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Figure S1. Photograph of NF a) before and b) after cleaning.

The bare NF (2 cm × 3 cm) was immersed in 3 M HCl for 10 min by ultrasonic 

treatment to remove the surface oxide layer, then washed with ethanol and DI water 

three times. Finally, the NF was air-dried and reserved.
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Figure S2. Schematic diagram of ethylene glycol gas phase reduction.

First, a NF coated with CuCo-LDO HNTAs was suspended in a wide bottle 

containing ethylene glycol (Figure S2, Supporting Information), which was sealed and 

placed in an oven. Second, when the temperature reached 200 °C, the ethylene glycol 

solution volatilized into gas, which filled the whole bottle. Finally, the ethylene glycol 

steam reacted with the CuCo-LDO HNTAs, leaving the outer topologically 

transformed to O-vacancy-rich CuCo-LDO HNTAs. Accordingly, the mechanism of 

this gas phase reduction process could be described via the following equations:

CuCo-LDO (s) + C2H6O2 (g) →Ov-CuCo-LDO + C2H2O2 (g) + H2O2 (g)
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Figure S3. HRTEM image of CuCo-LDO.

The HRTEM image CuCo-LDO reveal the lattice fringes of the CuCo2O4 (311) 

plane with a spacing of 0.243 nm, the CoO (220) plane with a spacing of 0.15 nm, as 

well as the (111) plane of CuO2 with a spacing of 0.245 nm.
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Figure S4. OER performances of CuCo-LDH with different Co-Cu ratios.
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Figure S5. OER performance of CuCo-LDH under different electrochemical 

deposition conditions at 10 mA·cm-2: a) time; b) voltage.
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Figure S6. OER performances of MOF-CuCo-LDH HNTAs with different organic 

ligand content. 



S-8

Figure S7. OER performances of CuCo-LDH HNTAs with different annealing 

temperatures.
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Figure S8. OER performances of Ov-CuCo-LDO HNTAs with different annealing 

time.
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Figure S9. a) Impedance diagrams of, Ov-CuCo-LHD and CuC0-LDO for OER; b) 

the equivalent circuit of Ov-CuCo-LDO HNTAs.
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Figure S10. Cyclic voltammograms of a) Ov-CuCo-LDO, b) CuCo-LDO, and c) 

CuCo-LDH in the non-faradaic capacitance current range.

The non-faradaic capacitance (Cdl) is the key index for detecting the ECSA. CV 

curves of Ov-CuCo-LDO, CuCo-LDH, and CuCo-LDO catalysts under different scan 

rates in a non-Faradaic region of 0.10 to 0.24 V (vs. RHE) are shown in Figure S10. 

The electrochemical double layer capacitance（Cdl）is estimated by plotting the 

charging current differences  at the applied potential of 0.17 V (vs. 2/)(j ca jj 

RHE) against different scan rates from 20, 40, 60, 80, and 100 mV·s-1, in which the 

slope of the linear is fitted twice of Cdl. Cdl values are 66, 59, and 56 mF·cm-2 for Ov-

CuCo-LDO, CuCo-LDH, and CuCo-LDO catalysts, respectively.
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Figure S11. The TOF value of Ov-CuCo-LDO, CuCo-LDO, and CuCo-LDH at an 

overpotential of 72.5 mV.

Calculation of turnover frequency (TOF): Assuming that every metal atom is 

involved in the OER electrocatalysis. The TOF value of different catalysts were 

estimated according to the following formula:

mFn
AJTOF





Wherein, J (mA·cm-2) is the current density at a given overpotential (e.g. η=72.5 mV), 

A is the surface area of the electrode (1*1 cm2 for Ov-CuCo-LDO), F is the Faraday 

constant (96485.3 C·mol-1), m is the number of moles of metal on the electrode, and n 

is the electron transfer number (4 for OER).
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Figure S12. HER performances of CuCo-LDH with different Co-Cu ratios.
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Figure S13. HER performance of CuCo-LDH under different electrochemical 

deposition conditions at 10 mA·cm-2: a) time; b) voltage.
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Figure S14. HER performances of MOF-CuCo-LDH HNTAs with different organic 

ligand content.
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Figure S15. HER performances of CuCo-LDO HNTAs with different annealing 

temperatures.
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Figure S16. HER performances of Ov-CuCo-LDO HNTAs with different annealing 

time.



S-18

Figure S17. The TOF absolute value of Ov-CuCo-LDO, CuCo-LDO, and CuCo-LDH 

at an overpotential of -53.9 mV.



S-19

Figure S18. SEM images of Ov-CuCo-LDO after 20 h cycling (a, b), XRD pattern (c), 

and XPS survey spectrum (d) of Ov-CuCo-LDO before and after 20 h cycling.
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Figure S19. Raman spectra of Ov-CuCo-LDO before and after the continuous 

electrocatalysis.
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Figure S20. Photograph of the gas collection device and the amount of hydrogen and 

oxygen gas generated at 0 min, 20min, and 60min.
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Figure S21. Experimental H2 and O2 production over time versus theoretical 

quantities assuming a ~98% Faradaic efficiency for HER and OER in 1.0 M KOH at 

10 mA·cm-2.
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Table S1. Comparative electrochemical OER performances of different 

electrocatalytic materials in alkaline medium

Catalysts Electrolyte Overpotential 
(mV)

@ 10 mA·cm-2

Ref.

Ov-CuCo-LDO 72.5 This work
Ru@NiCo-MOF 

HPNs
284 [1]

Cu1–xCo2+xO4 
nanoflakes

267 [2]

CuCoS/CC 276 [3]
CoFeO@BP 266 [4]

Co3Mo/CoMoOx 256 [5]
Mn-CoP 288 [6]

Ni-Fe LDH@NiCu 218 [7]
Fe-S-

NiMoO4/MoO3

1.0 M KOH

212 [8]
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