Exploring Opportunities for Tuning Phenyltris(pyrazol-1-yl)borate Donation by

Varying the Extent of Phenyl Substituent Fluorination

Supplementary Information

Paul J. Fischer,^{*,a} Charley B. Roe,^a Jasmine N. Stephenson,^a Rachel J. Dunscomb,^b Camille L. Carthy,^c Chip

Nataro^c and Victor G. Young, Jr.^b

^aDepartment of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA

^bDepartment of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA

^cDepartment of Chemistry, Lafayette College, 730 High Street, Easton, PA 18042, USA

*Email: <u>fischer@macalester.edu</u>; Tel: +1-651-696-6585

Contents

- I. General Procedures
- II. Synthesis Descriptions and Characterization Data
- III. Thermal Ellipsoid Drawings
- IV. X-ray Crystallographic and Refinement Details
- V. IR Spectra
- VI. NMR Spectra
- VII. Cyclic Voltammetry Data and Voltammograms

I. General Procedures

All operations were performed under an atmosphere of 99.5% argon further purified by passage through a column of activated Aceto Corp. catalyst R3-11 and 10 Å molecular sieves. The plumbing components of the gas purification systems were made of glass and copper. Ultra-Torr® and Swagelock® fittings were employed to provide connections between glass and copper tubing that are impermeable to air. Solutions were routinely transferred via stainless steel cannulas. Gastight syringes equipped with stainless steel three-way stopcocks and needles were used to transfer solutions when necessary. Standard Schlenk techniques were employed with double manifold vacuum lines.^{S1} Solids were handled in a glove box. Solvents were purified by standard procedures and stored under argon.

Literature procedures were employed to prepare $BrB(NMe_2)_2$, $Mo(CO)_3(CH_3CH_2CN)_3$, $Mo(CO)_3(C_5H_5N)_3$ and $[Mn(C_{10}H_8)(CO)_3][BF_4]$.^{S2-S5} Ferrocene was purchased from Strem and sublimed prior to use. $Li[B(C_6F_5)_4]$ for the synthesis^{S6} of $[NBu_4][B(C_6F_5)_4]$ was purchased from Boulder Scientific. Other reagents were obtained from Sigma-Aldrich and used as received. Alumina (activated, neutral, ~150 mesh) and Celite were treated similarly prior to the introduction of organometallic complexes. These substances (~10 cm³) were first poured hot (oven-baked) onto a medium porosity frit. The filter flask was then evacuated and maintained under dynamic vacuum until the powder had cooled to ambient temperature.

Solution infrared spectra were acquired on a Nicolet Magna 550 FTIR spectrometer with samples sealed in 0.1 mm gastight NaCl cells. Nujol (mineral oil) mulls for IR spectra were prepared in the glove box. NMR samples were sealed under argon into 5 mm tubes and were analyzed on a Bruker 400 MHz FT-NMR spectrometer at ambient temperature. ¹H and ¹³C chemical shifts are reported in parts per million (δ) and are given with reference to residual ¹H and ¹³C solvent references relative to TMS. ³¹P chemical shifts are reported in parts per million (δ) and are given with reference to a Bruker 400 MHz FT-NMR spectrometer in parts per million (δ) and are given with reference to TMS. ³¹P chemical shifts are reported in parts per million (δ) and are given with reference to 80% H₃PO₄. ¹¹B chemical shifts are reported in parts per million (δ) and are given with reference to BF₃•OEt₂. Melting points (uncorrected) were determined under argon in sealed capillary tubes on a Laboratory Devices Mel-Temp apparatus. Microanalyses were carried out by ALS Environmental Services, Tucson, AZ.

References

- S1. (a) D. F. Shriver and M. A. Drezdon, *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley-Interscience: New York, 1986. (b) J. E. Ellis, ACS Symp. Ser. **1987**, 357, 34.
- S2. BrB(NMe₂)₂: T.Ishiyama, M. Murata, T.-a. Ahiko, N. Miyaura, G. C. Micalizio, W. R. Roush, *Org. Synth.* **2000**, *77*, 176.
- S3. $Mo(CO)_3(CH_3CH_2CN)_3$: G. J. Kubas and L. S. Van der Sluys, *Inorg. Synth.* **1990**, 28, 29.
- S4. Mo(CO)₃(C₅H₅N)₃: A, J. Pearson, E. Schoffers, *Organometallics*, **1997**, *16*, 5365.
- S5. [Mn(C₁₀H₈)(CO)₃][BF₄]: S. B. Kim, S. Lotz, S. Sun, Y. K. Chung, R. D. Pike, D. A. Sweigart, M. E. Carroll, D. Morvan, T. B. Rauchfuss, *Inorg. Synth.* **2010**, *35*, 114-120.
- S6. R. J. LeSuer, W. E. Geiger, Angew. Chem. Int. Ed. 2000, 39, 248.

II. Synthesis Descriptions and Characterization Data

$((3,5-CF_3)C_6H_3)B(NMe_2)_2$ (2)

Neat BrB(NMe₂)₂ (9.862 g, 55.1 mmol) was added to a solution of $((3,5-CF_3)C_6H_3)MgBr$ (freshly prepared from 3,5-bis(trifluoromethyl)bromobenzene (16.155 g, 55.1 mmol) and magnesium (1.377 g, 56.2 mmol)) in Et₂O (50 mL) at ambient temperature. The dark brown mixture was stirred (16 hr) at ambient temperature. The solvent was nearly completely removed *in vacuo* with the mixture maintained between 0 °C and -10 °C. Pentane (100 mL) was added and the dark brown suspension was triturated to extract a brown solution from a tan solid; this solid (containing MgBr₂) was separated by filtration. Roughly half the filtrate volume was removed *in vacuo* with the solution maintained 0 °C and -10 °C. The concentrated filtrate was distilled (3 torr, 75-77 °C) to afford an air sensitive colorless liquid (14.367 g, 46.0 mmol, 83%). This liquid degrades at ambient temperature under an argon atmosphere (changing from colorless to pale yellow over 24 hours at 25 °C), but can be confidently stored at -40 °C (as a solid) for at least one week. ¹¹B NMR (128 MHz, C₆D₆): δ 31.3 (s). ¹⁹F{¹H} NMR (376 MHz, C₆D₆): δ -62.6 (s, CF₃). ¹H NMR (400 MHz, C₆D₆): δ 7.82 (s, br, 1H, *p*-H), 7.73 (s, br, 2H, *o*-H), 2.31 (s, 12H, Me). ¹³C{¹H} NMR (101 MHz, C₆D₆): 145.3 (s, br, *i*-C), 134.1 (m, *o*-C), 131.3 (q, ²J_{CF} = 32.6 Hz, *m*-C), 124.9 (q, ¹J_{CF} = 270 Hz, CF₃), 122.0 (septet, ³J_{CF} = 4.0 Hz, *p*-C), 40.9 (s, Me).

$K[((3,5-CF_3)C_6H_3)Bpz_3] (4)$

Toluene (315 mL) and THF (125 mL) were added to **2** (12.15 g, 38.9 mmol) and pyrazole (5.36 g, 78.7 mmol); the resulting clear and colorless solution was stirred for 2 hr. This solution was added to potassium pyrazolate (4.17 g, 39.3 mmol). The ambient temperature suspension was heated to reflux (8 hr) affording a clear and colorless solution. The solvent was removed *in vacuo*, while maintaining the temperature at 40 °C, revealing a white solid. After drying *in vacuo* at ambient temperature (2 hr), pentane (250 mL) was added and the white solid was separated from a colorless filtrate. The solid was washed with pentane (4 * 25 mL) and dried *in vacuo* (1 hr). The white solid was heated in a Schlenk tube *in vacuo* via an oil bath (120 °C, 24 hr) and massed in the glove box as a nearly solvent-free salt (16.77 g, 93%). Anal. Calcd for C₁₇H₁₂BF₆KN₆: C, 43.98; H, 2.61; N, 18.10. Found: C, 44.12; H, 2.50; N, 18.30. Mp: 177 - 178 °C (dec). ¹¹B NMR (128 MHz, DMSO-d⁶): δ 0.95 (s). ¹⁹F{¹H} NMR (376 MHz, DMSO-d⁶): δ -60.9 (s, CF₃). ¹H NMR (400 MHz, DMSO-d⁶): δ 19.5 (s). ¹⁹F{¹H} NMR (376 MHz, DMSO-d⁶): δ -60.9 (s, CF₃). ¹H NMR (400 MHz, DMSO-d⁶): δ 19.5 (s). ¹⁹F{¹H} NMR (376 MHz, DMSO-d⁶): δ -60.9 (s, CF₃). ¹H NMR (400 MHz, DMSO-d⁶): δ 19.5 (s). ¹⁹F{¹H} NMR (376 MHz, DHSO-d⁶): δ -60.9 (s, CF₃). ¹H NMR (400 MHz, DMSO-d⁶): δ 19.3 (s, pzC-3/-5), 134.5 (m, o-C), 133.2 (s, pzC-3/-5), 127.1 (q, ²_{CF} = 31.4 Hz, m-C), 124.9 (q, ¹_{CF} = 273 Hz, CF₃), 118.4 (septet, ³_{J_{CF}} = 3.8 Hz, p-C), 103.1 (s, pzC-4).

$Tl[((3,5-CF_3)C_6H_3)Bpz_3] (6)$

THF (30 mL) was added to **4** (0.562 g, 1.21 mmol) and thallium acetate (0.351 g, 1.33 mmol). The suspension was stirred at ambient temperature for 21 hr. The mixture was filtered through a Celite plug separating a white solid from a colorless filtrate. Removal of the solvent *in vacuo* revealed a white solid that was dried *in vacuo* for 3 hr (0.460 g, 60%). Anal. Calcd for $C_{17}H_{12}BF_6N_6Tl$: C, 32.44; H, 1.92; N, 13.35. Found: C, 32.75; H, 1.80; N, 13.09. Mp: 177 - 178 °C (dec). ¹¹B NMR (128 MHz, C_4D_8O): δ 1.17 (s). ¹⁹F{¹H} NMR (376 MHz, C_4D_8O): δ -63.2 (s, CF_3). ¹H NMR (400 MHz, C_4D_8O): 7.88 (s, br, 1H, *p*-H), 7.61 (m, 3H, pzH-3/-5), 7.37 (s, br, 2H, *o*-H), 7.32 (m, pzH-3/-5), 6.22 (m, 3H, pzH-4). ¹³C{¹H} NMR (101 MHz, C_4D_8O): 141.0 (s, pzC-3/-5), 134.6 (m, *o*-C), 136.7 (s, pzC-3/-5), 131.0 (q, ²J_{CF} = 32.4

Hz, *m*-C), 125.1 (q, ${}^{1}J_{CF} = 273$ Hz, CF₃), 121.8 (septet, ${}^{3}J_{CF} = 3.8$ Hz, *p*-C), 105.0 (s, pzC-4), *i*-C not observed.

[Et₄N][Mo(CO)₃(((3,5-CF₃)C₆H₃)Bpz₃)] (8)

THF (50 mL) was added to 4 (0.423 g, 0.912 mmol) and Mo(CO)₃(CH₃CH₂CN)₃ (0.300 g, 0.869 mmol). The pale yellow solution was refluxed (1.5 hr), transferred to Et₄NBr (0.201 g, 0.956 mmol) and stirred at ambient temperature (2 hr). The suspension was filtered through alumina. Most of the solvent was removed *in vacuo* from the yellow filtrate, and Et₂O (40 mL) was added to generate a suspension. An off-white solid was isolated by filtration, washed with Et₂O (3 * 10 mL) and dried *in vacuo* for 3 hr. Et₂O diffusion into a CH₃CN solution provided pale yellow microcrystals (0.327 g, 51%). Anal. Calcd for C₂₈H₃₂BF₆MoN₇O₃: C, 45.73; H, 4.39; N, 13.33. Found: C, 45.79; H, 4.05; N, 13.14. Mp: 260 - 261 °C (dec). IR (CH₃CN): v(CO) 1895 (s), 1761 (s) cm⁻¹; (THF): v(CO) 1892 (s), 1762 (s), 1750 cm⁻¹ (s, sh); (Nujol): v(CO) 1894 (s), 1769 (s), 1749 (s), 1745 (s, sh) cm⁻¹. ¹¹B NMR (128 MHz, CD₃CN): δ -0.52 (s). ¹⁹F{¹H} NMR (376 MHz, CD₃CN): δ -63.1 (s, CF₃). ¹H NMR (400 MHz, CD₃CN): 8.46 (s, br, 2H, *o*-H), 8.16 (s, br, 1H, *p*-H), 7.85 (app. d, J = 1.8 Hz, 3H, pzH-3/-5), 7.38 (app. d, J = 2.4 Hz, pzH-3/-5), 6.14 (t, J = 2.2 Hz, 3H, pzH-4), 3.10 (m, 8H, Et₄N), 1.16 (m, 12H, Et₄N). ¹³C{¹H} NMR (101 MHz, CD₃CN): 231.8 (s, CO), 153.3 (s, br, *i*-C), 145.3 (s, pzC-3/-5), 136.0 (s, br, *o*-C), 135.9 (s, pzC-3/-5), 131.5 (q, ²J_{CF} = 32.8 Hz, *m*-C), 125.1 (q, ¹J_{CF} = 273 Hz, CF₃), 123.2 (septet, ³J_{CF} = 3.7 Hz, *p*-C), 105.8 (s, pzC-4), 53.1 (m, Et₄N), *i*-C not observed.

$(((3,5-CF_3)C_6H_3)Bpz_3)Mo(CO)_2(2-methallyl)(10)$

A 1.00 mL stock solution of 2-methylallyl bromide (0.230 g, 1.70 mmol) in CH₂Cl₂ was added to Mo(CO)₃(C₅H₅N)₃ (0.645 g, 1.55 mmol) in CH₂Cl₂ (20 mL). The reaction mixture was stirred (3 hr) while its color changed from yellow to pale orange; an IR spectrum ((CH_2Cl_2) v(CO) 1938 (s), 1835 (m) cm⁻¹) indicated complete consumption of Mo(CO)₃(C₅H₅N)₃ and Mo(CO)₂(C₅H₅N)₂(2-methallyl)Br formation. This orange solution was added (along with a 10 mL CH₂Cl₂ rinse of the Mo(CO)₂(C₅H₅N)₂(2methallyl)Br flask) to 4 (0.789 g, 1.70 mmol). The yellow suspension was stirred (14 hr) and then filtered through alumina. The CH₂Cl₂ was removed in vacuo, and the yellow solid was suspended in pentane (30 mL). This solid was collected by filtration, washed with pentane (3 * 5 mL) and dried in vacuo (7 hr). The solid was dissolved in THF (20 mL) and the yellow solution was filtered through alumina. The filtrate solvent was removed in vacuo revealing a bright yellow solid (0.498 g, 51%) that was suspended in pentane (20 mL), isolated by filtration, washed with pentane (3 * 5 mL) and dried in vacuo (6 hr). Anal. Calcd for C₂₃H₁₉BF₆MoN₆O₂: C, 43.70; H, 3.03; N, 13.29. Found: C, 43.30; H, 2.66; N, 12.91. Mp: 232 - 234 °C (dec). IR (CH₂Cl₂): v(CO) 1943 (s), 1851 (m) cm⁻¹; (THF): v(CO) 1945 (s), 1857 (s); (Nujol): ν(CO) 1934 (s), 1842 (s), 1831 cm⁻¹. ¹¹B NMR (128 MHz, C₄D₈O): δ -0.97 (s). ¹⁹F{¹H} NMR (376 MHz, C₄D₆O): δ -63.5 (s, CF₃). ¹H NMR (400 MHz, C₄D₆O): 8.45 (s, br, 2H, *o*-H), 8.29 (s, br, 3H, pzH-3/-5), 8.19 (s, br, 2H, p-H), 7.27 (s, br, 3H, pz-3/-5), 6.27 (s, 3H, pzH-4), 3.62 (s, 2H, allyl-CHH), 1.66 (s, 3H, allyl-CH₃), 1.36 (s, 2H, allyl-CH*H*). ¹³C{¹H} NMR (101 MHz, C₄D₈O): 228.2 (s, CO), 145.2 (s, br, pzC-3/-5), 137.7 (s, br, pzC-3/-5), 135.7 (m, o-C), 132.0 (q, ${}^{2}J_{CF} = 32.8$ Hz, m-C), 124.9 (q, ${}^{1}J_{CF} = 32.8$ Hz, m-C), 124.9 (q, ${}^{2}J_{CF} = 32.8$ Hz, m-C), 124.9 (q, {}^{2}J_{CF} = 32.8 Hz, m-C), 124 274 Hz, CF₃), 123.2 (septet, ${}^{3}J_{CF} = 3.8$ Hz, *p*-C), 106.6 (s, pzC-4), 84.2 (s, CCH₃), 59.9 (s, allyl-CH₂), 19.0 (s, allyl-CH₂), *i*-C not observed.

(((3,5-CF₃)C₆H₃)Bpz₃)Mn(CO)₃ (12)

THF (50 mL) was added to solid $[Mn(C_{10}H_8)(CO)_3][BF_4]$ (0.468 g, 1.32 mmol) and 4 (0.645 g, 1.39 mmol); the colorless solution was stirred (16 hr) and then filtered through alumina. The solvent of the filtrate was removed *in vacuo*. Pentane (50 mL) was added and the colorless solution was cooled to -25 °C. The resulting suspension was filtered while maintaining the temperature between -30 °C and -25 °C to separate an ivory solid from a colorless filtrate. This solid (0.515 g, 69%) was washed with cold (-25 °C) pentane (4 * 10 mL) and dried *in vacuo* for 8 hr. Anal. Calcd for $C_{20}H_{12}BF_6MnN_6O_3$: C, 42.59; H, 2.14; N, 14.90. Found: C, 42.54; H, 0.24; N, 14.49. Mp: 221 - 223 °C (dec). IR (CH₂Cl₂): v(CO) 2035 (s), 1932 (s) cm⁻¹; (THF): v(CO) 2035 (s), 1932 (s); (Nujol): v(CO) 2032 (s), 1934 (s), 1927 (s), 1889 (m, sh), 1845 (m, sh) cm⁻¹. ¹¹B NMR (128 MHz, C₄D₈O): δ -1.2 (s). ¹⁹F{¹H} NMR (376 MHz, C₄D₈O): δ -63.5 (s, CF₃). ¹H NMR (400 MHz, C₄D₈O): 8.53 (s, br, 2H, *o*-H), 8.23 (s, br, 2H, *p*-H), 8.11 (m, 3H, pzH-3/-5), 7.59 (m, 3H, pz-3/-5), 6.32 (app. t, J = 2.3 Hz, 3H, pzH-4). ¹³C{¹H} NMR (101 MHz, C₄D₈O): 222.3 (s, CO), 146.4 (s, pzC-3/-5), 136.7 (s, pzC-3/-5), 135.7 (m, *o*-C), 132.1 (q, ²J_{CF} = 32.8 Hz, *m*-C), 124.9 (q, ¹J_{CF} = 274 Hz, CF₃), 123.5 (septet, ³J_{CF} = 3.8 Hz, *p*-C), 107.2 (s, pzC-4), *i*-C not observed.

Fe((((3,5-CF₃)C₆H₃)Bpz₃)₂ (14)

THF (15 mL) was added to anhydrous FeCl₂ (0.063 g, 0.497 mmol) and **4** (0.462 g, 0.995 mmol). The mixture was stirred 18 hr while changing from pink to red-violet. More THF was added (10 mL), and the suspension was filtered through alumina. The solvent from the red-violet filtrate was removed *in vacuo* revealing a pale red solid. Pentane (30 mL) was added and the solid (0.240 g, 53%) was isolated by filtration, washed with pentane (3 * 5 mL) and dried in vacuo (6 hr). Anal. Calcd for $C_{34}H_{24}B_2F_{12}FeN_{12}$: C, 45.07; H, 2.67; N, 18.55. Found: C, 44.78; H, 2.73; N, 17.97. Mp: 307 - 308 °C (dec). ¹¹B NMR (128 MHz, C₄D₈O): δ -1.3 (s). ¹⁹F{¹H} NMR (376 MHz, C₄D₈O): δ -63.3 (s, CF₃). ¹H NMR (400 MHz, C₄D₈O): 8.73 (s, 4H, *o*-H), 8.27 (s, 2H, *p*-H), 7.87 (s, 6H, pzH-3/-5), 7.11 (s, 6H, br, pz-3/-5), 6.44 (s, 6H, pzH-4). ¹³C{¹H} NMR (101 MHz, C₄D₈O): 152.6 (s, pzC-3/-5), 140.8 (s, pzC-3/-5), 135.8 (m, *o*-C), 131.9 (q, ²J_{CF} = 32.7 Hz, *m*-C), 125.1 (q, ¹J_{CF} = 274 Hz, CF₃), 123.2 (m, *p*-C), 109.1 (s, pzC-4), *i*-C not observed.

Cu(((3,5-CF₃)C₆H₃)Bpz₃)₂ (16)

THF (25 mL) was added to anhydrous CuBr_2 (0.132 g, 0.591 mmol) and 4 (0.549 g, 1.18 mmol); the dark blue mixture was stirred for 18 hr. The THF was removed *in vacuo*, and the blue residue was dissolved in CH_2Cl_2 (25 mL). The solution was filtered through alumina; the alumina plug was washed with CH_2Cl_2 (15 mL). The filtrate was concentrated *in vacuo* revealing a pale blue solid. Pentane (20 mL) was added to this solid (0.233 g, 43%) that was isolated by filtration, washed with pentane (4 * 5 mL) and dried in vacuo (5.5 hr). Anal. Calcd for $\text{C}_{34}\text{H}_{24}\text{B}_2\text{CuF}_{12}\text{N}_{12}$: C, 44.69; H, 2.65; N, 18.39. Found: C, 44.54; H, 1.07; N, 18.07. Mp: 221 - 222 °C (dec). No ¹¹B NMR resonance was observed ($\text{C}_4\text{D}_8\text{O}$). ¹⁹F{¹H} NMR (376 MHz, $\text{C}_4\text{D}_8\text{O}$): δ -63.2 (s, CF₃). Evans Method ($\text{C}_4\text{D}_8\text{O}$): 2.0 μ_{B} .

III. Thermal Ellipsoid Drawings

Fig. S1 Thermal ellipsoid (50%) drawing of **7**. Selected bond lengths (Å) and angles (°) Mo(1)–N(1) = 2.2297(15), Mo(1)–N(3) = 2.2908(15), Mo(1)–N(5) = 2.2463(16), Mo(1)–C(16) = 1.937(2), Mo(1)–C(17) = 1.937(2), Mo(1)–C(18) = 1.933(2), C(16)–O(1) = 1.176(2), C(17)–O(2) = 1.179(3), C(18)–O(3) = 1.175(2), C(18)-Mo(1)-C(17) = 87.37(8), C(18)-Mo(1)-C(16) = 89.75(8), C(17)-Mo(1)-C(16) = 84.84(8), C(18)-Mo(1)-N(1) = 95.58(7), C(17)-Mo(1)-N(1) = 97.37(7), C(18)-Mo(1)-N(5) = 92.68(7), C(16)-Mo(1)-N(5) = 96.69(7), N(1)-Mo-N(5) = 81.11(6), C(17)-Mo(1)-N(3) = 101.97(7), C(16)-Mo(1)-N(3) = 94.33(7), N(1)-Mo(1)-N(3) = 80.10(5), N(5)-Mo(1)-N(3) = 77.89(5).

Fig. S2 Thermal ellipsoid (50%) drawing of **8**. Selected bond lengths (Å) and angles (°) Mo(1)–N(1) = 2.2413(18), Mo(1)–N(3) = 2.290(2), Mo(1)–N(5) = 2.2506(17), Mo(1)–C(18) = 1.929(2), Mo(1)–C(19) = 1.938(3), Mo(1)–C(20) = 1.933(2), C(18)–O(1) = 1.182(3), C(19)–O(2) = 1.167(3), C(20)–O(3) = 1.178(3), C(18)-Mo(1)-C(20) = 85.79(9), C(18)-Mo(1)-C(19) = 88.43(10), C(20)-Mo(1)-C(19) = 84.35(10), C(20)-Mo(1)-N(1) = 100.28(8), C(19)-Mo(1)-N(1) = 96.94(9), C(18)-Mo(1)-N(5) = 94.33(8), C(19)-Mo(1)-N(5) = 93.84(9), N(1)-Mo-N(5) = 79.76(6), C(18)-Mo(1)-N(3) = 95.28(9), C(20)-Mo(1)-N(3) = 100.95(9), N(1)-Mo(1)-N(3) = 78.89(7), N(5)-Mo(1)-N(3) = 80.86(7).

Fig. S3 Thermal ellipsoid (50%) drawing of **9(B)**. Selected bond lengths (Å) and angles (°) Mo(1B)-C(20B) = 1.9500(19), Mo(1B)-C(21B) = 1.9573(19), Mo(1B)-N(5B) = 2.2182(14), Mo(1B)-N(3B) = 2.2500(15), Mo(1B)-N(1B) = 2.2801(14), Mo(1B)-C(16B) = 2.2516(18), Mo(1B)-C(17B) = 2.3359(18), Mo(1B)-C(19B) = 2.3493(19), C(20B)-O(1B) = 1.159(2), C(21B)-O(2B) = 1.157(2), C(20B)-Mo(1B)-C(21B) = 78.94(8), C(20B)-Mo(1B)-C(5B) = 88.27(6), C(21B)-Mo(1B)-C(5B) = 89.11(7), C(21B)-Mo(1B)-C(3B) = 97.62(7), C(5B)-Mo(1B)-C(3B) = 79.34(5), C(20B)-Mo(1B)-C(16B) = 102.34(7), C(21B)-Mo(1B)-C(16B) = 102.43(7), N(3B)-Mo(1B)-C(16B) = 90.41(6), C(20B)-Mo(1B)-C(N1B) = 98.38(7), N(5B)-Mo(1B)-N(1B) = 78.19(5), N(3B)-Mo(1B)-N(1B) = 82.22(5), C(16B)-Mo(1B)-N(1B) = 90.44(6).

Fig. S4 Thermal ellipsoid (50%) drawing of **10**. Selected bond lengths (Å) and angles (°) Mo(1)–C(18) = 1.9439(15), Mo(1)–C(19) = 1.9576(16), Mo(1)–N(5) = 2.2869(12), Mo(1)–N(3) = 2.2105(12), Mo(1)–N(1) = 2.2443(12), Mo(1)–C(20) = 2.2432(15), Mo(1)–C(21) = 2.3423(15), Mo(1)–C(22) = 2.3309(15), C(18)–O(1) = 1.1627(15), C(19)–O(2) = 1.150(2), C(18)-Mo(1)-C(19) = 81.72(7), C(18)-Mo(1)-N(3) = 88.82(5), C(19)-Mo(1)-N(3) = 86.97(6), C(18)-Mo(1)-C(20) = 102.90(6), C(19)-Mo(1)-C(20) = 102.79(7), C(19)-Mo(1)-N(1) = 97.95(6), N(3)-Mo(1)-N(1) = 77.60(4), C(20)-Mo(1)-N(1) = 90.45(5), C(18)-Mo(1)-N(5) = 93.97(5), N(3)-Mo(1)-N(5) = 79.56(4), C(20)-Mo(1)-N(5) = 91.19(5), N(1)-Mo(1)-N(5) = 83.10(4).

Fig. S5 Thermal ellipsoid (50%) drawing of **11**. Selected bond lengths (Å) and angles (°) Mn(1)-C(16) = 1.8100(16), Mn(1)-C(17) = 1.8064(16), Mn(1)-C(18) = 1.8067(15), Mn(1)-N(1) = 2.0216(12), Mn(1)-N(3) = 2.0592(12), Mn(1)-N(5) = 2.0485(11), C(16)-O(1) = 1.1437(19), C(17)-O(2) = 1.1472(19), C(18)-O(3) = 1.1459(18), C(17)-Mn(1)-C(18) = 91.25(6), C(17)-Mn(1)-C(16) = 90.85(7), C(18)-Mn(1)-C(16) = 89.00(7), C(17)-Mn(1)-N(1) = 92.38(6), C(18)-Mn(1)-N(1) = 92.44(6), C(17)-Mn(1)-N(5) = 90.65(6), C(16)-Mn(1)-N(5) = 93.23(6), N(1)-Mn(1)-N(5) = 85.23(5), C(18)-Mn(1)-N(3) = 92.72(6), C(16)-Mn(1)-N(3) = 91.15(6), N(1)-Mn(1)-N(3) = 85.52(5), N(5)-Mn(1)-N(3) = 85.31(4).

Fig. S6 Thermal ellipsoid (50%) drawing of **12**. Selected bond lengths (Å) and angles (°) Mn(1)–C(18) = 1.817(3), Mn(1)–C(19) = 1.804(2), Mn(1)–C(20) = 1.795(2), Mn(1)–N(1) = 2.0178(19), Mn(1)–N(3) = 2.0518(18), Mn(1)–N(5) = 2.0542(19), C(18)–O(1) = 1.143(3), C(19)–O(2) = 1.146(3), C(20)–O(3) = 1.152(3), C(20)-Mn(1)-C(19) = 89.54(10), C(20)-Mn(1)-C(18) = 90.09(11), C(19)-Mn(1)-C(18) = 92.03(12), C(20)-Mn(1)-N(1) = 91.38(9), C(19)-Mn(1)-N(1) = 90.83(10), C(20)-Mn(1)-N(3) = 92.70(9), C(18)-Mn(1)-N(3) = 91.33(10), N(1)-Mn(1)-N(3) = 85.75(7), C(19)-Mn(1)-N(5) = 93.32(9), C(18)-Mn(1)-N(5) = 92.23(10), N(1)-Mn(1)-N(5) = 86.15(7), N(3)-Mn(1)-N(5) = 84.30(7).

Fig. S7 Thermal ellipsoid (50%) drawing of **13** (minor form). Selected bond lengths (Å) and angles (°) Fe–N(1') = 2.008(18), Fe–N(3') = 1.950(16), Fe–N(5') = 1.988(15), Ave N–Fe–N = 90(2), N(6')-B1'-C(10')-C(11') (Dihedral) = -84(3), C(10')-B1'-N(4') = 116.7(9), C(10')-B1'-N(6') = 107.3(8), C(10')-B1'-N(2') = 112.6(9).

Fig. S8 Thermal ellipsoid (50%) drawing of **14A**. Selected bond lengths (Å) and angles (°) Fe(1A)-N(1A) = 1.9684(14), Fe(1A)-N(3A) = 1.9786(14), Fe(1A)-N(5A) = 1.9494(15), Ave N-Fe-N = 90(2), N(6A)-B(1A)-C(10A)-C(15A) (Dihedral) = 94.04(19), C(10A)-B(1A)-N(4A) = 114.17(14), C(10A)-B(1A)-N(6A) = 106.58(13), C(10A)-B(1A)-N(2A) = 116.27(14).

Fig. S9 Thermal ellipsoid (50%) drawing of **14B**. Selected bond lengths (Å) and angles (°) Fe(1B)-N(1B) = 1.9665(15), Fe(1B)-N(3B) = 1.9476(15), Fe(1B)-N(5B) = 1.9606(14), Ave N-Fe-N = 90(2), N(4B)-B(1B)-C(10B)-C(11B) (Dihedral) = 96.4(2), C(10B)-B(1B)-N(4B) = 107.92(14), C(10B)-B(1B)-N(6B) = 115.60(15), C(10B)-B(1B)-N(2B) = 113.33(14).

Fig. S10 Thermal ellipsoid (50%) drawing of **14C**. Selected bond lengths (Å) and angles (°) Fe(1C)-N(1C) = 1.9493(14), Fe(1C)-N(3C) = 1.9722(15), Fe(1C)-N(5C) = 1.9708(14), Ave N-Fe-N = 90(2), N(2C)-B(1C)-C(10C)-C(15C) (Dihedral) = 89.1(2), C(10C)-B(1C)-N(4C) = 115.76(14), C(10C)-B(1C)-N(6C) = 114.09(14), C(10C)-B(1C)-N(2C) = 107.42(14).

Fig. S11 Thermal ellipsoid (50%) drawing of **14D**. Selected bond lengths (Å) and angles (°) Fe(1D)-N(1D) = 1.9490(15), Fe(1D)-N(3D) = 1.9780(15), Fe(1D)-N(5D) = 1.9727(15), Ave N-Fe-N = 90(2), N(2D)-B(1D)-C(10D)-C(11D) (Dihedral) = -93.9(2), C(10D)-B(1D)-N(4D) = 114.50(14), C(10D)-B(1D)-N(6D) = 115.57(15), C(10D)-B(1D)-N(2D) = 107.49(14).

IV. X-ray Crystallographic and Refinement Details

REFERENCE NUMBER: 22091z

CRYSTAL STRUCTURE REPORT

 $C_{15} \, H_{11} \, B \, F_3 \, N_6 \, Tl \cdot \sqrt[1]{2} (C \, H_2 \, Cl_2)$

Report prepared for: Prof. P. Fischer - Macalester University

June 9, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Data collection

A crystal (approximate dimensions $0.160 \times 0.150 \times 0.070 \text{ mm}^3$) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 479 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 4 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 2 θ . The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2942 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXS-97 (Sheldrick 2008)⁴ and refined using SHELXL-2014 (Sheldrick 2014).⁴ The space group *C*2/c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided all non-hydrogen atoms from the E-map. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0272 and wR2 = 0.0499 (F^2 , obs. data).

Structure description

The structure is the one suggested as a hemi-solvate of DCM. The DCM is located on a two-fold axis. The structure is polymeric.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

Some equations of interest:

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22091z.

Identification code	22091z	
Empirical formula	C15.50 H12 B Cl F3 N6 Tl	
Formula weight	589.94	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	<i>a</i> = 18.9101(19) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 10.4677(12) Å	$\beta = 90.289(4)^{\circ}$
	<i>c</i> = 19.1159(17) Å	$\gamma=90^\circ$
Volume	3783.9(7) Å ³	
Ζ	8	
Density (calculated)	2.071 Mg/m ³	
Absorption coefficient	8.720 mm ⁻¹	
<i>F</i> (000)	2216	
Crystal color, morphology	Colourless, Plate	
Crystal size	0.160 x 0.150 x 0.070 mm ³	
Theta range for data collection	2.224 to 30.537°	
Index ranges	$-18 \le h \le 26, -14 \le k \le 12, -26 \le l \le 27$	
Reflections collected	17512	
Independent reflections	5784 [$R(int) = 0.0353$]	
Observed reflections	4672	
Completeness to theta = 25.242°	99.9%	
Absorption correction	Multi-scan	
Max. and min. transmission	0.4920 and 0.3775	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5784 / 0 / 249	
Goodness-of-fit on F^2	1.037	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0272, wR2 = 0.0499	
R indices (all data)	R1 = 0.0413, wR2 = 0.0541	
Largest diff. peak and hole	0.882 and -0.834 e.Å ⁻³	

REFERENCE NUMBER: 22113z

CRYSTAL STRUCTURE REPORT

 Tl^{+} [C₁₇ H₁₂ B F₆ N₆]⁻

Report prepared for: Prof. P. Fischer

July 25, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Data collection

A crystal (approximate dimensions $0.200 \times 0.090 \times 0.090 \text{ mm}^3$) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 1524 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2873 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group $P2_1$ /n was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0263 and wR2 = 0.0520 (F^2 , obs. data).

Structure description

The structure is the one suggested. There are three formula units per asymmetric unit. The structure is polymeric where each Tl^+ is coordinated to three pz nitrogen atoms, with either 1 or 2 coming from the same ligand.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

Some equations of interest:

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22113z.

Identification code	22113z			
Empirical formula	C17H12BF6N6Tl			
Formula weight	629.51			
Temperature	150(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 17.4697(8) Å	$\alpha = 90^{\circ}$		
	<i>b</i> = 16.3093(7) Å	$\beta = 96.179(2)^{\circ}$		
	c = 22.5734(11) Å	$\gamma = 90^{\circ}$		
Volume	6394.2(5) Å ³			
Ζ	12			
Density (calculated)	1.962 Mg/m ³	1.962 Mg/m ³		
Absorption coefficient	7.645 mm ⁻¹	7.645 mm ⁻¹		
<i>F</i> (000)	3552	3552		
Crystal color, morphology	Brown, Needle	Brown, Needle		
Crystal size	0.200 x 0.090 x 0.090 m	0.200 x 0.090 x 0.090 mm ³		
Theta range for data collection	1.878 to 30.524°	1.878 to 30.524°		
Index ranges	$-24 \le h \le 24, -23 \le k \le 1$	$-24 \le h \le 24, -23 \le k \le 18, -32 \le l \le 32$		
Reflections collected	98282	98282		
Independent reflections	19523 [$R(int) = 0.0430$]	19523 [$R(int) = 0.0430$]		
Observed reflections	15290	15290		
Completeness to theta = 25.242°	99.9%	99.9%		
Absorption correction	multi-scan	multi-scan		
Max. and min. transmission	0.7461 and 0.4611	0.7461 and 0.4611		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2		
Data / restraints / parameters	19523 / 0 / 838	19523 / 0 / 838		
Goodness-of-fit on F^2	1.011			
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0263, wR2 = 0.03	R1 = 0.0263, wR2 = 0.0520		
R indices (all data)	R1 = 0.0444, wR2 = 0.03	R1 = 0.0444, wR2 = 0.0572		
Largest diff. peak and hole	1.153 and -0.823 e.Å ⁻³	1.153 and -0.823 e.Å ⁻³		

REFERENCE NUMBER: 22111z

CRYSTAL STRUCTURE REPORT

 $\begin{array}{c} C_{26}\,H_{31}\,B\,F_{3}\,Mo\,N_{7}\,O_{3}\\ \\ or\\ [C_{8}H_{20}N]^{+}\,[C_{18}H_{11}BF_{3}MoN_{6}O_{3}]^{-} \end{array}$

Report prepared for: Prof. P. Fischer

July 25, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Data collection

A crystal (approximate dimensions 0.190 x 0.160 x 0.160 mm³) was placed onto the tip of a 150 μ mm diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 580 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2912 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group $P2_1$ /c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0354 and wR2 = 0.0777 (F^2 , obs. data).

Structure description

The structure is the one suggested.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

Some equations of interest:

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22111z.

Identification code	22111z		
Empirical formula	C26H31BF3MoN7O3		
Formula weight	653.33		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /c		
Unit cell dimensions	a = 9.0744(4) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 18.9906(8) Å	$\beta = 96.281(2)^{\circ}$	
	c = 16.6747(6) Å	$\gamma = 90^{\circ}$	
Volume	2856.3(2) Å ³		
Ζ	4		
Density (calculated)	1.519 Mg/m ³	1.519 Mg/m ³	
Absorption coefficient	0.520 mm ⁻¹		
<i>F</i> (000)	1336		
Crystal color, morphology	yellow, Block		
Crystal size	0.190 x 0.160 x 0.160 mm ³		
Theta range for data collection	2.145 to 30.564°		
Index ranges	$-12 \le h \le 9, -22 \le k \le 27, -23 \le l \le 23$		
Reflections collected	29927		
Independent reflections	8704 [<i>R</i> (int) = 0.0441]	8704 [<i>R</i> (int) = 0.0441]	
Observed reflections	6715	6715	
Completeness to theta = 25.242°	99.9%	99.9%	
Absorption correction	multi-scan	multi-scan	
Max. and min. transmission	0.7461 and 0.6335	0.7461 and 0.6335	
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	8704 / 0 / 374		
Goodness-of-fit on F^2	1.013		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0354, wR2 = 0.0777	R1 = 0.0354, wR2 = 0.0777	
R indices (all data)	R1 = 0.0520, wR2 = 0.0874		
Largest diff. peak and hole	0.403 and -0.608 e.Å ⁻³	0.403 and -0.608 e.Å ⁻³	

REFERENCE NUMBER: 22112z

CRYSTAL STRUCTURE REPORT

 $\begin{array}{c} C_{28}\,H_{32}\;B\;F_6\;Mo\;N_7\,O_3\\ or\\ [C_8H_{20}N]^+\;[C_{20}H_{12}BF_6MoN_6O_3]^-\end{array}$

Report prepared for: Prof. P. Fischer

July 25, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Data collection

A crystal (approximate dimensions $0.120 \times 0.110 \times 0.060 \text{ mm}^3$) was placed onto the tip of a 150µm diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 660 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2871 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group $P2_1$ /n was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0429 and wR2 = 0.0831 (F^2 , obs. data).

Structure description

The structure is the one suggested. The TEA is disordered about a local center in an approximate 0.72:0.28 ratio. One of the two disordered images was selected for the drawings for the sake of clarity.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).
- ³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

Some equations of interest:

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$
where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$
Table 1. Crystal data and structure refinement for 22112z.

Identification code	22112z	
Empirical formula	C ₂₈ H ₃₂ B F ₆ Mo N ₇ O ₃	
Formula weight	735.35	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ /n	
Unit cell dimensions	<i>a</i> = 9.0815(6) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 15.9381(10) Å	$\beta = 96.793(3)^{\circ}$
	c = 21.3866(14) Å	$\gamma=90^\circ$
Volume	3073.8(3) Å ³	
Ζ	4	
Density (calculated)	1.589 Mg/m ³	
Absorption coefficient	0.507 mm ⁻¹	
<i>F</i> (000)	1496	
Crystal color, morphology	Yellow, Block	
Crystal size	0.120 x 0.110 x 0.060 mm ³	
Theta range for data collection	1.918 to 30.542°	
Index ranges	$-12 \le h \le 11, -22 \le k \le 22, -29 \le l \le 30$	
Reflections collected	29027	
Independent reflections	9326 [<i>R</i> (int) = 0.0575]	
Observed reflections	6630	
Completeness to theta = 25.242°	99.9%	
Absorption correction	multi-scan	
Max. and min. transmission	0.7461 and 0.6342	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	9326 / 118 / 445	
Goodness-of-fit on F^2	1.036	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0429, wR2 = 0.0831	
R indices (all data)	R1 = 0.0676, wR2 = 0.0947	
Largest diff. peak and hole	0.570 and -0.639 e.Å ⁻³	

REFERENCE NUMBER: 22106z

CRYSTAL STRUCTURE REPORT

 $C_{21}H_{18}BF_3MoN_6O_2 \\$

Report prepared for: Prof. P. Fischer

July 13, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions $0.160 \times 0.120 \times 0.025 \text{ mm}^3$) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from ?? reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2905 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick, 2018)⁴ and refined using SHELXL-2018/3 (Sheldrick, 2018).⁴ The space group $P2_1$ /c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0297 and wR2 = 0.0670 (F^2 , obs. data).

Structure description

The structure is the one suggested. There are two molecules in the asymmetric unit: Z'=2. The absolute structure of these is inverted. There appears to be a pseudo-symmetric glide relating these.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2013, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22106za.

Identification code	22106z		
Empirical formula	$C_{21}H_{18}BF_3MoN_6O_2$		
Formula weight	550.16		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /c		
Unit cell dimensions	a = 20.9464(7) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 13.3844(5) Å	$\beta = 94.4542(14)$	
	c = 15.8056(5) Å	$\gamma = 90^{\circ}$	
Volume	4417.8(3) Å ³		
Ζ, Ζ'	8, 2		
Density (calculated)	1.654 Mg/m ³		
Absorption coefficient	0.651 mm ⁻¹	0.651 mm ⁻¹	
<i>F</i> (000)	2208	2208	
Crystal color, morphology	Yellow, Plate	Yellow, Plate	
Crystal size	0.160 x 0.120 x 0.025 m	0.160 x 0.120 x 0.025 mm ³	
Theta range for data collection	1.996 to 30.537°	1.996 to 30.537°	
Index ranges	$-29 \le h \le 28, -19 \le k \le 1$	$-29 \le h \le 28, -19 \le k \le 15, -20 \le l \le 22$	
Reflections collected	45071	45071	
Independent reflections	13478 [<i>R</i> (int) = 0.0322]	13478 [<i>R</i> (int) = 0.0322]	
Observed reflections	11086	11086	
Completeness to theta = 25.242°	99.9%	99.9%	
Absorption correction	multi-scan	multi-scan	
Max. and min. transmission	0.7457 and 0.6102	0.7457 and 0.6102	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2	
Data / restraints / parameters	13478 / 0 / 615	13478 / 0 / 615	
Goodness-of-fit on F^2	1.029		
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0297, wR2 = 0.00	R1 = 0.0297, wR2 = 0.0670	
R indices (all data)	$R1 = 0.0421, wR2 = 0.0^{\circ}$	R1 = 0.0421, wR2 = 0.0738	
Largest diff. peak and hole	0.511 and -0.865 e.Å ⁻³	0.511 and -0.865 e.Å ⁻³	

REFERENCE NUMBER: 22109z

CRYSTAL STRUCTURE REPORT

$C_{23}H_{19}BF_6MoN_6O_2\\$

Report prepared for: Paul Fischer July 21, 2022

Alex Lovstedt X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions 0.190 x 0.150 x 0.100 mm) was placed onto the tip of a 0.15 mm MiTeGen loop and mounted on a Bruker Photon-II CMOS diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of 12 frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced initial orientation matrices determined from 736 reflections. The data collection was carried out using MoK α radiation (graphite monochromator) with a frame time of 2 seconds and a detector distance of 5.0 cm. A randomly oriented region of reciprocal space was surveyed to the extent of one sphere and to a resolution of 0.75 Å. Four major sections of frames were collected with 0.30 steps in ω at four different ϕ settings and a detector position of -28 in 20. The intensity data were corrected for absorption and decay.² Final cell constants were calculated from the xyz centroids of 1887 strong reflections from the actual data collection after integration.³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT 2018/2 (Sheldrick, 2018)⁴ and refined using SHELXL-2018/3 (Sheldrick, 2018).⁵ The space group P-1 was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0235 and wR2 = 0.0586 (F^2 , all data).

Structure description

The structure is the one suggested. The reflection -2 -1 2 was omitted due to suspected interference from the beam stop. The molecule contains a disordered CF₃ group. This group has been modeled in two parts made up of atoms C17, F4, F5, F6 and C17', F4', F5', F6' with occupancies of 53.4% and 46.6% respectively. Atoms C17 and C17' were modeled using the EADP constraint. Atoms C17, C17', F4, F4', F5, F5', F6, F6' were all modeled using SADI restraints. C17, F4, F5, F6 and C17', F4', F5', F6' were added.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Alex Lovstedt as a coauthor or 2) acknowledge Alex Lovstedt and the X-Ray Crystallographic Laboratory.

- ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ³ SAINT, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ⁴ SHELXTL 2018/2, Bruker Analytical X-Ray Systems, Madison, WI (2016); G. M. Sheldrick, *Acta Cryst.* A71, 3-8 (2015).
- ⁵ SHELXL 2018/3; G. M. Sheldrick, Acta Cryst. C71, 3-8 (2015).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22109.

Identification code	22109		
Empirical formula	C23 H19 B F6 Mo N6 O2	C23 H19 B F6 Mo N6 O2	
Formula weight	632.19		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.6506(4) Å	$\alpha = 107.215(2)^{\circ}$	
	b = 13.0055(8) Å	$\beta = 108.4390(10)$	
	c = 13.0165(8) Å	$\gamma = 101.553(2)^{\circ}$	
Volume	1255.28(12) Å ³		
Ζ	2		
Density (calculated)	1.673 Mg/m ³	1.673 Mg/m ³	
Absorption coefficient	0.601 mm ⁻¹	0.601 mm ⁻¹	
<i>F</i> (000)	632	632	
Crystal color, morphology	yellow, block	yellow, block	
Crystal size	0.190 x 0.150 x 0.100 n	0.190 x 0.150 x 0.100 mm ³	
Theta range for data collection	1.951 to 29.216 °	1.951 to 29.216 °	
Index ranges	$-11 \le h \le 11, -17 \le k \le 1$	$-11 \le h \le 11, -17 \le k \le 17, -17 \le l \le 17$	
Reflections collected	64683	64683	
Independent reflections	6785 [<i>R</i> (int) = 0.0440]	6785 [R(int) = 0.0440]	
Observed reflections	6396	6396	
Completeness to theta = 25.242 °	99.8%	99.8%	
Absorption correction	Multi-scan	Multi-scan	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F^2	
Data / restraints / parameters	6785 / 66 / 384	6785 / 66 / 384	
Goodness-of-fit on F^2	1.053		
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0235, wR2 = 0.0	R1 = 0.0235, wR2 = 0.0570	
R indices (all data)	R1 = 0.0257, wR2 = 0.0	R1 = 0.0257, wR2 = 0.0586	
Largest diff. peak and hole	0.670 and -0.470 e.Å $^{\text{-3}}$	0.670 and -0.470 e.Å ⁻³	

REFERENCE NUMBER: 22108z

CRYSTAL STRUCTURE REPORT

$C_{18}H_{11}BF_3MnN_6O_3\\$

Report prepared for: Paul Fischer July 21, 2022

Alex Lovstedt X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions 0.100 x 0.070 x 0.040 mm was placed onto the tip of a 0.15 mm MiTeGen loop and mounted on a Bruker Photon-III CMOS diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of 12 frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced initial orientation matrices determined from 272 reflections. The data collection was carried out using MoK α radiation (graphite monochromator) with a frame time of 15 seconds and a detector distance of 5.0 cm. A randomly oriented region of reciprocal space was surveyed to the extent of one sphere and to a resolution of 0.70 Å. Four major sections of frames were collected with 0.30 steps in ω at four different ϕ settings and a detector position of -28 in 20. The intensity data were corrected for absorption and decay.² Final cell constants were calculated from the xyz centroids of 9877 strong reflections from the actual data collection after integration.³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXS-97 (Sheldrick 2008)⁴ and refined using SHELXL-2018/3 (Sheldrick, 2018).⁵ The space group P-1 was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0353 and wR2 = 0.0937 (F^2 , all data).

Structure description

The structure is the one suggested. The reflection 0 - 1 1 was omitted due to suspected interference from the beam stop.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, S146 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Alex Lovstedt as a coauthor or 2) acknowledge Alex Lovstedt and the X-Ray Crystallographic Laboratory.

- ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2016).
- ⁴ SHELXTL 2018/2, Bruker Analytical X-Ray Systems, Madison, WI (2016); G. M. Sheldrick, *Acta Cryst.* A71, 3-8 (2015).
- ⁵ SHELXL 2018/3; G. M. Sheldrick, Acta Cryst. C71, 3-8 (2015).

Some equations of interest:

 $R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$ $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ $wR2 = \left[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]\right]^{1/2}$ where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$ $GooF = S = \left[\sum [w(F_o^2 - F_c^2)^2] / (n-p)\right]^{1/2}$

An image showing the unit cell packing of 22108. The red, green, and blue axes are the a, b, and c axes respectively.

Identification code	22108z	
Empirical formula	C18 H11 B F3 Mn N6 O3	
Formula weight	482.08	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	<i>a</i> = 8.0619(6) Å	$\alpha = 112.867(2)^{\circ}$
	<i>b</i> = 10.3783(7) Å	$\beta = 92.257(2)^{\circ}$
	c = 13.2434(11) Å	$\gamma = 103.333(2)$ °
Volume	983.12(13) Å ³	
Ζ	2	
Density (calculated)	1.629 Mg/m ³	
Absorption coefficient	0.734 mm ⁻¹	
<i>F</i> (000)	484	
Crystal color, morphology	white, Block	
Crystal size	0.100 x 0.070 x 0.040 mm ³	
Theta range for data collection	2.210 to 32.050 °	
Index ranges	$-12 \le h \le 11, -11 \le k \le 15, -19 \le l \le 19$	
Reflections collected	25684	
Independent reflections	6818 [<i>R</i> (int) = 0.0350]	
Observed reflections	5566	
Completeness to theta = 25.242 °	99.9%	
Absorption correction	Multi-scan	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	6818 / 0 / 289	
Goodness-of-fit on F^2	1.053	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0353, wR2 = 0.0867	
R indices (all data)	R1 = 0.0477, wR2 = 0.0937	
Largest diff. peak and hole	0.447 and -0.548 e.Å ⁻³	

Table 1. Crystal data and structure refinement for 22108.

REFERENCE NUMBER: 22127z

CRYSTAL STRUCTURE REPORT

 $C_{20}H_{12}BF_6MnN_6O_3$

Report prepared for: Prof. P. Fischer

September 12, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions $0.110 \times 0.080 \times 0.040 \text{ mm}^3$) was placed onto the tip of a 150 µm diameter glass capillary and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from two sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 502 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 4.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.75 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 2 θ . The intensity data were corrected for absorption and decay (TWINABS).² Final cell constants were calculated from 2924 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick, 2018)⁴ and refined using SHELXL-2018/3 (Sheldrick, 2018).⁴ The space group P2₁/c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0438 and wR2 = 0.0912 (F^2 , obs. data).

Structure description

The structure is the one suggested. All specimens examined were cracked leading to difficult data collections. The sample was originally collected as 22107, but this could not be effectively integrated as a twin by non-merohedry. See the CIF for details of twinning.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota.

- ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2016).
- ³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2016).
- ⁴ SHELXTL 2018/2, Bruker Analytical X-Ray Systems, Madison, WI (2016); G. M. Sheldrick, *Acta Cryst.* A71, 3-8 (2015).
- ⁵ SHELXL 2018/3; G. M. Sheldrick, Acta Cryst. C71, 3-8 (2015).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22127z.

Identification code	22127z		
Empirical formula	C20 H12 B F6 Mn N6 O3	C20 H12 B F6 Mn N6 O3	
Formula weight	564.11	564.11	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	P 21/c		
Unit cell dimensions	<i>a</i> = 11.7733(8) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 9.5312(6) Å	$\beta = 102.577(3)^{\circ}$	
	c = 20.5338(12) Å	$\gamma = 90^{\circ}$	
Volume	2248.9(2) Å ³		
Ζ	4		
Density (calculated)	1.666 Mg/m ³		
Absorption coefficient	0.674 mm ⁻¹	0.674 mm ⁻¹	
<i>F</i> (000)	1128	1128	
Crystal color, morphology	Colorless, Plate	Colorless, Plate	
Crystal size	0.110 x 0.080 x 0.040 mr	0.110 x 0.080 x 0.040 mm ³	
Theta range for data collection	2.366 to 28.282°		
Index ranges	$-15 \le h \le 15, 0 \le k \le 12, 0$	$-15 \le h \le 15, 0 \le k \le 12, 0 \le l \le 27$	
Reflections collected	5604	5604	
Independent reflections	5604 [R(int) = 0.0774]	5604 [$R(int) = 0.0774$]	
Observed reflections	4820	4820	
Completeness to theta = 25.242°	99.9%	99.9%	
Absorption correction	multi-scan	multi-scan	
Max. and min. transmission	0.746070 and 0.670767	0.746070 and 0.670767	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2	
Data / restraints / parameters	5604 / 0 / 335	5604 / 0 / 335	
Goodness-of-fit on F^2	1.134		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0438, wR2 = 0.09	R1 = 0.0438, wR2 = 0.0912	
R indices (all data)	R1 = 0.0576, wR2 = 0.10	R1 = 0.0576, wR2 = 0.1010	
Largest diff. peak and hole	0.589 and -0.466 e.Å ⁻³	0.589 and -0.466 e.Å ⁻³	

REFERENCE NUMBER: 22110z

CRYSTAL STRUCTURE REPORT

 $C_{30}H_{22}B_2F_6FeN_{12} \\$

Report prepared for: Prof. P. Fischer

July 25, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Major

Minor

A crystal (approximate dimensions 0.170 x 0.065 x 0.025 mm³) was placed onto the tip of a 150µm diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 269 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 20 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2997 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group *C*2/c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0390 and wR2 = 0.0900 (F^2 , obs. data).

Structure description

The structure is the one suggested. The ligand is disordered in an approximate 4:1 ratio. Both drawings are provided.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$
where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22110z.

Identification code	22110z		
Empirical formula	C ₃₀ H ₂₂ B ₂ F ₆ Fe N ₁₂	C ₃₀ H ₂₂ B ₂ F ₆ Fe N ₁₂	
Formula weight	742.06		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	<i>a</i> = 27.4242(11) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 9.1455(4) Å	$\beta = 122.375(2)^{\circ}$	
	c = 15.1202(5) Å	$\gamma = 90^{\circ}$	
Volume	3202.8(2) Å ³		
Ζ	4		
Density (calculated)	1.539 Mg/m ³		
Absorption coefficient	0.550 mm ⁻¹		
<i>F</i> (000)	1504		
Crystal color, morphology	Red, Needle		
Crystal size	0.170 x 0.065 x 0.025 mm ³		
Theta range for data collection	2.394 to 30.547°		
Index ranges	$-28 \le h \le 39, -13 \le k \le 10, -21 \le l \le 20$		
Reflections collected	12223		
Independent reflections	4838 [<i>R</i> (int) = 0.0333]	4838 [<i>R</i> (int) = 0.0333]	
Observed reflections	3609		
Completeness to theta = 25.242°	99.9%	99.9%	
Absorption correction	Multi-scan	Multi-scan	
Max. and min. transmission	0.5644 and 0.4597	0.5644 and 0.4597	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2	
Data / restraints / parameters	4838 / 264 / 350	4838 / 264 / 350	
Goodness-of-fit on F^2	1.029		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0390, wR2 = 0.0900		
R indices (all data)	R1 = 0.0589, wR2 = 0.0999		
Largest diff. peak and hole	0.311 and -0.470 e.Å ⁻³	0.311 and -0.470 e.Å ⁻³	

REFERENCE NUMBER: 22120zz

CRYSTAL STRUCTURE REPORT

 $C_{34}\,H_{24}\,B_2\,F_{12}\,Fe\,N_{12}$

Report prepared for: Prof. P. Fischer

July 26, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions 0.190 x 0.150 x 0.035 mm³) was placed onto the tip of a 150 μ m diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 584 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 30 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2941 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group P -1 was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0459 and wR2 = 0.1179 (F^2 , obs. data).

Structure description

The structure is the one suggested. There are four molecules in the asymmetric unit each with its metal atom located on different inversion centers: $4 \times \frac{1}{2}$ the formula unit. One -CF₃ group was modelled as being rotationally disordered.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$
where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22120zz.

Identification code	22120zz		
Empirical formula	C_{34} H ₂₄ B ₂ F ₁₂ Fe N ₁₂	C ₃₄ H ₂₄ B ₂ F ₁₂ Fe N ₁₂	
Formula weight	906.12		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	<i>a</i> = 15.6527(16) Å	$\alpha = 104.507(4)^{\circ}$	
	<i>b</i> = 16.2542(16) Å	$\beta = 105.302(4)^{\circ}$	
	c = 16.687(2) Å	$\gamma = 103.887(4)^{\circ}$	
Volume	3745.3(7) Å ³		
Ζ	4		
Density (calculated)	1.607 Mg/m ³	1.607 Mg/m ³	
Absorption coefficient	0.509 mm ⁻¹	0.509 mm ⁻¹	
F(000)	1824	1824	
Crystal color, morphology	Red, Plate	Red, Plate	
Crystal size	0.190 x 0.150 x 0.035 m	0.190 x 0.150 x 0.035 mm ³	
Theta range for data collection	2.085 to 30.569°	2.085 to 30.569°	
Index ranges	$-21 \le h \le 22, -23 \le k \le 2k$	$-21 \le h \le 22, -23 \le k \le 20, -23 \le l \le 23$	
Reflections collected	155918	155918	
Independent reflections	22921 [<i>R</i> (int) = 0.0395]	22921 [<i>R</i> (int) = 0.0395]	
Observed reflections	18614	18614	
Completeness to theta = 25.242°	99.9%	99.9%	
Absorption correction	multi-scan	multi-scan	
Max. and min. transmission	0.6478 and 0.6290	0.6478 and 0.6290	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2	
Data / restraints / parameters	22921 / 30 / 1115	22921 / 30 / 1115	
Goodness-of-fit on F^2	1.027	1.027	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0459, wR2 = 0.11	R1 = 0.0459, wR2 = 0.1179	
R indices (all data)	R1 = 0.0599, wR2 = 0.12	R1 = 0.0599, wR2 = 0.1292	
Largest diff. peak and hole	1.273 and -0.820 e.Å ⁻³	1.273 and -0.820 e.Å ⁻³	

REFERENCE NUMBER: 22105z

CRYSTAL STRUCTURE REPORT

 $C_{30}H_{22}B_2CuF_6N_{12}\\$

Report prepared for: Prof. P. Fischer

July 24, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

A crystal (approximate dimensions 0.160 x 0.120 x 0.025 mm³) was placed onto the tip of a 150 μ m diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 238 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 20 seconds and a detector distance of 5.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.83 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2792 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXS-97 (Sheldrick 2008)⁴ and refined using SHELXL-2014 (Sheldrick 2014).⁴ The space group P-1 was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0383 and wR2 = 0.0963 (F^2 , obs. data).

Structure description

The structure is the one suggested. There are two independent molecules in the asymmetric unit. These have a pseudo-glide relationship parallel to $(1 \ 0 \ -3)$ except for the uncoordinated pz-group, which violates the putative glide.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).
- ³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$
where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22105z.

22105z		
$C_{30}H_{22}B_2CuF_6N_{12}$		
749.75		
150(2) K		
0.71073 Å		
Triclinic		
P -1		
a = 10.5103(7) Å	$\alpha = 91.514(3)^{\circ}$	
<i>b</i> = 14.6077(13) Å	$\beta = 92.467(3)^{\circ}$	
c = 21.4716(19) Å	$\gamma = 102.182(3)^{\circ}$	
3217.2(5) Å ³		
4		
1.548 Mg/m ³		
0.758 mm ⁻¹	0.758 mm ⁻¹	
1516	1516	
Blue, Plate	Blue, Plate	
0.160 x 0.120 x 0.025 m	0.160 x 0.120 x 0.025 mm ³	
1.985 to 30.576°	1.985 to 30.576°	
$-15 \le h \le 14, -20 \le k \le 20$	$-15 \le h \le 14, -20 \le k \le 20, -30 \le l \le 30$	
127609	127609	
19685 [<i>R</i> (int) = 0.0463]	19685 [$R(int) = 0.0463$]	
15391	15391	
99.9%	99.9%	
multi-scan	multi-scan	
0.5645 and 0.5259	0.5645 and 0.5259	
Full-matrix least-squares	Full-matrix least-squares on F^2	
19685 / 0 / 919	19685 / 0 / 919	
1.046	1.046	
R1 = 0.0383, wR2 = 0.09	R1 = 0.0383, wR2 = 0.0963	
R1 = 0.0561, wR2 = 0.10	R1 = 0.0561, wR2 = 0.1071	
0.628 and -0.646 e.Å $^{\text{-3}}$	0.628 and -0.646 e.Å ⁻³	
	22105z C ₃₀ H ₂₂ B ₂ CuF ₆ N ₁₂ 749.75 150(2) K 0.71073 Å Triclinic P -1 a = 10.5103(7) Å b = 14.6077(13) Å c = 21.4716(19) Å 3217.2(5) Å ³ 4 1.548 Mg/m ³ 0.758 mm ⁻¹ 1516 Blue, Plate 0.160 x 0.120 x 0.025 mm 1.985 to 30.576° -15 $\leq h \leq 14$, -20 $\leq k \leq 20$ 127609 19685 [R(int) = 0.0463] 15391 99.9% multi-scan 0.5645 and 0.5259 Full-matrix least-squaress 19685 / 0 / 919 1.046 R1 = 0.0383, wR2 = 0.09 R1 = 0.0561, wR2 = 0.100 0.628 and -0.646 e.Å ⁻³	
REFERENCE NUMBER: 22122z

CRYSTAL STRUCTURE REPORT

 $\begin{array}{c} C_{34}H_{24}B_2CuF_{12}N_{12}\\ or\\ 2(C_{34}H_{24}B_2CuF_{12}N_{12})^{l_{2}}\end{array}$

Report prepared for: Prof. P. Fischer

July 26, 2022

Victor G. Young, Jr. X-Ray Crystallographic Laboratory Department of Chemistry University of Minnesota 207 Pleasant St. S.E. Minneapolis, MN 55455

Data collection

A crystal (approximate dimensions 0.100 x 0.090 x 0.045 mm³) was placed onto the tip of a 150 μ m diameter MiTeGen Dual-Thickness Microloop and mounted on a Bruker PHOTON-III CPAD diffractometer for a data collection at 150(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 642 reflections. The data collection was carried out using MoK α radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 4.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in ω or ϕ at different detector positions in 20. The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2848 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2018/2 (Sheldrick 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick 2015).⁴ The space group $P2_1$ /c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0455 and wR2 = 0.1078 (F^2 , obs. data).

Structure description

The structure is the one suggested. There are two molecules in the asymmetric unit each with its metal atom located on different inversion centers: $2 \times \frac{1}{2}$ the formula unit. The specimen selected was a twin by pseudo-merohedry. The twin lattice symmetry appeared to be C-orthorhombic, however a correct solution was determined in P-monoclinic in space group P2₁/c with a nearly equal twin mass ratio.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota. ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).

² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).

³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).

⁴ SHELXTL 2014, Bruker Analytical X-Ray Systems, Madison, WI (2013); G. M. Sheldrick, *Acta Cryst.* A64, 112-122 (2008).

Some equations of interest:

$$R_{int} = \sum |F_o^2 - \langle F_o^2 \rangle| / \sum |F_o^2|$$

$$R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

$$wR2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$$

where $w = q / [\sigma^2 (F_o^2) + (a^*P)^2 + b^*P + d + e^*\sin(\theta)]$

$$GooF = S = [\sum [w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$$

Table 1. Crystal data and structure refinement for 22122z.

22122z C ₃₄ H ₂₄ B ₂ CuF ₁₂ N ₁₂ 913.81 150(2) K 0.71073 Å Monoclinic <i>P</i> 2 ₁ /c		
C ₃₄ H ₂₄ B ₂ CuF ₁₂ N ₁₂ 913.81 150(2) K 0.71073 Å Monoclinic <i>P</i> 2 ₁ /c		
913.81 150(2) K 0.71073 Å Monoclinic <i>P</i> 21/c		
150(2) K 0.71073 Å Monoclinic <i>P</i> 2 ₁ /c		
0.71073 Å Monoclinic <i>P</i> 2 ₁ /c		
Monoclinic P21/c		
<i>P</i> 2 ₁ /c		
a = 26.450(2) Å	$\alpha = 90^{\circ}$	
b = 8.7643(6) Å	$\beta = 108.226(3)^{\circ}$	
c = 16.5941(11) Å	$\gamma = 90^{\circ}$	
3653.8(5) Å ³		
4		
1.661 Mg/m ³		
0.706 mm ⁻¹		
1836		
Blue, Block		
0.100 x 0.090 x 0.045 m	0.100 x 0.090 x 0.045 mm ³	
2.324 to 30.544°		
$-37 \le h \le 26, -12 \le k \le 1$	$-37 \le h \le 26, -12 \le k \le 12, -23 \le l \le 23$	
36238	36238	
11040 [<i>R</i> (int) = 0.0418]	11040 [$R(int) = 0.0418$]	
8969		
99.8%		
multi-scan		
0.6478 and 0.4636	0.6478 and 0.4636	
Full-matrix least-squares	Full-matrix least-squares on F^2	
11040 / 0 / 554		
1.017		
R1 = 0.0455, wR2 = 0.10)78	
R1 = 0.0607, wR2 = 0.11	157	
0.862 and -0.875 e.Å $^{\text{-3}}$	0.862 and -0.875 e.Å ⁻³	
	$P2_{1/c}$ $a = 26.450(2)$ Å $b = 8.7643(6)$ Å $c = 16.5941(11)$ Å $3653.8(5)$ Å ³ 4 1.661 Mg/m ³ 0.706 mm ⁻¹ 1836 Blue, Block $0.100 \ge 0.045$ m 2.324 to 30.544° $-37 \le h \le 26, -12 \le k \le 1$ 36238 11040 [$R(int) = 0.0418$] 8969 99.8% multi-scan 0.6478 and 0.4636 Full-matrix least-squares $11040 / 0 / 554$ 1.017 $R1 = 0.0455, wR2 = 0.10$ $R1 = 0.0607, wR2 = 0.11$ 0.862 and -0.875 e.Å ⁻³	

V. IR Spectra

Mull

CH3CN

60

CC

CH3CN

oC

THF/LE++N]

mull

-0

Co

DC

CH2Cl2

In THE

CH2Cl2

1.407 1.582 1.641 1.661 1.350

i Jul 15 09:51:23 2	.022 (GMT-05:0	0)	
ND PEAKS:			
Spectrum:	CRp24		
Region:	2415.74	911.16	
Absolute thresh	old: 1.340		
Sensitivity:	90		
Peak list:			
	Position:	1069.40	Intensity:
	Position:	1464.10	Intensity:
	Position:	1923.03	Intensity:
	Position:	1936.26	Intensity:
	Position:	2031.82	Intensity:

IR (nujol) (11)

CH, Cl2

Widget Corp.

Collection time: Thu Jun 16 10:48:42 2022 (GN

No search results for the selected spectrum!

Inuja TR

THE After Alumina

VI. NMR Spectra

04082022 2 1 C:\Data\fischer

С

05112022b 4 1 C:\Data\fischer

Ч

06052022b 4 1 C:\Data\Fischer [rel] NMR DMSO-26 Dmso VE [ppm]

.

)6052022b 4 1	C:\Data\Fischer	13 C.]/ H	INMR (3)			
		139.0539	DMSO-d6		133.2361		-
		KÐ	FF	JF			
			N N N	B		r.	
				N_			
		•					
	J			٨			

.

.

-4

06072022 2 1 C:\Data\Fischer

25 [rel] 19FEIHS NMR OMSO-d6 -60.8968 20 CF3 F3C 15 N-B-W N-10 S - 50 - 100 0 - 150 - 200 [ppm]

.

.....

05192022 4 1 C:\Data\Fischer [rel] - 104.9710 13C {IH} NMR THF-d8 14 12 10 F3C CES ∞ G **st** 2 0 108 106 104 102 100 [ppm]

HA A

06052022c 4 1 C:\Data\Fischer

.

06052022c 4 1 C:\Data\Fischer [rel] 13CZIHJ NMR CBCW 1025301 9 F 2 OC O 108 106 104 102 100 [ppm]

06052022c 4 1 C:\Data\Fischer [rel] 13 CEIH NMR CBCN 527 227 - 7.7461 53.5 CEty N. N (1 [ppm]

H NMR CB3CN

07152022b 3 1 C:\Data\Fischer

.

HNMR THF-d8 C

[rel] 222.2941 13C EIH NMR 0.4 THF-d8 F3 0.3 ? 0.2 0.1 0 0.0 240 230 220 210 200 [ppm]

X THF-d8

X THF-dS

07162022a 2 1 C:\Data\Fischer

VII. Cyclic Voltammetry Data and Voltammograms

Fig. S12. Cyclic Voltammogram of (((3,4,5-F)C₆H₂)Bpz₃)Mo(CO)₂(2-methallyl) (9)

Solvent = Dichloromethane (deoxygenated via sparging with nitrogen and dried via passage through an activated alumina column of a Pure Process Technology solvent purification system; the CH_2Cl_2 was stored over activated 4 Å molecular sieves until use)

Analyte Concentration = 3.4 mM

Supporting Electrolyte = $[NBu_4][B\{3,5-(CF_3)C_6H_3\}_4]$ (0.10 M)

Atmosphere = Nitrogen

Scan Rate = 0.1 V s⁻¹

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **9** with a 0.10 M [NBu₄][B{3,5-(CF₃)C₆H₃}] solution.

Half-Cell Potential = 0.23 V

Fig. S13: Cyclic Voltammogram of (((3,5-CF₃)C₆H₃)Bpz₃)Mo(CO)₂(2-methallyl) (10)

Solvent = Dichloromethane (deoxygenated via sparging with nitrogen and dried via passage through an activated alumina column of a Pure Process Technology solvent purification system; the CH_2Cl_2 was stored over activated 4 Å molecular sieves until use)

Analyte Concentration = 1.9 mM

Supporting Electrolyte = $[NBu_4][B\{3,5-(CF_3)C_6H_3\}_4]$ (0.10 M)

Atmosphere = Nitrogen

Scan Rate = 0.1 V s⁻¹

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **10** with a 0.10 M [NBu₄][B{3,5-(CF₃)C₆H₃]₄] solution.

Half-Cell Potential = 0.25 V

Fig. S14 : Cyclic Voltammograms of $(((3,4,5-F)C_6H_2)Bpz_3)Mn(CO)_3 (11)$

Solvent = Dichloromethane (Purified by passage through a Solv-Tek solvent system (A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, *Organometallics*, 1996, **15**, 1518.))

Analyte Concentration = 1 mM

Temperature = $21 \pm 1 \circ C$

Supporting Electrolyte = $[NBu_4][B(C_6F_5)_4]$ (0.05 M)

Atmosphere = Argon

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **11** with a 0.05 M $[NBu_4][B(C_6F_5)_4]$ solution.

Half-Cell Potential = 0.75 V

Fig. S15 : Cyclic Voltammograms of $(((3,5-CF_3)C_6H_3)Bpz_3)Mn(CO)_3$ (12)

Solvent = Dichloromethane (Purified by passage through a Solv-Tek solvent system (A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, *Organometallics*, 1996, **15**, 1518.))

Analyte Concentration = 1 mM

Temperature = 21 ± 1 °C

Supporting Electrolyte = $[NBu_4][B(C_6F_5)_4]$ (0.05 M)

Atmosphere = Argon

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **12** with a 0.05 M $[NBu_4][B(C_6F_5)_4]$ solution.

Half-Cell Potential = 0.77 V

Fig. S16 : Cyclic Voltammogram of $(((3,4,5-F)C_6H_2)Bpz_3)Mn(CO)_3$ (11) at 0.1 V s⁻¹

Solvent = Dichloromethane (Purified by passage through a Solv-Tek solvent system (A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, *Organometallics*, 1996, **15**, 1518.))

Analyte Concentration = 1 mM

Temperature = $21 \pm 1 \circ C$

Supporting Electrolyte = $[NBu_4][B(C_6F_5)_4]$ (0.05 M)

Atmosphere = Argon

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **11** with a 0.05 M $[NBu_4][B(C_6F_5)_4]$ solution.

Half-Cell Potential = 0.75 V

Fig. S17 : Cyclic Voltammogram of ((((3,5-CF₃)C₆H₃)Bpz₃)Mn(CO)₃ (12) at 0.1 V s⁻¹

Solvent = Dichloromethane (Purified by passage through a Solv-Tek solvent system (A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, *Organometallics*, 1996, **15**, 1518.))

Analyte Concentration = 1 mM

Temperature = $21 \pm 1 \circ C$

Supporting Electrolyte = $[NBu_4][B(C_6F_5)_4]$ (0.05 M)

Atmosphere = Argon

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **12** with a 0.05 M $[NBu_4][B(C_6F_5)_4]$ solution.

Half-Cell Potential = 0.77 V

Fig. S18: Cyclic Voltammogram of Fe((((3,4,5-F)C₆H₂)Bpz₃)₂ (13)

Solvent = Dichloromethane (deoxygenated via sparging with nitrogen and dried via passage through an activated alumina column of a Pure Process Technology solvent purification system; the CH_2Cl_2 was stored over activated 4 Å molecular sieves until use)

Analyte Concentration = 2.8 mM

Supporting Electrolyte = [NBu₄][BPh₄] (0.10 M)

Atmosphere = Nitrogen

Scan Rate = 0.1 V s⁻¹

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **13** with a 0.10 M [NBu₄][BPh₄] solution.

Half-Cell Potential = -0.21 V

Fig. S19: Cyclic Voltammogram of Fe((((3,5-CF₃)C₆H₃)Bpz₃)₂ (14)

Solvent = Dichloromethane (deoxygenated via sparging with nitrogen and dried via passage through an activated alumina column of a Pure Process Technology solvent purification system; the CH_2Cl_2 was stored over activated 4 Å molecular sieves until use)

Analyte Concentration = 2.3 mM

Supporting Electrolyte = [NBu₄][BPh₄] (0.10 M)

Atmosphere = Nitrogen

Scan Rate = 0.1 V s⁻¹

Reference = $FeCp_2/[FeCp_2]^+$

Background scans were obtained prior to the addition of **14** with a 0.10 M [NBu₄][BPh₄] solution.

Half-Cell Potential = -0.19 V