from the diffraction data were consistent for Cc and $\mathrm{C} 2 / \mathrm{c}$ for $\mathrm{Pd}[\mathrm{DMBil2}-\mathrm{CN}]$ and $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{OCH}_{3}\right]$, and, uniquely, for $\mathrm{P}_{1} / \mathrm{h}$ for $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{CF}_{3}\right.$]. No symmetry higher than triclinic was observed for Pd[DMBil2H]. Solution in the centrosymmetric space group options for $\operatorname{Pd}\left[\mathrm{DMBil2}-\mathrm{OCH}_{3}\right]$ and $\mathrm{Pd}[\mathrm{DMBil2}-$ H], $\mathrm{C} 2 / \mathrm{c}$ and $P-1$, respectively, yielded chemically reasonable and computationally stable results of refinement. Only the noncentrosymmetric option Cc yielded chemically reasonable results for Pd[DMBil2-CN]. The data were treated with multi-scan absorption corrections. ${ }^{9}$ The structures were solved using intrinsic phasing methods ${ }^{10}$ and refined with full-matrix, least-squares procedures on $F^{2} .{ }^{11}$ Three half molecules of the compound were located in the asymmetric unit of Pd[DMBil2-CN]. Two compound molecules and a toluene molecule of solvation was found in the asymmetric unit of $\operatorname{Pd}\left[\mathrm{DMBil}_{2}-\mathrm{CF}_{3}\right]$. Non-hydrogen atoms were refined with anisotropic displacement parameters. H -atoms were constrained in idealized positions with isotropic parameters based on their attached atoms (1.2-1.5 $U_{\text {eq }}$). The penultimate difference maps were treated with Squeeze to model disordered solvent molecules as diffused contributions. ${ }^{12}$ Atomic
scattering factors are contained in the SHELXTL program library. ${ }^{11}$ The structures have been deposited at the Cambridge Structural Database under deposition numbers CCDC 20963412096344.

UV-Visible Absorption Experiments. All UV-visible absorbance spectra were collected at room temperature on a StellarNet CCD array UV-visible spectrometer using quartz cuvettes (6Q) was a 1.0 cm path length from Starna Cells, Inc. Absorption spectra of all species were collected in methanol at concentrations of $3.0,6.0,9.0,12.0$, and $15.0 \mu \mathrm{M}$.

Emission Experiments. Emission spectra were recorded on an automated Photon Technology International (PTI) QuantaMaser 40 fluorometer equipped with a 75 W xenon arc lamp, an LPS-220B lamp power supply, and a Hamamatsu R2658 photomultiplier tube. All samples were prepared in screw cap quartz cuvettes of 1.0 cm path length from Starna Cells, Inc. The samples were excited at $\lambda_{\mathrm{ex}}=500 \mathrm{~nm}$, and emission was monitored from $\lambda_{\mathrm{em}}=515$ to 1000 nm using a step size of 1 nm and an integration time of 0.25 s .

Emission quantum yields were calculated using a solution of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in nitrogen saturated acetonitrile as reference and the expression below:

$$
\Phi_{\mathrm{s}}=\Phi_{\mathrm{ref}}\left(\frac{\mathrm{I}_{s}}{\mathrm{I}_{\mathrm{ref}}}\right)\left(\frac{A_{r e f}}{A_{S}}\right)\left(\frac{\eta_{S}}{\eta_{r e f}}\right)^{2}
$$

where Φ_{S} and $\Phi_{\text {ref }}$ are the emission quantum yields of the sample and the reference ($\Phi_{\text {ref }}=0.094$ for $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in acetonitrile $)^{13,14}$, respectively, I_{s} and $\mathrm{I}_{\text {ref }}$ are the integrated emission intensities of the samples and reference, A_{s} and $\mathrm{A}_{\text {ref }}$ are the measured absorbances of the sample and reference at the excitation wavelength, and η_{s} and $\eta_{\text {ref }}$ are the refractive indices of the solvents used for the sample and reference.

Singlet Oxygen Sensitization Quantum Yield Determination. ${ }^{1} \mathrm{O}_{2}$ production was quantified by monitoring the fluorescence quenching of 1,3-diphenylisobenzofuran (DPBF), a
previously studied ${ }^{1} \mathrm{O}_{2}$ trapping agent. Measurements were carried out on an automated Photon Technology International (PTI) QuantaMaster 40 fluorometer equipped with a 75-W Xenon arc lamp, an LPS-220B lamp power supply and a Hammamatsu R2658 photomultiplier tube using quartz cuvettes (6Q) of 1.0 cm path length. Each cuvette contained 3.0 mL of methanol solution that was $10.0 \mu \mathrm{M}$ in $\operatorname{Pd}[\mathbf{D M B i l 2 - R}]$ or methylene blue (used as a reference, $\Phi_{D}=0.51$) ${ }^{15}$ and 1.0 $\mu \mathrm{M}$ in DPBF. An additional cuvette containing only methanol and $1.0 \mu \mathrm{M}$ DPBF was used as a control. Consumption of DPBF was monitored by observing the change in its integrated emission intensity following irradiation with light from an Intralux 9000 light source (Volpi) fitted with a 10 $\mathrm{nm}(\mathrm{fwhm})$ bandpass filter centered at 600 nm (Thor Labs, FB600-10). During the studies, each cuvette was irradiated for 5 second intervals for a total of 30 seconds. DPBF emission spectra were obtained by exciting at $\lambda_{\mathrm{ex}}=405 \mathrm{~nm}$ and scanning from $\lambda_{\mathrm{em}}=400-600 \mathrm{~nm}$ using a step size of 1 nm and an integration time of 0.25 nm seconds.

Calibration curves of the integrated emission intensity versus the concentration of unreacted DPBF remaining in solution were generated to correct for the absorption of the photosensitizers and standard between $400-600 \mathrm{~nm}$. Emission spectra were collected from 10 $\mu \mathrm{M}$ solutions of $\operatorname{Pd}[\mathrm{DMBil2-R}]$ or methylene blue containing DPBF concentrations of $0.3,0.6$, $0.9,1.2$, and $1.5 \mu \mathrm{M}$. Linear regression lines fit to the calibration data from each solution enabled the integrated emission intensity values obtained from the ${ }^{1} \mathrm{O}_{2}$ sensitization experiments to be converted into the corresponding concentrations of unreacted DPBF. A final plot of the concentration of unreacted DPBF versus irradiation time formed a straight line of slope m, which allowed for calculation of the ${ }^{1} \mathrm{O}_{2}$ quantum yields via the following expression:

$$
\Phi_{s}=\Phi_{r e f} \frac{m_{s}}{m_{r e f}} \frac{\varepsilon_{r e f}}{\varepsilon_{s}}
$$

Where Φ_{s} and $\Phi_{\text {ref }}$ are the ${ }^{1} \mathrm{O}_{2}$ sensitization quantum yields for the sample and methylene blue reference $\left(51 \%\right.$ in methanol), ${ }^{15}$ respectively, m_{s} and $\mathrm{m}_{\text {ref }}$ are the slopes of the concentration of
unreacted DPBF vs. irradiation time plots for the sample and reference, and ε_{s} and $\varepsilon_{\text {ref }}$ are the extinction coefficients at the wavelength of irradiation (600 nm) for the sample and reference. All reported ${ }^{1} \mathrm{O}_{2}$ quantum yields were obtained from an average of three trials.

Figure S1. ${ }^{1} \mathrm{H}$ NMR of Pd[DMBil2-H]

Figure S2. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{P d}[\mathrm{DMBil2-H}]$

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\operatorname{Pd}[$ DMBil2-H]

Figure S4. ${ }^{1} \mathrm{H}$ NMR of Pd[DMBil2-CN]

Figure S5. ${ }^{19}$ F NMR of Pd[DMBil2-CN]

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\operatorname{Pd}[$ [DMBil2-CN]

MIM_04_TrifluoroTolyl.2.fid
PROTON_16CDC13/opt/topspin mimartin 23

Figure $\mathbf{S 7}$. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2-} \mathrm{CF}_{3}\right.$]

Figure S8. ${ }^{19} \mathrm{~F}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{CF}_{3}\right.$]

Figure S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\operatorname{Pd}\left[\mathrm{DMBil2}-\mathrm{CF}_{3}\right]$

Figure S10. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]$

MIM_04_MethylEster_Pd(DMBil).1.fid
F19CPD_CDC13/opt/topspin mimartin 14

Figure S11. ${ }^{19} \mathrm{~F}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]$

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\operatorname{Pd}\left[\mathrm{DMBil2}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right]$

MIM_05_Pd(DMBil2-t-Butyl).1.fid
PROTON_16 CDC13/opt/topspin mimartin 32

Figure S13. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$]

Figure $\mathbf{S} 14 .{ }^{19} \mathrm{~F}$ NMR of $\operatorname{Pd}\left[\mathrm{DMBil2-C}\left(\mathrm{CH}_{3}\right)_{3}\right]$

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of Pd[DMBil2-C($\left.\left.\mathrm{CH}_{3}\right)_{3}\right]$

Figure S16. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Pd}\left[\mathrm{DMBil2}-\mathrm{OCH}_{3}\right]$

Figure S17. ${ }^{19} \mathrm{~F}$ NMR of Pd[DMBil2- OCH_{3}]

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\operatorname{Pd}\left[D M B i l 2-\mathrm{OCH}_{3}\right]$

MIM_04_Dimethylamine_Pd(DMBiI).2.fid
PROTON_16 CDC13/opt/topspin mimartin 16

Figure S19. ${ }^{1} \mathrm{H}$ NMR of $\left.\left.\operatorname{Pd[DMBil2-N(CH3}\right)_{2}\right]$

Figure S20. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{P d}\left[\mathrm{DMBil2-N}\left(\mathrm{CH}_{3}\right)_{2}\right.$] C13CPD1024 CDC13/opt/topspin mimartin 16

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of Pd[DMBil2-N $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]$

Figure S22. Fully labelled structure plot of Pd[DMBil2-H]. Atoms are shown as ellipsoids with 30\% probability. Hydrogen atoms are omitted for clarity.

Figure S23. Fully labelled structure plot of Pd[DMBil2-CN]. Atoms are shown as ellipsoids with 30% probability. Two Pd[DMBil2-CN] residues (three residues in 1 unit cell) and hydrogen atoms are omitted for clarity.

Figure S24. Fully labelled structure plot of Pd[DMBil2-OCH ${ }_{3}$. Atoms are shown as ellipsoids with 30% probability. Hydrogen atoms are omitted for clarity.

Figure S25. Fully labelled structure plot of Pd[DMBil2-CF3]. Atoms are shown as ellipsoids with 30% probability. One $\mathrm{Pd}\left[\mathrm{DMBil} 2-\mathrm{CF}_{3}\right]$ residue, two toluene molecules, and hydrogen atoms are omitted for clarity.

Figure S26. Illustration using Pd[DMBil2-H] to represent the planes used to determine internal pyrrole dihedral angles.

Figure S27. Illustration using Pd[DMBil2-H] to represent the planes used to determine external pyrrole dihedral angles.

Figure S28. First illustration using Pd[DMBil2-H] to represent the planes used to determine $\mathrm{C}_{6} \mathrm{~F}_{5}$-dipyrrole dihedral angles.

Figure S29. Second illustration using $\operatorname{Pd}[\mathbf{D M B i l 2 - H}]$ to represent the planes used to determine $\mathrm{C}_{6} \mathrm{~F}_{5}$-dipyrrole dihedral angles

Figure S30. Illustration using Pd[DMBil2-H] to represent the planes used to determine $\mathrm{Ph}-\mathrm{Pd}-$ Ph dihedral angles.

Table S1: Crystallographic information for Pd[DMBil2-CN], Pd[DMBil2-CF ${ }_{3}$],
Pd[DMBil2], and Pd[DMBil2-OCH3]

	Pd[DMBil2-CN]	Pd[DMBil2-CF3]	$\begin{gathered} \text { Pd[DMBil2- } \\ \text { H] } \end{gathered}$	Pd[DMBil2-OCH3]
empirical formula	$\mathrm{C}_{51} \mathrm{H}_{22} \mathrm{~F}_{10} \mathrm{~N} 6 \mathrm{Pd}$	$\mathrm{C}_{51} \mathrm{H}_{22} \mathrm{~F}_{16} \mathrm{~N} 4 \mathrm{Pd}$	$\mathrm{C}_{49} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{~N}_{4} \mathrm{Pd}$	$\mathrm{C}_{51} \mathrm{H}_{28} \mathrm{~F} \mathrm{H}_{0} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Pd}$
fw	1015.15	1226.04	965.12	1025.17
cryst syst	monoclinic	monoclinic	triclinic	monoclinic
space group	Cc	$P 2{ }_{1 / n}$	P-1	C2/c
a	44.561 (2) A	20.7184(9) A	13.1727(5) Å	$32.1914(17) \AA$
b	11.8744(6) A	15.4765(5) A	13.2803(5) Å	$9.8728(5) \AA$
c	31.6333(16) A	$34.4992(15) \AA$	15.2360(5) A	$30.9174(17) \AA$
α	90°	90°	$90.573(1)^{\circ}$	90°
β	$122.150(2)^{\circ}$	$92.264(2)^{\circ}$	$97.609(1)^{\circ}$	107.046(7) ${ }^{\circ}$
Y	90°	90°	109.207(1) ${ }^{\circ}$	90°
V	$14171.5(13) \AA^{3}$	$11000.1(8) \AA^{3}$	$\frac{2490.73(16)}{\AA^{3}}$	9394.5(9) \AA^{3}
Z	12	8	2	8
temp	150(2) K	150(2) K	150(2) K	150(2) K
$\mathrm{D}_{\text {calcd }}$	$1.428 \mathrm{~g} / \mathrm{cm}^{3}$	$1.481 \mathrm{~g} / \mathrm{cm}^{3}$	$1.428 \mathrm{~g} / \mathrm{cm}^{3}$	$1.450 \mathrm{~g} / \mathrm{cm}^{3}$
$\begin{gathered} 2 \Theta \\ \text { range } \end{gathered}$	$1.316^{\circ}-27.640^{\circ}$	$2.454^{\circ}-76.059^{\circ}$	$\begin{aligned} & 1.626^{\circ}- \\ & 37.387^{\circ} \end{aligned}$	$1.323^{\circ}-30.636^{\circ}$
μ	$0.474 \mathrm{~mm}^{-1}$ (Mo Ka)	$3.588 \mathrm{~mm}^{-1}(\mathrm{Cu} \mathrm{Ka})$	$\begin{gathered} 0.444 \mathrm{~mm}^{-1} \\ (\mathrm{Mo} \mathrm{Ka}) \end{gathered}$	$0.479 \mathrm{~mm}^{-1}(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})$
Reflns	32731	21802	25629	14487
Unique	24931	18886	16629	12330
R (int)	0.0720	0.0733	0.0817	0.0442
R_{1}	0.0476	0.0638	0.0484	0.0357
w R_{2}	0.1140	0.1457	0.1497	0.0955

Figure S31: Absorption profiles for all Pd[DMBil2-R] derivatives in methanol.

Figure S32: Emission profiles for all Pd[DMBil2-R] derivatives in methanol.

Figure S33. Stacked Differential Pulsed Voltammograms of Pd[DMBil1] and Pd[DMBil2-R] derivatives in anhydrous acetonitrile.

Figure S34: Scatter plots showing the relationship between para-Hammett values (σ_{ρ}) and a) the first oxidation potential, b) the second oxidation potential, c) the first reduction potential, and d) the second reduction potential.

Figure S35: Absorption profiles recorded for Pd[DMBil2-N(CH3 $)_{2}$] in methanol containing different equivalents of trifluoroacetic acid.

REFERENCES

(1) Pistner, A. J.; Pupillo, R. C.; Yap, G. P. A.; Lutterman, D. A.; Ma, Y.-Z.; Rosenthal, J. Electrochemical, Spectroscopic, and 102 Sensitization Characteristics of 10,10Dimethylbiladiene Complexes of Zinc and Copper. J. Phys. Chem. A 2014, 118 (45), 1063910648. https://doi.org/10.1021/jp506412r.
(2) Pistner, A. J.; Yap, G. P. A.; Rosenthal, J. A Tetrapyrrole Macrocycle Displaying a Multielectron Redox Chemistry and Tunable Absorbance Profile. J. Phys. Chem. C 2012, 116 (32), 16918-16924. https://doi.org/10.1021/jp3059382.
(3) O'Brien, A. Y.; McGann, J. P.; Geier, G. R. Dipyrromethane + Dipyrromethanedicarbinol Routes to an Electron Deficient Meso-Substituted Phlorin with Enhanced Stability. J. Org. Chem. 2007, 72 (11), 4084-4092. https://doi.org/10.1021/jo070216k.
(4) Pistner, A. J.; Lutterman, D. A.; Ghidiu, M. J.; Ma, Y.-Z.; Rosenthal, J. Synthesis, Electrochemistry, and Photophysics of a Family of Phlorin Macrocycles That Display Cooperative Fluoride Binding. J. Am. Chem. Soc. 2013, 135 (17), 6601-6607. https://doi.org/10.1021/ja401391z.
(5) Potocny, A. M.; Riley, R. S.; O'Sullivan, R. K.; Day, E. S.; Rosenthal, J. Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex Displaying an Exceptionally High Phototoxicity Index. Inorg. Chem. 2018, 57 (17), 1060810615. https://doi.org/10.1021/acs.inorgchem.8b01225.
(6) Rice, A. T.; Martin, M. I.; Warndorf, M. C.; Yap, G. P. A.; Rosenthal, J. Synthesis, Spectroscopic, and 102 Sensitization Characteristics of Extended Pd(II) 10,10Dimethylbiladiene Complexes Bearing Alkynyl-Aryl Appendages. Inorg. Chem. 2021, 60 (15), 11154-11163. https://doi.org/10.1021/acs.inorgchem.1c01127.
(7) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29 (9), 2176-2179. https://doi.org/10.1021/om100106e.
(8) Filipovich, G.; Tiers, G. V. D. Fluorine N.s.r. Spectroscopy. I. Reliable Shielding Values, ø, by Use of CCI3F as Solvent and Internal Reference. J. Phys. Chem. 1959, 63 (5), 761-763. https://doi.org/10.1021/j150575a040.
(9) Apex3; Bruker AXS Inc: Madison, WI, 2015.
(10) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. Found. Adv. 2015, 71 (1), 3-8. https://doi.org/10.1107/S2053273314026370.
(11) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3-8. https://doi.org/10.1107/S2053229614024218.
(12) Spek, A. L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 9-18. https://doi.org/10.1107/S2053229614024929.
(13) Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83 (12), 2213-2228. https://doi.org/10.1351/PAC-REP-10-09-31.
(14) Liu, Y.; Hammitt, R.; Lutterman, D. A.; Joyce, L. E.; Thummel, R. P.; Turro, C. Ru(II) Complexes of New Tridentate Ligands: Unexpected High Yield of Sensitized 102. Inorg. Chem. 2009, 48 (1), 375-385. https://doi.org/10.1021/ic801636u.
(15) Hu, Q.-J.; Lu, Y.-C.; Yang, C.-X.; Yan, X.-P. Synthesis of Covalently Bonded Boron-Dipyrromethene-Diarylethene for Building a Stable Photosensitizer with Photo-Controlled Reversibility. Chem. Commun. 2016, 52 (31), 5470-5473. https://doi.org/10.1039/C6CC01864E.

[^0]: Palladium 2,18-Diethynlbenzene-10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene (Pd[DMBil2-H]): To a baked 100 mL Schlenk flask copper(I) iodide ($4 \mathrm{mg}, 0.021 \mathrm{mmol}$, $14 \mathrm{~mol} \%$) was added with a stir bar. The flask was placed under vacuum followed by addition of

