Supporting information

Spectroscopic characterization and reactivity of a high valent
 (L)Cu(III) species supported by proline-based pseudo peptide

Raju Eerlapally, Sikha Gupta, Ayushi Awasthi, Rakesh Kumar, and Apparao Draksharapu*

Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

Table S1: Crystal data and structure refinement of 1.

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{CuN}_{4} \mathrm{O}_{3}$
Formula weight	333.87
Temperature/K	100
Crystal system	trigonal
Space group	P3221
a/Å	8.5368(4)
b/Å	8.5368(4)
c/Å	17.4591(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
V°	120
Volume/ \AA^{3}	1101.90(12)
Z	3
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.509
μ / mm^{-1}	1.499
F(000)	525.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.18 \times 0.16$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.51 to 50.014
Index ranges	$-10 \leq h \leq 10,-10 \leq k \leq 10,-20 \leq \mathrm{l}$ 20
Reflections collected	13297
Independent reflections	1291 [$\left.\mathrm{inft}=0.0630, \mathrm{R}_{\text {sigma }}=0.0281\right]$
Data/restraints/parameters	1291/0/96
Goodness-of-fit on F^{2}	1.109
Final R indexes [l>=2 $\sigma(1)]$	$\mathrm{R}_{1}=0.0196, \mathrm{wR}_{2}=0.0503$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0202, \mathrm{wR}_{2}=0.0510$
Largest diff. peak/hole /e \AA^{-3}	0.24/-0.44
Flack parameter	0.019(19)

Table S2: Selected bond lengths and bond angles for 1.

Atom	Bond length (\AA) / Bond angle (${ }^{\circ}$)
Cu1-N1	1.997(2)
Cu1-N1 ${ }^{1}$	1.997(2)
$\mathrm{Cu} 1-\mathrm{N} 2$	1.895(2)
Cu1-N2 ${ }^{1}$	1.8954(19)
N11-Cu1-N1	104.66(12)
$\mathrm{N} 2^{1}-\mathrm{Cu} 1-\mathrm{N} 1^{1}$	85.56(9)
N2-Cu1-N1	85.56(9)
N2-Cu1-N1 ${ }^{1}$	169.35(9)
N2 ${ }^{1}$-Cu1-N1	169.35(9)
N2 ${ }^{1}$-Cu1-N2	84.41(13)

Fig. S1. (A) UV/Vis absorption spectrum of $\mathbf{1}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ and (B) Solid-state FT-IR spectrum of 1.

Fig. S2. X-band EPR (Frequency $=9.432 \mathrm{GHz}$) spectrum of $\mathbf{1}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ measured at 120 K. Red: Experimental spectrum and Blue: Simulated spectrum. Modulation amplitude 1.98 G ; Modulation frequency 100 kHz , and Attenuation 18 dB . Simulated parameters: $\mathrm{g}_{\mathrm{x}}=$ $\mathrm{g}_{\mathrm{y}}=2.04, \mathrm{~g}_{\mathrm{z}}=2.17 ; \mathrm{A}_{\mathrm{z}}=980.415^{*} 10^{-5} \mathrm{~cm}^{-1}, \mathrm{~A}_{\mathrm{x}}=\mathrm{A}_{\mathrm{y}}=0$.

Fig S3. (A) UV/Vis absorption spectra showing acid-base equilibria between 1 and with a dimeric $\mathrm{Cu}(I I)$ species. (black trace) $\mathbf{1}(1.5 \mathrm{mM})$ in $1: 20 \mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$, (red trace) $\mathbf{1}$ with $2 \mathrm{eq} . \mathrm{HCl}$ and (blue trace) upon addition of 3 eq . KOH to the red trace generates 1. (B) UV/Vis absorption spectra of $\mathbf{1}$ (black trace) (2.5 mM) in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$, red trace: decayed spectra of $\mathbf{3}$ ($\mathbf{3}$ generated upon addition of $1 \mathrm{eq} . m C P B A$ to $\mathbf{1}$ at $25^{\circ} \mathrm{C}$), blue trace: to the decayed species of $\mathbf{3}, 2$ eq. KOH was added, pink trace: to the blue trace 2 eq. of HClO_{4} was added.

Fig. S4. (A) Scan rate (in mV / s) dependent cyclic voltammograms of $\mathbf{1}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) and (B) Differential pulse voltammograms (DPVs) of $\mathbf{1}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20).

Fig. S5. (A) Time-dependent UV/Vis absorption spectral changes upon the reaction of $\mathbf{1}$ (1 mM in methanol) with 1 eq. $m \mathrm{CPBA}$ at $-5{ }^{\circ} \mathrm{C}$ and (B) The corresponding changes in the absorption at 420 nm over time in seconds.

Fig. S6. (A) UV/Vis absorption spectral changes upon the reaction of 1 with 1 eq. CAN. Condition to generate 3: 0.25 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) with 1 eq. CAN at $-30^{\circ} \mathrm{C}$ (B) The corresponding changes in the absorption of 3 at 434 nm over time at temperatures $-30^{\circ} \mathrm{C},-5$ ${ }^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. (C) Reaction of $\mathbf{3}(0.25 \mathrm{mM})$ with 2 eq . Fc at room temperature.

Fig. S7. (A) Time-dependent UV/Vis absorption spectral changes upon the reaction $\mathbf{1}$ with 1 eq. magic blue. Condition to generate 3: 0.25 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) with 1 eq. magic blue at $-30^{\circ} \mathrm{C}$. (B) The corresponding absorption changes at 434 nm . (C) Electrochemical oxidation of 3. Conditions to generate 3: 5 mM 1 in 100 mM TBAP dissolved in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) and applied potential 0.6 V vs. $\mathrm{Ag} / \mathrm{AgCl}$.

Fig. S8. (A) Time-dependent UV/Vis absorption spectral changes upon the reaction of $\mathbf{3}$ with 1 eq . Fc. Condition to generate 3: 1 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) with 1 eq. mCPBA at $-30^{\circ} \mathrm{C}$. Note: The Fc added after the maximum accumulation of 430 nm band that takes approximately 400 s . (B) The corresponding absorption changes at 430 nm and 619 nm . * The blue star marks the absorbance of ferrocenium, where all the 430 nm species have reacted with Fc to give Fc^{+}.

Fig. S9. X-band EPR (Frequency $=9.432 \mathrm{GHz}$) spectrum of $\mathbf{1}$ and $\mathbf{3}$ measured at 120 K . Modulation amplitude 1.98 G ; Modulation frequency 100 kHz , and Attenuation 18 dB . Conditions to generate 3: 2 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. CAN at RT.

Fig. S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3}$, generated by addition of 1 eq. CAN to 8 mM of $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$. Species generated on ice and its spectrum taken at room temperature. The three peaks at ca. 7.4 ppm are due to $\mathrm{NH}_{4}{ }^{+}$from CAN.

Fig. S11. Decay of $\mathbf{3}$ (generated from 8 mM 1 with 1 eq. CAN on ice) over time, 1 h (red), 2 h (green), 3 h (blue) after reaction. Spectra obtained at room temperature. The three peaks at ca. 7.4 ppm are due to $\mathrm{NH}_{4}{ }^{+}$from CAN.

Fig. S12. NMR samples (8 mM in $\mathrm{CD}_{3} \mathrm{OD}$) of $\mathbf{1}$ (pink, left), $\mathbf{3}$ (green, middle), and the decomposition product (blue, right).

Fig. S13. Resonance Raman spectra ($\lambda_{\text {ex }}=473 \mathrm{~nm}$) of 430 nm band. Condition to generate 3: 1 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. CAN at $-15{ }^{\circ} \mathrm{C}$ in the absence of $\mathrm{H}_{2} \mathrm{O}^{18}$ (black solid line) and presence of $\mathrm{H}_{2} \mathrm{O}^{18}$ (red dotted line).

Fig. S14. (A) Experimental mass spectrum of $[\mathrm{LCu}(\mathrm{II})]$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ and the predicted mass spectrum of $[\mathrm{LCu}(I I)] \mathrm{Na}^{+},(B)$ the experimental mass spectrum of the species generated upon addition of 1 eq. CAN to [LCu(II)] and the predicted spectra of [$\mathrm{LCu}(\mathrm{III})]^{+}$. Conditions to generate 3: 2 mM of $[\mathrm{LCu}(I I)]$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. CAN in at room temperature. (C) Full ESI-MS data of 3.

Fig. S15. Time-dependent UV/Vis absorption spectral changes upon the reaction of $1 \mathrm{a}(1 \mathrm{mM}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$) with 1 eq. $m \mathrm{CPBA}$ at $-30^{\circ} \mathrm{C}$.

Fig. S16. (A) Scan rate (in mV / s) dependent cyclic voltammograms of 1 a in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) and (B) DPVs of 1a in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20).

Fig. S17. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of phenol and the corresponding $\mathrm{k}_{\text {obs }}$ values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. $m C P B A$ at $-30^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom Left) A plot of $\mathrm{k}_{\mathrm{obs}}$ vs [phenol] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with phenol. (Bottom right) Comparison of 3 natural decay and it's reactivity with 10 eq. phenol.

Fig. S18. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of p-cresol and the corresponding $k_{\text {obs }}$ values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. mCPBA at $-30^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A plot of $\mathrm{k}_{\mathrm{obs}} \mathrm{vs}$ [p-cresol] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with p-cresol. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 1 eq. p-cresol.

Fig. S19. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of p-chlorophenol and the corresponding kobs values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. $m C P B A$ at $-30{ }^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A plot of kobs vs [p-chlorophenol] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with p-chlorophenol. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 50 eq. p-chloro phenol.

Fig. S20. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of p-tertbutylphenol and the corresponding kobs values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. $m C P B A$ at $-30{ }^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A plot of $\mathrm{k}_{\text {obs }}$ vs [p-tert-butylphenol] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with p-tert-butylphenol. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 5 eq. p-tBu phenol.

Fig. S21. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of p-bromophenol and the corresponding kobs values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. mCPBA at $-30^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A plot of $\mathrm{k}_{\text {obs }}$ vs [p-bromophenol] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with p-bromophenol. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 50 eq. p -bromo phenol.

Fig. S22. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of 2,6-DTBP and the corresponding $\mathrm{k}_{\text {obs }}$ values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) with 1 eq. $m C P B A$ at $-30^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A Plot of $\mathrm{k}_{\mathrm{obs}} \mathrm{vs}$ [2,6-DTBP] to obtain the second-order rate constant for the reaction of 3 with 2,6-DTBP. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 1 eq. 2,6-DTBP.

Fig. S23. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of $4-\mathrm{OMe}-2,6-$ DTBP and the corresponding kobs values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}$ (1:20) with $1 \mathrm{eq} . m C P B A$ at $-30{ }^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (bottom left) A plot of kobs vs [4-OMe-2,6-DTBP] to obtain the second-order rate constant for the reaction of $\mathbf{3}$ with 4-OMe-2,6-DTBP. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 1 eq. 4-OMe-2,6-DTBP.

Fig. S24. Decay profile of $\mathbf{3}$ followed at 430 nm , with different equivalents of 2,4,6-TTBP and the corresponding kobs values. Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq . mCPBA at $-30^{\circ} \mathrm{C}$. Note: The substrate added after the maximum accumulation of 430 nm band that takes approximately 500 s . (Bottom left) A plot of $\mathrm{k}_{\text {obs }} \mathrm{vs}$ [2,4,6-TTBP] to obtain the second-order rate constant for the reaction of 3 with 2,4,6-TTBP. (Bottom right) Comparison of $\mathbf{3}$ natural decay and it's reactivity with 1 eq. TTBP.

Fig. S25. Product analysis of the reaction of $\mathbf{3}$ with 20 eq. phenol by APCI-MS. Conditions to generate 3: 2.0 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. mCPBA.

Fig. S26. Product analysis of the reaction of 3 with 20 eq. p-cresol by APCI-MS. Conditions to generate 3: 2.0 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. $m C P B A$.

Fig. S27. Product analysis of the reaction of 3 with 20 eq. p-bromophenol by $\mathrm{APCI}-\mathrm{MS}$. Conditions to generate 3: 2.0 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. mCPBA.

Fig. S28. Product analysis of the reaction of 3 with 20 eq. 2,6-DTBP by APCI-MS. Conditions to generate 3: 2.0 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. $m C P B A$.

Fig. S29. Product analysis of the reaction of $\mathbf{3}$ with 20 eq. $4-\mathrm{OMe}-2,6-\mathrm{DTBP}$ by APCI-MS. Conditions to generate 3: 2.0 mM 1 in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)+1$ eq. m CPBA.

Fig. S30. X-band EPR (Frequency $=9.469 \mathrm{GHz}$) spectrum of TTBP• fomed upon the reaction of $\mathbf{3}$ with $2,4,6-\mathrm{TTBP}$ in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ measured at 120 K ; Modulation amplitude 1.98 G; Modulation frequency 100 kHz , and Attenuation 18 dB . (Red) experimental and (blue) simulated. Simulated parametres: $\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{\mathrm{y}}=\mathrm{g}_{\mathrm{z}}=2.005$.

Fig. S31. (A) Reaction of 3 with 30 eq. $4-\mathrm{OMe}-2,6-\mathrm{DTBP}$ at $-30^{\circ} \mathrm{C}$ (Top) and the blank reaction of 1 eq. mCPBA with 30 eq. $4-\mathrm{OMe}-2,6-\mathrm{DTBP}$ at RT (Bottom). (B) Reaction of 3 with 30 eq. 2,6-DTBP at $-30^{\circ} \mathrm{C}$ (Top) and the blank reaction of 1 eq. m CPBA with 30 eq. 2,6 -DTBP at RT (Bottom). (C) Reaction of 3 with 100 eq. phenol at $-30^{\circ} \mathrm{C}$ (Top) and the blank reaction of 1 eq. mCPBA with 100 eq. phenol at RT (Bottom). Conditions to generate 3: 0.5 mM in $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}(1: 20)$ with 1 eq. mCPBA at $-30^{\circ} \mathrm{C}$.

