melenSupporting Information

B(3,4,5-F₃H₂C₆)₃ Lewis acid-catalysed C3-allylation of indoles

Nusaybah Alotaibi,^a Rasool Babaahmadi,^a Milan Pramanik,^a Tanja Kaehler,^a Ayan Dasgupta,^{a,b} Emma Richards,^d Alireza Ariafard,^c Thomas Wirth,^d and Rebecca L. Melen^{*a}

a. Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ, Cymru/Wales, UK. E-mail: MelenR@cardiff.ac.uk

b. Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK..

c. School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001 Australia.

d. School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.

Contents

1. Experimental
1.1 General experimental
2. Reaction Optimisation
3. Synthesis and characterization of starting materials
3.1 Synthesis of allylic ketone
3.2 Synthesis of allylic alcohol
3.3 Synthesis of allylic esters
3.4 Synthesis and spectral characterization of allylic ester compounds:
4. Synthesis and characterization of products:
4.1 General procedure
4.2 Synthesis and spectral characterization of allylic indole derivatives:
5. NMR Spectra
6. Computational Data
6.1 Computational details
6.2 Cartesian coordinates and total energies for the calculated structures in Chloroform S104
References

1. Experimental

1.1 General experimental

Except for the starting materials, all reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump. A nitrogen-filled glove box (MBraun) was used to manipulate solids including the storage of starting materials, ambient temperature reactions, product recovery and sample preparation for analysis. Dichloromethane was dried by employing a solvent purification system MB SPS-800 and stored under a nitrogen atmosphere. Anhydrous (with Sure/Seal) 1,2-dichloroethane $(1,2-C_2H_4Cl_2)$ was purchased from Merck and dried over molecular sieves before use. Chloroform was dried over calcium hydride followed by distillation under nitrogen atmosphere before use. Chemicals were purchased from commercial suppliers and used as received. All the triarylfluoroboranes were prepared as per the standard literature report.¹ Thin-layer chromatography (TLC) was performed on pre-coated aluminium sheets of Merck silica gel 60 F254 (0.20 mm). ¹H, ¹³C{¹H}, and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 or Bruker Avance 500 spectrometer. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C{¹H} NMR was measured as ¹H decoupled. Yields are given as isolated yields. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to CDCl₃ (7.26/77.16 ppm) as internal standard. The description of signals includes s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet, br = broad. All coupling constants are absolute values and are expressed in Hertz (Hz). All spectra were analysed assuming a first order approximation. IR-Spectra were measured on a Shimadzu IRAffinity-1 photo-spectrometer. Mass spectra were measured on a Waters LCT Premier/XE or a Waters GCT Premier spectrometer. Ions were generated by the Atmospheric Solids, Analysis Probe (ASAP), Electrospray (ES) or Electron Ionisation (EI). The molecular ion peaks values quoted for either molecular ion (M^+) , molecular ion plus or minus hydrogen (M+H⁺, M-H⁻), molecular ion plus sodium (M+Na⁺).

2. Reaction Optimisation

Table S1. Optimisation of the reaction conditions.

_								
	Entry	Catalyst	Loading	Solvent	Temp	Time	Yield ^a	
			(mol%)		(°C)	(h)	(%)	
	1	$B(C_{6}F_{5})_{3}$	20	$1,2-C_2H_4Cl_2$	80	24	62	-
	2	$B(C_{6}F_{5})_{3}$	20	$1,2-C_2H_4Cl_2$	45	24	56	
	3	$B(C_{6}F_{5})_{3}$	20	CH_2Cl_2	45	24	59	
	4	$B(C_{6}F_{5})_{3}$	20	CHCl ₃	45	24	73	
	5	$B(C_{6}F_{5})_{3}$	20	CHCl ₃	60	24	87	
	6	-	-	CHCl ₃	60	24	n.d.	
	7	$B(C_{6}F_{5})_{3}$	15	CHCl ₃	60	24	90	
	8	$B(C_{6}F_{5})_{3}$	10	CHCl ₃	60	24	62	
	9	$B(C_{6}F_{5})_{3}$	15	CHCl ₃	60	15	84	
	10	$B(C_{6}F_{5})_{3}$	15	CHCl ₃	60	7	65	
	11	$B(C_6F_5)_3^b$	15	CHCl ₃	60	24	90	
	12	$B(C_6F_5)_3^{b,c}$	15	CHCl ₃	60	24	40	
	13	$B(3,4,5-F_3H_2C_6)_3^b$	15	CHCl ₃	60	24	97	
	14	$B(2,4,6-F_3H_2C_6)_3^b$	15	CHCl ₃	60	24	53	
	15	$BF_3 \bullet OEt_2^b$	15	CHCl ₃	60	24	68	
	16	BPh_3^{o}	15	CHCl ₃	60	24	46	
	17	TFA	17	CHCl ₃	60	24	68	
	18	$B(3,4,5-F_3H_2C_6)_3^{b}$	10	CHCl ₃	60	24	71	
	19	$B(3,4,5-F_3H_2C_6)_3^{b}$	5	CHCl ₃	60	24	65	
	20	$B(3,4,5-F_3H_2C_6)_3^{p}$	15	CHCl ₃	r.t	24	63	
	21	$B_{b,c}(3,4,5-F_3H_2C_6)_3$	15	CHCl ₃	r.t	24	n.d.	
	22	$B(3,4,5-F_3H_2C_6)_3^b$	5	CHCl ₃	60	24	65	
	23	$B(3,4,5-F_3H_2C_6)_3^b$	10	CHCl ₃	60	24	71	
	24	$B(3,4,5-F_3H_2C_6)_3^b$	15	CH_2Cl_2	45	24	35	
	25	$B(3,4,5-F_3H_2C_6)_3^b$	15	$1,2-C_2H_4Cl_2$	80	24	71	
	26	$B(3,4,5-F_3H_2C_6)_3^b$	15	$CHCl_3 (0.5mL)$	60	24	69	
	27	$B(3,4,5-F_3H_2C_6)_3^b$	15	CHCl ₃ (2 mL)	60	24	94	
	28	$B(3,4,5-F_{3}H_{2}C_{6})_{3}^{b,d}$	15	CHCl ₃	60	24	97	
	29	$B(3,4,5-F_{3}H_{2}C_{6})_{3}^{b,e}$	15	CHCl ₃	60	24	91	
	30	TFA^b	17	CHCl ₃	60	24	56	

^{*a*}Reported yields are isolated yields. ^{*b*}2 equiv. of MgSO₄ was added.^{*c*}The alcohol derivative of **1a** was used. All the reactions were carried out in the dark on a 0.1 mmol scale. 2-methyl indole (1 equiv.), **1a** (1 equiv.), and catalyst, and 1.0 mL of solvent were used. n.d.= not

detected. TFA = trifluoroacetic acid, $^{d}1.5$ equiv. of 2-methyl indole **2a** was used, $^{e}1.5$ equiv. of **1a** was used.

3. Synthesis and characterization of starting materials

3.1 Synthesis of allylic ketone

General procedure a: All the ketone compounds were prepared using literature procedures.² To a stirred solution of the corresponding ketone (20 mmol, 1 equiv.) in EtOH (50 mL), an aqueous solution of NaOH 10% (24 mL) was added dropwise at 0 °C. After 5 min, the corresponding aldehyde (20 mmol, 1 equiv.)was added dropwise and the mixture allowed to stir at room temperature until complete consumption. The mixture was diluted with water (40 mL). If the allylic ketone precipitated at this stage, it was filtered and washed with water and with the minimum amount of EtOH, dried and used in the next step without further purification. If the product did not precipitate, the reaction mixture was extracted three times with DCM (40 mL). The combined organic phases were dried over MgSO₄ and the solvent evaporated under reduced pressure. The crude oil was used in the next step without further purification.

3.2 Synthesis of allylic alcohol General procedure b:

To a stirred solution of the corresponding ketone in MeOH (20 mL) at 0 °C, NaBH₄ (1.51 g, 40 mmol, 2 equiv.) was added portion wise. The mixture was then stirred at room temperature for 6 h. The reaction was quenched with water (10 mL) and extracted with DCM (3×40 mL). The combined organic phases were dried over MgSO₄ and the solvent evaporated under reduced pressure. The crude was used in the next step without further purification.

3.3 Synthesis of allylic esters

General procedure c: ester **1a** was prepared using a slightly modified literature procedure.³ Triethylamine (1.2 mL, 14.3 mmol, 1.5 equiv.) was added to a stirred CH_2Cl_2 (25 mL) solution of the allylic alcohol (1 equiv.) at 0 °C. The reaction mixture was allowed to stir for 15 min under nitrogen at same temperature. Trifluoroacetic anhydride (2 mL, 14.3 mmol, 1.5 equiv.) was added to the reaction mixture dropwise at 0 °C. The reaction mixture was allowed to stir over night at ambient temperature and quenched the reaction with saturated aq. NaHCO3 solution (1 × 30 mL). The organic compounds were extracted with ethyl acetate (3 × 25 mL), the combined organic fractions were washed with brine solution (1 × 30 mL), dried over MgSO₄ and concentrated using vacuum. The crude compound was purified via column chromatography using silica gel and hexane/ethyl acetate (95:5 v/v) as eluent.

General procedure d:

All esters except **1a** were prepared according to a literature procedure.² To a vigorously stirred solution of the corresponding alcohol (15 mmol, 1 equiv.), DMAP (59 mg, 0.49 mmol, 0.03 equiv.) and Et₃N (6.6 mL, 47 mmol, 3.13 equiv.) in Et₂O (35 mL) at 0 °C, acetic anhydride was added dropwise (4.3 mL, 45.5 mmol, 3.03 equiv.). The reaction was stirred at room temperature for 2 h. The reaction mixture was quenched with sat. solution of NaHCO₃ (50 mL). The organic phase was separated and the aqueous layer extracted with EtOAc (3×50 mL). The combined organic phases were dried over MgSO₄ and the solvent evaporated under reduced pressure. The crude was used in the allylation reaction without further purification.

$$\begin{array}{c} O \\ H_{3}C \\ \end{array} \\ O \\ C \\ H_{3}C \\ \end{array} \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}C \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3} \\ H_{3} \\ H_{3} \\ \end{array} \right) \\ \left(\begin{array}{c} O \\ H_{3} \\ H_{3}$$

3.4 Synthesis and spectral characterization of allylic ester compounds:

Synthesis of (E)-1,3-diphenylallyl 2,2,2-trifluoroacetate $(1a)^3$

Synthesized in accordance with General Procedure c using (E)-1,3diphenylprop-2-en-1-ol (2 g, 9.5 mmol, 1 equiv.). The desired product **1a** was obtained as a colorless oil, which was recrystallized using pentane at -30 °C. A white solid was obtained as a pure compound. Yield: 1.8 g, 5.9

mmol, 62%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.47–7.42 (m, 2H, Ar–CH), 7.42–7.34 (m, 4H, Ar–CH), 7.34–7.27 (m, 3H, Ar–CH), 7.26–7.19 (m, 1H, Ar–CH), 6.61 (dd, *J* = 15.9, 4.9 Hz, 1H, H_{vinylic}), 6.35 (ddd, *J* = 26.2, 15.9, 7.1 Hz, 1H, CH), 5.11 (dd, *J* = 9.6, 7.2 Hz, 1H, H_{vinylic}); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ :141.4, 141.3, 136.8 (d, *J*_{C–F} = 2.0 Hz), 131.6 (d, *J*_{C–F} = 23.2 Hz), 130.5 (d, *J*_{C–F} = 21.1 Hz), 128.67, 128.65, 127.9 (d, *J*_{C–F} = 2.1 Hz), 127.8, 127.2, 126.8 (d, *J*_{C–F} = 2.5 Hz), 79.4, 79.2; ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -75.1. (CF₃). Data agrees with literature values.³

Synthesis of (E)-1,3-bis(4-fluorophenyl)allyl acetate $(1b)^4$

Synthesized in accordance with General Procedure d using (*E*)-1,3bis(4-fluorophenyl)prop-2-en-1-ol (3.69 g, 15 mmol, 1 equiv.). The desired product **1b** was obtained as a pale yellow oil. Yield: 3.5 g, 12.14 mmol, 81%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.42–7.32

(m, 4H, Ar–CH), 7.11–7.03 (m, 2H, Ar–CH), 7.03–6.97 (m, 2H, Ar–CH), 6.58 (d, J = 15.9 Hz, 1H, H_{vinylic}), 6.41 (d, J = 6.7 Hz, 1H, CH), 6.25 (dd, J = 15.5, 7.1 Hz, 1H, H_{vinylic}), 2.14 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 170.1, 162.7 (d, $J_{C-F} = 247.7$ Hz), 162.6 (d, $J_{C-F} = 246.9$ Hz), 135.1 (d, $J_{C-F} = 3.2$ Hz), 132.3 (d, $J_{C-F} = 3.3$ Hz), 131.7, 129.0 (d, $J_{C-F} = 8.2$ Hz), 128.4 (d, $J_{C-F} = 8.1$ Hz), 127.2 (d, $J_{C-F} = 2.3$ Hz), 115.7 (d, $J_{C-F} = 21.7$ Hz), 75.5 (CH), 21.4 (Me); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -113.4, -113.7. Data agrees with literature values.⁴

Synthesis of (E)-1,3-bis(4-methoxyphenyl)allyl acetate $(1c)^{5,4}$

Synthesized in accordance with General Procedure d using (*E*)-1,3-bis(4-methoxyphenyl)prop-2-en-1-ol (4.05 g, 15 mmol, 1 equiv.). The desired product **1c** was obtained as a pale yellow oil. Yield: 3.5 g, 11.2 mmol, 75%. ¹H NMR (500

MHz, CDCl₃, 298 K) δ : 7.38–7.31 (m, 4H, Ar–CH), 6.93–6.90 (m, 2H, Ar–CH), 6.87–6.83 (m, 2H, Ar–CH), 6.57 (d, J = 15.7 Hz, 1H, H_{vinylic}), 6.41 (d, J = 7.8 Hz, 1H, CH), 6.24 (dd, J = 15.8, 6.8 Hz, 1H, H_{vinylic}), 3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe), 2.12 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 170.2, 159.6, 159.5, 132.0, 131.7, 129.1, 128.6, 128.0, 125.6, 114.06, 114.05, 76.1 (CH), 55.37 (OMe), 55.35 (OMe), 21.5 (Me). Data agrees with literature values.^{5,4}

Synthesis of (E)-1,3-diphenylallyl acetate $(1d)^6$

Synthesized in accordance with General Procedure d using (E)-1,3diphenylprop-2-en-1-ol (3.15 g, 15 mmol, 1 equiv.). The desired product **1d** was obtained as a pale yellow oil. Yield: 3.1 g, 12.29 mmol, 82%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.34–7.11 (m, 10H, Ar–CH), 6.54 (d,

J = 15.9 Hz, 1H, H_{vinylic}), 6.35 (d, J = 7.0 Hz, 1H, CH), 6.25 (ddd, J = 15.8, 6.8, 2.5 Hz, 1H, H_{vinylic}), 2.04 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 170.2, 139.4, 136.3, 132.7, 128.8, 128.7, 128.3, 128.2, 127.6, 127.2, 126.8, 76.3 (CH), 21.5 (Me). Data agrees with literature values.⁶

Synthesis of (E)-3-(4-fluorophenyl)-1-phenylallyl acetate $(1e)^2$

Synthesized in accordance with General Procedure d using (*E*)-3-(4-fluorophenyl)-1-phenylprop-2-en-1-ol (3.42 g, 15 mmol, 1 equiv.). The desired product **1e** was obtained as a pale yellow oil. Yield: 3 g, 11.1 mmol, 75%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.44–7.30 (m, 7H,

Ar–CH), 7.03–6.97 (m, 2H, Ar–CH), 6.60 (d, J = 15.9 Hz, 1H, H_{vinylic}), 6.43 (d, J = 6.9 Hz, 1H, CH), 6.27 (dd, J = 15.8, 6.8 Hz, 1H, H_{vinylic}), 2.14 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 170.2, 162.7 (d, $J_{C-F} = 247.6$ Hz), 139.3, 132.5 (d, $J_{C-F} = 3.3$ Hz), 131.6, 128.8, 128.41 (d, $J_{C-F} = 8.1$ Hz), 128.36, 127.4 (d, $J_{C-F} = 2.3$ Hz), 127.1, 115.7 (d, $J_{C-F} = 21.6$ Hz), 76.2 (CH), 21.5 (Me); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -113.7. Data agrees with literature values.²

Synthesis of (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate $(1f)^7$

Synthesized in accordance with General Procedure d using (*E*)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-ol (3.57 g, 15 mmol, 1 equiv.). The desired product **1f** was obtained as a pale yellow oil. Yield: 3.3 g, 11.69 mmol, 78%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.44–7.30 (m, 7H, Ar–CH), 6.85 (d, J = 8.7 Hz, 2H, Ar–CH), 6.60 (d, J = 15.9 Hz, 1H, H_{vinylic}), 6.44 (d, J = 7.1 Hz, 1H, CH), 6.23 (dd, J = 15.9, 6.9 Hz, 1H, H_{vinylic}), 3.80 (s, 3H, OMe), 2.14 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 170.2, 159.7, 139.6, 132.5, 129.0, 128.7, 128.2, 128.1, 127.1, 125.4, 114.1, 76.5 (CH), 55.4 (OMe), 21.5 (Me). Data agrees with literature values.⁷

4. Synthesis and characterization of products:

4.1 General procedure General procedure e:

In the glovebox, glass microwave vials were separately charged with indole (1 equiv.) allylic ester (1 equiv.), and B(3,4,5-Ar^F)₃ (15 mol%). The vials were brought outside the glovebox and 0.3 mL of CHCl₃ were added to each vial using a syringe. Indole solution was added to the ester solution. The solution of B(3,4,5-Ar^F)₃ was added to the mixture dropwise with vigorous stirring at room temperature. All the reactions were carried out at an optimum temperature 60 °C for 24 h. All volatiles were removed in vacuo and the crude compound was purified via preparative thin layer chromatography using hexane/ethyl acetate as eluent.

*NB. MgSO*⁴ (2 *equiv.*) was used during the reactions for all substrates to eliminate the residual water from the reaction mixture.

4.2 Synthesis and spectral characterization of allylic indole derivatives:

Synthesis of (E)-3-(1,3-diphenylallyl)-1-methyl-1H-indole $(3a)^8$

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-diphenylallyl 2,2,2trifluoroacetate **1a** (31 mg, 0.1 mmol, 1 equiv.), and 1-methylindole (13 μ L, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3a**. The crude reaction mixture was purified via preparative thin layer chromatography using

hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3a** was obtained as a yellow oil. Yield: 31 mg, 0.1 mmol, 97%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.49–7.44 (m, 1H, Ar–CH), 7.43–7.30 (m, 9H, Ar–CH), 7.29–7.21 (m, 3H, Ar–CH), 7.06 (t, *J* = 7.5 Hz, 1H, Ar–CH), 6.82–6.71 (m, 2H, overlapped indole CH and H_{vinylic}), 6.48 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.16 (d, *J* = 7.4 Hz, 1H, CH), 3.76 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 143.7, 137.7, 137.5, 132.8, 130.6, 128.6, 128.5, 127.5, 127.34, 127.26, 126.5, 126.4, 121.8, 120.1, 119.0, 117.2, 109.3,
46.3 (CH), 32.8 (NMe). Data agrees with literature values.⁸

Synthesis of (E)-3-(1,3-diphenylallyl)-1,2-dimethyl-1H-indole (**3b**)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-diphenylallyl 2,2,2trifluoroacetate **1a** (31 mg, 0.1 mmol, 1 equiv.), and 1,2-dimethyl-1*H*indole (15 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3b**. The crude reaction mixture was purified via preparative thin layer chromatography

using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3b** was obtained as a yellow oil. Yield: 22 mg, 0.07 mmol, 65%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.41–7.34 (m, 5H, Ar–CH), 7.31–7.26 (m, 5H, Ar–CH), 7.22–7.18 (m, 2H, Ar–CH), 7.14 (t, *J* = 7.6 Hz, 1H, Ar–CH), 6.98 (t, *J* = 7.1 Hz, 1H, Ar–CH), 6.85 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{vinylic}), 6.43 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.19 (d, *J* = 7.2 Hz, 1H, CH), 3.69 (s, 3H, NMe), 2.39 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 143.8, 137.7, 137.0, 133.6, 132.5, 130.6, 128.6, 128.38, 128.35, 127.2, 127.1, 126.4, 126.2, 120.6, 119.6, 119.0, 112.3, 108.8, 45.5 (CH), 29.7 (NMe), 10.9 (Me); IR v_{max} (cm⁻¹): 3055, 3024, 2924, 1687, 1599, 1490, 1471. HRMS (CI) [M] [C₂₅H₂₃N]: calculated 337.1825, found 337.1822.

Synthesis of (E)-3-(1,3-diphenylallyl)-1-methyl-2-phenyl-1H-indole $(3c)^9$

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-diphenylallyl 2,2,2trifluoroacetate **1a** (31 mg, 0.1 mmol, 1 equiv.), and 1-methyl-2-phenyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3c**. The crude reaction mixture was purified via preparative thin layer chromatography

using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3c** was obtained as a yellow oil. Yield: 20 mg, 0.05 mmol, 50%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.5–7.26 (m, 13H, Ar–CH), 7.26–7.15 (m, 5H, Ar–CH), 7.06–7.01 (m, 1H, Ar–CH), 6.83 (dd, J = 15.8, 7.6 Hz, 1H, H_{vinylic}), 6.35 (d, J = 15.8 Hz, 1H, H_{vinylic}), 5.01 (d, J = 7.6 Hz, 1H, CH), 3.62 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 144.0, 138.8, 137.8, 137.6, 132.6, 132.1, 131.0, 130.8, 128.6,

128.5, 128.32, 128.28, 127.2, 126.7, 126.4, 126.1, 121.7, 121.0, 119.4, 114.2, 109.6, 45.7 (CH), 31.0 (NMe). Data agrees with literature values.⁹

Synthesis of (E)-5-bromo-3-(1,3-diphenylallyl)-1-methyl-1H-indole (**3d**)

Synthesized in accordance with General Procedure e using B(3,4,5- Ar^{F})₃ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-diphenylallyl 2,2,2-trifluoroacetate **1a** (31 mg, 0.1 mmol, 1 equiv.), and 5-bromo-1-methyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3d**. The crude reaction mixture was purified via preparative thin layer

chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3d** was obtained as a yellow oil. Yield: 37 mg, 0.09 mmol, 93%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.48 (d, *J* = 1.4 Hz, 1H, Ar–CH), 7.33–7.29 (m, 2H, Ar–CH), 7.28–7.26 (m, 1H, Ar–CH), 7.26–7.12 (m, 8H, Ar–CH), 7.10 (d, *J* = 8.1 Hz, 1H), 6.70 (s, 1H, indole CH), 6.62 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{vinylic}), 6.35 (d, *J* = 15.9 Hz, 1H, H_{vinylic}), 5.00 (d, *J* = 7.3 Hz, 1H, CH), 3.66 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 143.2, 137.5, 136.2, 132.4, 130.8, 129.0, 128.68, 128.65, 128.64, 128.5, 127.4, 126.7, 126.5, 124.7, 122.4, 116.92, 112.5, 110.9, 46.0 (CH), 33.0 (NMe); IR v_{max} (cm⁻¹): 3059, 3024, 2924, 1697, 1599, 1475. HRMS (CI) [M] [C₂₄H₂₀N⁷⁹Br]: calculated 401.0774, found 401.0765.

Synthesis of (E)-3-(1,3-diphenylallyl)-1H-indole $(3e)^{10}$

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-diphenylallyl 2,2,2trifluoroacetate **1a** (31 mg, 0.1 mmol, 1 equiv.), and indole (12 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3e**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl

acetate (92:8 v/v) as eluent. The desired compound **3e** was obtained as a yellow oil. Yield: 13 mg, 0.04 mmol, 42%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.99 (s, br, 1H, NH), 7.45 (d, *J* = 8.5 Hz, 1H, Ar–CH), 7.40–7.28 (m, 9H, Ar–CH), 7.25–7.16 (m, 3H, Ar–CH), 7.08–7.01 (m, 1H, Ar–CH), 6.91 (d, *J* = 2.4 Hz, 1H, indole CH), 6.75 (dd, J = 15.8, 7.4 Hz, 1H, H_{vinylic}), 6.46 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.14 (d, *J* = 7.4 Hz, 1H, CH); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 143.5,

137.6, 136.8, 132.7, 130.7, 128.63, 128.61, 128.6, 127.3, 126.9, 126.52, 126.45, 122.7, 122.2, 120.0, 119.6, 118.8, 111.2, 46.3 (CH). Data agrees with literature values.¹⁰

Synthesis of (E)-3-(1,3-bis(4-fluorophenyl)allyl)-1-methyl-1H-indole (3f)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-fluorophenyl)allyl acetate **1b** (29 mg, 0.1 mmol, 1 equiv.), and 1-methylindole (13 μ L, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3f**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The

desired compound **3f** was obtained as a yellow oil. Yield: 27 mg, 0.08 mmol, 75%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.40 (d, *J* = 8.1 Hz, 1H, Ar–CH), 7.36–7.28 (m, 5H, Ar–CH), 7.25–7.21 (m, 1H, Ar–CH), 7.07–6.96 (m, 5H, Ar–CH), 6.76 (s, 1H, indole CH), 6.62 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{vinylic}), 6.38 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.10 (d, *J* = 7.3 Hz, 1H, CH), 3.76 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.3 (d, *J*_{C-F} = 246.3 Hz), 161.7 (d, *J*_{C-F} = 244.3 Hz), 139.2 (d, *J*_{C-F} = 3.1 Hz), 137.6, 133.6 (d, *J*_{C-F} = 3.3 Hz), 132.4 (d, *J*_{C-F} = 2.3 Hz), 130.0 (d, *J*_{C-F} = 7.9 Hz), 129.6, 127.9 (d, *J*_{C-F} = 8.0 Hz), 127.4, 127.2, 121.9, 119.9, 119.1, 116.9, 115.5 (d, *J*_{C-F} = 21.5 Hz), 115.3 (d, *J*_{C-F} = 21.2 Hz), 109.4, 45.5 (CH), 32.9 (NMe); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -115.0, -116.9; IR v_{max} (cm⁻¹): 3049, 2930, 1601, 1506, 1223. HRMS (CI) [M] [C₂₄H₁₉NF₂]: calculated 359.1480, found 359.1478.

Synthesis of (E)-3-(1,3-bis(4-fluorophenyl)allyl)-1,2-dimethyl-1H-indole (**3g**)

Synthesized in accordance with General Procedure e using B(3,4,5- Ar^{F})₃ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-fluorophenyl)allyl acetate **1b** (29 mg, 0.1 mmol, 1 equiv.), and and 1,2-dimethyl-1*H*-indole (15 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3g**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent.

The desired compound **3g** was obtained as a yellow oil. Yield: 31 mg, 0.08 mmol, 84%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.36–7.26 (m, 6H, Ar–CH), 7.18–7.13 (m, 1H, Ar–CH), 7.01–6.93

(m, 5H, Ar–CH), 6.72 (dd, J = 15.8, 7.8 Hz, 1H, H_{vinylic}), 6.37 (d, J = 15.8 Hz, 1H, H_{vinylic}), 5.13 (d, J = 7.3 Hz, 1H, CH), 3.70 (s, 3H, NMe), 2.39 (s, 3H, Me); ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) δ : 162.1 (d, $J_{C-F} = 246.2$ Hz), 161.4 (d, $J_{C-F} = 244.0$ Hz), 139.3 (d, $J_{C-F} = 3.1$ Hz), 137.0, 133.7 (d, $J_{C-F} = 3.3$ Hz), 133.6, 132.1 (d, $J_{C-F} = 2.1$ Hz), 129.8 (d, $J_{C-F} = 7.8$ Hz), 129.6, 127.9 (d, $J_{C-F} = 8.0$ Hz), 126.9, 120.8, 119.4, 119.1, 115.5 (d, $J_{C-F} = 21.5$ Hz), 115.1 (d, $J_{C-F} = 21.1$ Hz), 112.0, 108.9, 44.8 (CH), 29.7 (NMe), 10.9 (Me); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -115.2, -117.4; IR ν_{max} (cm⁻¹): 3046, 2932, 1600, 1506, 1471, 1223, 1157. HRMS (CI) [M] [C₂₅H₂₁NF₂]: calculated 373.1637, found 373.1633.

Synthesis of (E)-3-(1,3-bis(4-fluorophenyl)allyl)-1-methyl-2-phenyl-1H-indole (**3h**)

Synthesized in accordance with General Procedure e using B(3,4,5- Ar^{F})₃ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-fluorophenyl)allyl acetate **1b** (29 mg, 0.1 mmol, 1 equiv.), and 1-methyl-2-phenyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3h**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as

eluent. The desired compound **3h** was obtained as a pale yellow oil. Yield: 37 mg, 0.08 mmol, 84%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.49–7.32 (m, 7H, Ar–CH), 7.27–7.18 (m, 5H, Ar–CH), 7.06–7.00 (m, 1H, Ar–CH), 6.96–6.86 (m, 4H, Ar–CH), 6.68 (ddd, J = 15.8, 7.0, 1.5 Hz, 1H, H_{vinylic}), 6.27 (d, J = 15.8 Hz, 1H, H_{vinylic}), 4.94 (d, J = 7.6 Hz, 1H, CH), 3.59 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.8 (d, $J_{C-F} = 92.5$ Hz), 160.9 (d, $J_{C-F} = 90.5$ Hz), 139.5 (d, $J_{C-F} = 3.1$ Hz), 138.8, 137.6, 133.7 (d, $J_{C-F} = 3.3$ Hz), 132.2 (d, $J_{C-F} = 2.3$ Hz), 131.9, 130.9, 129.74, 129.66, 128.60, 128.57, 127.9 (d, $J_{C-F} = 7.9$ Hz), 126.5, 121.9, 120.7, 119.6, 115.4 (d, $J_{C-F} = 21.5$ Hz), 115.0 (d, $J_{C-F} = 21.0$ Hz), 113.9, 109.7, 45.0 (CH), 31.0 (NMe); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -115.2, -117.5; IR v_{max} (cm⁻¹): 3049, 2941, 1601, 1504, 1223. HRMS (CI) [M] [C₃₀H₂₃NF₂]: calculated 435.1793, found 435.1792.

Synthesis of (E)-3-(1,3-bis(4-fluorophenyl)allyl)-5-bromo-1-methyl-1H-indole (3i)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (E)-1,3-bis(4-fluorophenyl)allyl acetate **1b** (29 mg, 0.1 mmol, 1 equiv.), and 5-bromo-1-methyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3i**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate

(92:8 v/v) as eluent. The desired compound **3i** was obtained as a yellow oil. Yield: 40 mg, 0.09 mmol, 91%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.52 (d, *J* = 1.3 Hz, 1H, Ar–CH), 7.36–7.24 (m, 5H, Ar–CH), 7.17 (d, *J* = 8.7 Hz, 1H, Ar–CH), 7.05–6.97 (m, 4H, Ar–CH), 6.77 (s, 1H, indole CH), 6.57 (dd, *J* = 15.8, 7.2 Hz, 1H, H_{vinylic}), 6.36 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.04 (d, *J* = 7.2 Hz, 1H, CH), 3.73 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.3 (d, *J*_{C-F} = 246.5 Hz), 161.7 (d, *J*_{C-F} = 244.7 Hz), 138.8 (d, *J*_{C-F} = 3.1 Hz), 136.2, 133.5 (d, *J*_{C-F} = 3.3 Hz), 131.9 (d, *J*_{C-F} = 2.2 Hz), 129.9 (d, *J*_{C-F} = 7.9 Hz), 129.8, 128.8, 128.6, 127.9 (d, *J*_{C-F} = 7.9 Hz), 124.8, 122.3, 116.6, 115.5 (d, *J*_{C-F} = 21.5 Hz), 115.4 (d, *J*_{C-F} = 21.2 Hz), 112.6, 111.0, 45.1 (CH), 33.0 (NMe); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -114.8, -116.5; IR v_{max} (cm⁻¹): 2349, 2326, 1601, 1504, 1474, 1221, 1155. HRMS (CI) [M] [C₂₄H₁₈N⁷⁹BrF₂]: calculated 437.0585, found 437.0583.

Synthesis of (E)-3-(1,3-bis(4-fluorophenyl)allyl)-1H-indole (3j)

Synthesized in accordance with General Procedure e using B(3,4,5- Ar^{F})₃ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-fluorophenyl)allyl acetate **1b** (29 mg, 0.1 mmol, 1 equiv.), and indole (12 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3j**. The crude reaction mixture was purified via preparative thin layer chromatography using

hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3j** was obtained as a yellow oil. Yield: 19 mg, 0.05 mmol, 54%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.00 (s, br, 1H, NH), 7.44– 7.27 (m, 6H, Ar–CH), 7.24–7.18 (m, 1H, Ar–CH), 7.10–6.96 (m, 5H, Ar–CH), 6.91 (dd, *J* = 2.4, 1.0 Hz, 1H, indole CH), 6.63 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{vinylic}), 6.39 (d, *J* = 15.9 Hz, 1H, H_{vinylic}), 5.11 (d, *J* = 7.3 Hz, 1H, CH); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.2 (d, *J*_{C-F} = 246.3 Hz), 161.6 (d, *J*_{C-F} = 244.4 Hz), 139.0 (d, *J*_{C-F} = 3.1 Hz), 136.8, 133.6 (d, *J*_{C-F} = 3.2 Hz), 132.2 (d, *J*_{C-F} = 2.2 Hz), 130.0 (d, *J*_{C-F} = 7.9 Hz), 129.7, 127.9 (d, *J*_{C-F} = 7.9 Hz), 126.7, 122.7, 122.4, 119.8 (d, *J*_{C-F} = 25.1 Hz), 118.6, 115.6, 115.4, 115.3, 111.3, 45.5 (CH); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -115.0, -116.8; IR ν_{max} (cm⁻¹): 3414, 3040, 1601, 1506, 1456, 1221, 1157. HRMS (CI) [M] [C₂₃H₁₇NF₂]: calculated 345.1324, found 345.1321.

Synthesis of (E)-3-(1,3-bis(4-methoxyphenyl)allyl)-1-methyl-1H-indole (**3k**)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (E)-1,3-bis(4-methoxyphenyl)allyl acetate **1c** (31 mg, 0.1 mmol, 1 equiv.), and 1-methylindole (13 µL, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3k**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl

acetate (92:8 v/v) as eluent. The desired compound **3k** was obtained as a yellow oil in 1:1 inseparable regioisomeric mixture. Yield: 30 mg, 0.08 mmol, 79%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.44 (d, *J* = 7.6 Hz, 1H, Ar–CH), 7.35–7.18 (m, 6H, Ar–CH), 7.03 (t, *J* = 8.0 Hz, 1H, Ar–CH), 6.90–6.81 (m, 4H, Ar–CH), 6.76 (s, 1H, indole CH), 6.58 (ddd, *J* = 15.8, 7.3, 1.7 Hz, 1H, H_{vinylic}), 6.38 (d, *J* = 15.7 Hz, 1H, H_{vinylic}), 5.06 (d, *J* = 7.2 Hz, 1H, CH), 3.80 + 3.81 (two overlapped signals, 6H, OMe), 3.74 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 159.0, 158.2, 137.6, 136.0, 131.0, 130.5, 129.6, 129.5, 127.5, 127.41, 127.35, 121.7, 120.2, 118.9, 117.7, 114.01, 113.97, 113.9, 109.3, 55.41 (OMe), 55.37 (OMe), 45.4 (CH), 32.8 (NMe); IR v_{max} (cm⁻¹): 2999, 2932, 2833, 1606, 1508, 1464, 1244, 1173, 1032. HRMS (CI) [M] [C₂₆H₂₅O₂N]: calculated 383.1880, found 383.1877.

Synthesis of (E)-3-(1,3-bis(4-methoxyphenyl)allyl)-1,2-dimethyl-1H-indole (31)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-methoxyphenyl)allyl acetate **1c** (31 mg, 0.1 mmol, 1 equiv.), and 1,2-dimethyl-1*H*-indole (15 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3l**. The crude reaction mixture was purified

via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3l** was obtained as a yellow oil. Yield: 26 mg, 0.07 mmol, 65%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.42 (d, *J* = 6.9 Hz, 1H, Ar–CH), 7.35–7.31 (m, 2H, Ar–CH), 7.31–7.26 (m, 3H, Ar–CH), 7.19–7.13 (m, 1H, Ar–CH), 7.04–6.97 (m, 1H, Ar–CH), 6.87– 6.82 (m, 4H, Ar–CH), 6.74–6.68 (m, 1H, H_{vinylic}), 6.38 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 5.13 (d, *J* = 7.3 Hz, 1H, CH), 3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.69 (s, 3H, NMe), 2.40 (s, 3H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 158.9, 158.0, 136.9, 136.1, 133.4, 130.8, 130.6, 129.7, 129.3, 127.5, 127.1, 120.5, 119.6, 118.9, 114.0, 113.7, 112.7, 108.7, 55.39 (OMe), 55.35 (OMe), 44.7 (CH), 29.7 (NMe), 10.9 (Me); IR v_{max} (cm⁻¹): 3028, 2932, 2833, 1606, 1508, 1470, 1244, 1173, 1032. HRMS (CI) [M] [C₂₇H₂₇O₂N]: calculated 397.2036, found 397.2033.

Synthesis of (E)-3-(1,3-bis(4-methoxyphenyl)allyl)-1-methyl-2-phenyl-1H-indole (**3m**)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (E)-1,3-bis(4methoxyphenyl)allyl acetate **1c** (31 mg, 0.1 mmol, 1 equiv.), and 1-methyl-2-phenyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3m**. The crude reaction mixture was purified via preparative thin layer chromatography using

hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3m** was obtained as a yellow oil. Yield: 33 mg, 0.07 mmol, 72%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.52–7.44 (m, 4H, Ar–CH), 7.43–7.39 (m, 2H, Ar–CH), 7.37 (d, J = 8.2 Hz, 1H, Ar–CH), 7.30–7.20 (m, 5H, Ar–CH), 7.08–7.01 (m, 1H, Ar–CH), 6.86–6.77 (m, 4H, Ar–CH), 6.69 (dd, *J* = 15.8, 7.5 Hz, 1H, H_{vinylic}), 6.29 (d, *J* = 15.8 Hz, 1H, H_{vinylic}), 4.95 (d, *J* = 7.5 Hz, 1H, CH), 3.79 (s, 3H, OMe), 3.78 (s, 3H, OMe), 3.62 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 158.9, 157.9, 138.5, 137.6, 136.3, 132.1, 131.0, 130.8, 130.6, 129.8, 129.3, 128.5, 128.4, 127.5, 126.7, 121.6, 121.1, 119.4, 114.6, 114.0, 113.6, 109.5, 55.4 (OMe), 55.3 (OMe), 44.9 (CH), 31.0 (NMe); IR v_{max} (cm⁻¹): 2999, 2932, 2833, 1605, 1508, 1464, 1244, 1173, 1032. HRMS (CI) [M] [C₃₂H₂₉O₂N]: calculated 459.2193, found 459.2191.

Synthesis of (E)-3-(1,3-bis(4-methoxyphenyl)allyl)-5-bromo-1-methyl-1H-indole (**3n**)

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-methoxyphenyl)allyl acetate **1c** (31 mg, 0.1 mmol, 1 equiv.), and 5-bromo-1-methyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3n**. The crude reaction mixture was purified via preparative thin layer chromatography using

hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3n** was obtained as a light brown oil. Yield: 41 mg, 0.09 mmol, 89%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.55 (d, *J* = 1.3 Hz, 1H, Ar–CH), 7.33–7.27 (m, 3H, Ar–CH), 7.25–7.21 (m, 2H, Ar–CH), 7.15 (d, *J* = 8.7 Hz, 1H, Ar–CH), 6.92–6.81 (m, 4H, Ar–CH), 6.76 (s, 1H, indole CH), 6.53 (dd, *J* = 15.7, 7.2 Hz, 1H, H_{vinylic}), 6.34 (d, *J* = 15.7 Hz, 1H, H_{vinylic}), 4.99 (d, *J* = 7.2 Hz, 1H, CH), 3.81 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.71 (s, 3H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 159.1, 158.3, 136.2, 135.5, 130.5, 130.3, 129.9, 129.4, 129.0, 128.6, 127.5, 124.6, 122.5, 117.4, 114.03, 113.97, 112.4, 110.8, 55.41 (OMe), 55.38 (OMe), 45.1 (CH), 33.0 (NMe); IR v_{max} (cm⁻¹): 2930, 2833, 2349, 2326, 2139, 1607, 1508, 1474, 1298, 1244, 1173, 1032. HRMS (CI) [M] [C₂₆H₂₄O₂N⁷⁹Br]: calculated 461.0985, found 461.0982.

Synthesis of (E)-3-(1,3-bis(4-methoxyphenyl)allyl)-1H-indole $(30)^9$

Synthesized in accordance with General Procedure e using $B(3,4,5-Ar^F)_3$ (6 mg, 0.015 mmol 0.15 equiv.), (*E*)-1,3-bis(4-methoxyphenyl)allyl acetate **1c** (31 mg, 0.1 mmol, 1 equiv.), and indole (12 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3o**. The crude reaction mixture was purified via preparative thin

layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **30** was obtained as a brown oil. Yield: 21 mg, 0.06 mmol, 57%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.02 (s, br, 1H, NH), 7.43 (d, *J* = 6.8 Hz, 1H, Ar–CH), 7.34 (d, *J* = 8.1 Hz, 1H, Ar–CH), 7.33–7.27 (m, 2H, Ar–CH), 7.27–7.22 (m, 2H, Ar–CH), 7.19–7.14 (m, 1H, Ar–CH), 7.03–6.99 (m, 1H, Ar–CH), 6.89 (dd, *J* = 2.4, 1.1 Hz, 1H, indole CH), 6.87–6.79 (m, 4H, Ar–CH), 6.57 (dd, *J* = 15.8, 7.3 Hz, 1H, H_{vinylic}), 6.36 (d, *J* = 15.4 Hz, 1H, H_{vinylic}), 5.05 (d, *J* = 7.3 Hz, 1H, CH), 3.79 (s, 6H, OMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 159.0, 158.2, 136.8, 135.9, 130.9, 130.5, 129.8,

129.5, 127.5, 127.0, 122.7, 122.2, 120.1, 119.5, 119.3, 114.0, 113.9, 111.2, 55.43 (OMe), 55.38 (OMe), 45.5 (CH). Data agrees with literature values.⁹

Synthesis of (E)-3-(3-(4-fluorophenyl)-1-phenylallyl)-1-methyl-1H-indole (**3p**) and (E)-3-(1-(4-fluorophenyl)-3-phenylallyl)-1-methyl-1H-indole (**3p'**)

Synthesized in accordance with General Procedure *e* using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-fluorophenyl)-1-phenylallyl acetate **1e** (27 mg, 0.1 mmol, 1 equiv.), and 1-methylindole (13 µL, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3p** and **3p'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of **3p** and **3p'** was obtained as a yellow oil. Combined yields: 26 mg, 0.08 mmol, 76%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.47–7.27 (m, 17H, Ar–CH), 7.25–7.21 (m, 3H, Ar–CH), 7.07–6.96 (m, 6H, Ar–CH), 6.77 (s, 1H, indole CH), 6.76 (s, 1H, indole CH), 6.72 (dd, *J* = 15.8, 7.4 Hz, 1H, H_{vinylic}), 6.66 (dd, *J* = 15.8, 7.4 Hz, 1H, H_{vinylic}), 5.13 (d, *J* = 7.3 Hz, 2H, CH), 3.77 + 3.76 (two overlapped singlets, 6H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.2 (d, *J*_{C-F} = 246.1 Hz), 161.7 (d, *J*_{C-F} = 244.2 Hz), 161.2, 160.7, 143.6, 139.32, 139.30, 137.6, 137.54, 137.49, 133.80, 133.78, 132.61, 132.59, 130.7, 130.04, 129.98, 129.4, 128.7, 128.6, 127.9, 127.8, 127.46, 127.45, 127.4, 127.30, 127.2, 126.5, 126.4, 121.9, 121.8, 120.02, 119.99, 119.1, 119.0, 117.1, 117.0, 115.5, 115.4, 115.2, 109.38, 109.35, 46.3 (CH), 45.5 (CH), 32.84 (NMe), 32.82 (NMe); ¹⁹F NMR (471 MHz, CDCl₃, 298 K)

δ: -115.2, -117.0; IR ν_{max} (cm⁻¹): 3055, 3026, 2928, 1599, 1506, 1472, 1223, 1155. HRMS (CI) [M] [C₂₄H₂₀NF]: calculated 341.1574, found 341.1566.

Synthesis of (E)-3-(3-(4-fluorophenyl)-1-phenylallyl)-1,2-dimethyl-1H-indol (**3q**) and (E)-3-(1-(4-fluorophenyl)-3-phenylallyl)-1,2-dimethyl-1H-indole (**3q'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-fluorophenyl)-1-phenylallyl acetate 1e (27 mg, 0.1 mmol, 1 equiv.), and 1,2dimethyl-1*H*-indole (15 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3q** and **3q'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of 3q and 3q' was obtained as a yellow oil. Combined yields: 26 mg, 0.07 mmol, 72%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.43–7.28 (m, 16H, Ar-CH), 7.25-7.20 (m, 2H, Ar-CH), 7.20-7.14 (m, 2H, Ar-CH), 7.05-6.94 (m, 6H, Ar-CH), 6.84 + 6.79 (two overlapped doublet of doublets, dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic} + dd$, J =15.8, 7.3 Hz, 1H, $H_{vinylic}$), 6.44 + 641 (two overlapped doublets, d, J = 15.8 Hz, 1H, $H_{vinylic} + d$, J= 15.8 Hz, 1H, H_{vinvlic}), 5.19 (d, J = 7.3 Hz, 1H, CH), 5.17(d, J = 7.3 Hz, 1H, CH), 3.70 (two overlapped singlets, 6H, NMe), 2.41 (s, 6H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 162.2 (d, *J*_{C-F} = 245.9 Hz), 161.5 (d, *J*_{C-F} = 244.0 Hz), 143.7, 139.40, 139.38, 137.6, 136.97, 136.95, 133.88, 133.85, 133.6, 132.3, 130.7, 129.82, 129.75, 129.4, 128.6, 128.4, 128.3, 127.9, 127.8, 127.3, 127.0, 126.9, 126.7, 126.4, 126.2, 120.7, 120.6, 119.5, 119.4, 119.1, 119.0, 115.4 (d, *J*_{C-F} = 21.5 Hz), 115.1 (d, J_{C-F} = 21.1 Hz), 112.2, 112.1, 108.9, 108.8, 45.4 (CH), 44.8 (CH), 29.7 (NMe), 10.90 (Me), 10.88 (Me); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -115.4, -117.5; IR v_{max} (cm⁻¹):

3057, 3026, 1601, 1506, 1472, 1367, 1223, 1157. HRMS (CI) [M] [C₂₅H₂₂NF]: calculated 355.1731, found 355.1728.

Synthesis of (E)-3-(3-(4-fluorophenyl)-1-phenylallyl)-1-methyl-2-phenyl-1H-indole (**3r**) and (E)-3-(1-(4-fluorophenyl)-3-phenylallyl)-1-methyl-2-phenyl-1H-indole (**3r'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-fluorophenyl)-1-phenylallyl acetate 1e (27 mg, 0.1 mmol, 1 equiv.), and 1methyl-2-phenyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3r** and **3r'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of 3r and 3r' was obtained as a yellow oil. Combined yields: 29 mg, 0.07 mmol, 69%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.54–7.24 (m, 28H, Ar–CH), 7.24–7.17 (m, 2H, Ar–CH), 7.11–7.03 (m, 2H, Ar–CH), 7.00–6.91 (m, 4H, Ar–CH), 6.82 (dd, J = 15.8, 7.5 Hz, 1H, H_{vinvlic}), 6.76 (dd, J = 15.8, 7.6 Hz, 1H, H_{vinvlic}), 6.37 (d, J = 15.8 Hz, 1H, H_{vinvlic}), 6.32 (d, J = 15.8 Hz, 1H, H_{vinvlic}), 5.01 (d, J = 7.5 Hz, 1H, CH), 4.99 (d, J = 7.5 Hz, 1H, CH), 3.64 (s, 6H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ : 162.6 (d, $J_{C-F} = 245.9 \text{ Hz}$), 161.3 (d, $J_{C-F} = 243.9 \text{ Hz}$), 143.9, 139.63, 139.60, 138.76, 138.75, 137.61, 137.59, 133.90, 133.88, 132.42, 132.40, 132.38, 132.0, 131.95, 130.97, 130.93, 130.89, 129.8, 129.70, 129.5, 128.58, 128.55, 128.54, 128.48, 128.31, 128.28, 127.9, 127.8, 127.3, 126.6, 126.5, 126.4, 126.1, 121.81, 121.75, 120.9, 120.8, 119.53, 119.47, 115.4 (d, *J*_{C-F} = 21.5 Hz), 115.0 (d, $J_{C-F} = 21.1$ Hz), 114.1, 114.0, 109.7, 109.6, 45.7 (CH), 45.0 (CH), 31.0 (NMe); ¹⁹F NMR (471) MHz, CDCl₃, 298 K) δ: -115.4, -117.6; IR ν_{max} (cm⁻¹): 3057, 2926, 1601, 1506, 1468, 1223, 1157. HRMS (CI) [M] [C₃₀N₂₄NF]: calculated 417.1887, found 417.1885.

Synthesis of (E)-5-bromo-3-(3-(4-fluorophenyl)-1-phenylallyl)-1-methyl-1H-indole (**3s**) *and (E)-5-bromo-3-(1-(4-fluorophenyl)-3-phenylallyl)-1-methyl-1H-indole* (**3s')**

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-fluorophenyl)-1-phenylallyl acetate 1e (27 mg, 0.1 mmol, 1 equiv.), and 5bromo-1-methyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford 3s and 3s'. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of **3s** and **3s'** was obtained as an orange oil. Combined yields: 32 mg, 0.08 mmol, 76%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.55 (d, J = 1.9 Hz, 1H, Ar–CH), 7.51 (d, J = 1.3 Hz, 1H, Ar–CH), 7.40–7.26 (m, 15H, Ar–CH), 7.25– 7.21 (m, 1H, Ar–CH), 7.18 (d, J = 2.9 Hz, 1H, Ar–CH), 7.16 (d, J = 2.9 Hz, 1H), 7.04 – 6.96 (m, 4H, Ar–CH), 6.77 (s, 1H, indole CH), 6.76 (s, 1H, indole CH), 6.66 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic}$), 6.60 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic}$), 6.39 + 6.38 (two overlapped doublets, d, J = 15.9Hz, 1H, $H_{vinylic} + d$, J = 15.9 Hz, 1H, $H_{vinylic}$), 5.05 (d, J = 7.2 Hz, 2H, CH), 3.73 + 3.72 (two overlapped singlets, 6H, NMe); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃, 298 K) δ : 162.2 (d, $J_{C-F} = 246.2$ Hz), 161.7 (d, $J_{C-F} = 244.6$ Hz), 143.1, 138.84, 138.82, 137.3, 136.22, 136.18, 133.62, 133.60, 132.13, 132.12, 131.0, 130.0, 129.9, 129.7, 128.9, 128.8, 127.94, 127.88, 127.5, 126.72, 126.66, 126.5, 124.8, 124.7, 122.4, 122.3, 116.8, 116.7, 115.5 (d, $J_{C-F} = 21.5$ Hz), 115.4 (d, $J_{C-F} = 21.2$ Hz), 112.6, 112.5, 110.94, 110.90, 45.9 (CH) 45.2 (CH), 33.02 (NMe) 33.01 (NMe); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -115.0, -116.6; IR v_{max} (cm⁻¹): 3057, 3024, 2922, 2349, 2326, 1600,

1506, 1476, 1422, 1223, 1157. HRMS (CI) [M] [C₂₄H₁₉N⁷⁹BrF]: calculated 419.0679, found 419.0676.

Synthesis of (E)-3-(3-(4-fluorophenyl)-1-phenylallyl)-1H-indole (**3t**) and (E)-3-(1-(4-fluorophenyl)-3-phenylallyl)-1H-indole (**3t'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-fluorophenyl)-1-phenylallyl acetate 1e (27 mg, 0.1 mmol, 1 equiv.), and indole (12 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3t** and **3t'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of 3t and 3t' was obtained as a yellow oil. Combined yields: 20 mg, 0.06 mmol, 61%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.00 (s, br, 2H, NH), 7.46–7.26 (m, 16H, Ar-CH), 7.26-7.16 (m, 4H, Ar-CH), 7.08-7.03 (m, 2H, Ar-CH), 7.03-6.95 (m, 4H, Ar-CH), 6.92 (dd, J = 2.4, 0.9 Hz, 1H, indole CH), 6.91 (dd, J = 2.4, 0.8 Hz, 1H, indole CH), 6.71 $(dd, J = 15.8, 7.3 Hz, 1H, H_{vinvlic}), 6.66 (dd, J = 15.7, 7.3 Hz, 1H, H_{vinvlic}), 6.43 + 6.41 (two$ overlapped doublets, d, J = 15.8 Hz, 1H, $H_{vinylic} + d$, J = 15.9 Hz, 1H, $H_{vinylic}$), 5.12 (d, J = 7.4 Hz, 2H, CH); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃, 298 K) δ : 162.2 (d, $J_{C-F} = 246.1$ Hz), 161.7 (d, J_{C-F} = 246.1 Hz), 161.7 (d, J_{ 244.3 Hz), 143.4, 139.14, 139.12, 137.5, 136.83, 136.80, 133.8, 133.7, 132.43, 132.41, 130.9, 130.1, 130.0, 129.5, 128.7, 128.6, 127.92, 127.85, 127.4, 126.9, 126.8, 126.6, 126.5, 122.72, 122.69, 122.4, 122.3, 120.0, 119.9, 119.7, 119.6, 118.8, 118.7, 115.5 (d, *J*_{C-F} = 20.0 Hz), 115.3 (d, $J_{C-F} = 19.8$ Hz), 111.30, 111.27, 46.3 (CH), 45.5 (CH); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -115.2, -116.9; IR v_{max} (cm⁻¹): 3418, 3057, 3026, 1601, 1506, 1456, 1221, 1157, 1096. HRMS (ES-) $[M-H]^{-}$ $[C_{23}H_{17}NF]$: calculated 326.1345, found 326.1346.

Synthesis of (E)-3-(3-(4-methoxyphenyl)-1-phenylallyl)-1-methyl-1H-indole (**3u**) *and (E)-3-(1-(4-methoxyphenyl)-3-phenylallyl)-1-methyl-1H-indole* (**3u'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 1f (28 mg, 0.1 mmol, 1 equiv.), and 1methylindole (13 µL, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3u** and **3u'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of 3u and 3u' was obtained as a yellow oil. Combined yields: 18 mg, 0.05 mmol, 51%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.48–7.44 (m, 2H, Ar-CH), 7.42-7.31 (m, 12H, Ar-CH), 7.31-7.26 (m, 3H, Ar-CH), 7.26-7.22 (m, 3H, Ar-CH), 7.08–7.02 (m, 2H, Ar–CH), 6.91–6.84 (m, 4H, Ar–CH), 6.78 (two overlapped singlets, 2H, indole CH), 6.74 (dd, J = 15.8, 7.3 Hz, 1H, H_{vinvlic}), 6.61 (dd, J = 15.8, 7.4 Hz, 1H, H_{vinvlic}), 6.45 + 6.42 (two overlapped doublets, d, J = 15.8 Hz, 1H, $H_{vinylic} + d$, J = 15.8 Hz, 1H, $H_{vinylic}$), 5.12 + 5.10 (two overlapped doublets, d, J = 7.5 Hz, 1H, CH + d, J = 7.5 Hz, 1H, CH), 3.82 (two overlapped singlets, 6H, OMe), 3.76 (two overlapped singlets, 6H, NMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 159.0, 158.2, 143.9, 137.7, 137.6, 137.5, 135.8, 133.1, 130.7, 130.5, 130.28, 130.27, 129.9, 129.5, 128.60, 128.59, 128.5, 127.54, 127.48, 127.44, 127.36, 127.33, 127.2, 126.42, 126.39, 121.73, 121.71, 120.13, 120.11, 119.0, 117.5, 117.4, 114.1, 114.0, 113.9, 109.29, 109.28, 55.42 (OMe), 55.38 (OMe), 46.3 (CH), 45.4 (CH), 32.8 (NMe); IR v_{max} (cm⁻¹): 3024, 2932, 2833, 1736, 1606, 1508, 1464, 1244, 1175, 1030. HRMS (CI) [M] [C₂₅H₂₃ON]: calculated 353.1774, found 353.1772.

Synthesis of (E)-3-(3-(4-methoxyphenyl)-1-phenylallyl)-1,2-dimethyl-1H-indole (3v) and (E)-3-(1-(4-methoxyphenyl)-3-phenylallyl)-1,2-dimethyl-1H-indole (3v')

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 1f (28 mg, 0.1 mmol, 1 equiv.), and 1,2dimethyl-1*H*-indole (15 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3v** and **3v'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regioisomeric mixture of 3v and 3v' was obtained as a pale yellow oil. Combined yields: 24 mg, 0.07 mmol, 65%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.44–7.36 (m, 6H, Ar-CH), 7.35–7.27 (m, 10H, Ar-CH), 7.25–7.19 (m, 2H, Ar-CH), 7.19–7.14 (m, 2H, Ar-CH), 7.03–6.98 (m, 2H, Ar–CH), 6.89–6.82 (m, 5H, Ar–CH + H_{vinylic}), 6.74 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinylic}$), 6.44 (d, J = 15.8 Hz, 1H, $H_{vinylic}$), 6.40 (d, J = 15.8 Hz, 1H, $H_{vinylic}$), 5.19 (d, J = 7.2Hz, 1H, CH), 5.16 (d, J = 7.2 Hz, 1H, CH), 3.81 (two overlapped singlets, 6H, OMe), 3.70 (s, 6H, NMe), 2.41 (s, 6H, Me); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 158.9, 158.0, 144.0, 137.8, 136.94, 136.93, 135.8, 133.50, 133.48, 132.9, 130.6, 130.4, 130.34, 130.26, 130.0, 129.3, 128.58, 128.4, 128.3, 127.5, 127.12, 127.10, 127.06, 126.4, 126.1, 120.6, 120.5, 119.58, 119.57, 118.92, 118.91, 114.1, 114.0, 113.7, 112.53, 112.49, 108.8, 55.39 (OMe), 55.35 (OMe), 45.4 (CH), 44.7 (CH), 29.7 (NMe), 10.90 (Me), 10.89 (Me); IR v_{max} (cm⁻¹): 3024, 2932, 2833, 2349, 1736, 1607, 1508, 1470, 1366, 1246, 1175, 1030. HRMS (CI) [M] [C₂₆H₂₅ON]: calculated 367.1931, found 367.1926.

Synthesis of (E)-3-(3-(4-methoxyphenyl)-1-phenylallyl)-1-methyl-2-phenyl-1H-indole (**3w**) and (E)-3-(1-(4-methoxyphenyl)-3-phenylallyl)-1-methyl-2-phenyl-1H-indole (**3w'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 1f (28 mg, 0.1 mmol, 1 equiv.), and 1methyl-2-phenyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3w**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regionsomeric mixture of **3w** and **3w'** was obtained as a pale yellow oil. Combined yields: 28 mg, 0.07 mmol, 65%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.53-7.45 (m, 8H, Ar-CH), 7.45-7.36 (m, 6H, Ar-CH), 7.36-7.31 (m, 4H, Ar-CH), 7.31-7.23 (m, 10H, Ar-CH), 7.22–7.16 (m, 2H, Ar-CH), 7.09–7.02 (m, 2H, Ar-CH), 6.88–6.78 (m, 5H, Ar-CH + H_{vinylic}), 6.71 (dd, J = 15.8, 7.6 Hz, 1H, H_{vinylic}), 6.35 (d, J = 15.8 Hz, 1H, H_{vinylic}), 6.31 (d, J = 15.8 Hz, 1H, H_{vinylic}), 5.01 (d, J = 7.6 Hz, 1H, CH), 4.98 (d, J = 7.5 Hz, 1H, CH), 3.81 (s, 3H, NMe), 3.79 (s, 3H, NMe), 3.63 (s, 6H, OMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 158.9, 157.9, 144.2, 138.7, 138.6, 137.8, 137.62, 137.61, 136.1, 133.0, 132.08, 132.07, 130.99, 130.97, 130.6, 130.5, 130.1, 129.3, 128.53, 128.51, 128.4, 128.3, 128.2, 127.5, 127.1, 126.68, 126.66, 126.4, 126.0, 121.68, 121.67, 121.02, 121.01, 119.40, 119.39, 114.40, 114.38, 114.0, 113.7, 109.56, 109.55, 55.4 (OMe), 55.3 (OMe), 45.7 (CH), 44.9 (CH), 31.0 (NMe); IR v_{max} (cm⁻¹): 3057, 3026, 2930, 2833, 2349, 2326, 1607, 1508, 1466, 1248, 1175, 1034. HRMS (CI) [M] [C₃₁H₂₇ON]: calculated 429.2087, found 429.2081.

Synthesis of (E)-5-bromo-3-(3-(4-methoxyphenyl)-1-phenylallyl)-1-methyl-1H-indole (**3x**) *and (E)-5-bromo-3-(1-(4-methoxyphenyl)-3-phenylallyl)-1-methyl-1H-indole* (**3x'**)

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 1f (28 mg, 0.1 mmol, 1 equiv.), and 5bromo-1-methyl-1*H*-indole (21 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford **3x** and **3x'**. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regionsomeric mixture of 3x and 3x' was obtained as a yellow oil. Combined yields: 34 mg, 0.08 mmol, 79%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.48 (t, J = 2.2 Hz, 2H, Ar–CH), 7.34–7.27 (m, 4H, Ar–CH), 7.26–7.13 (m, 12H, Ar–CH), 7.09 (dd, J = 8.7, 1.8 Hz, 2H, Ar-CH), 6.83-6.75 (m, 4H, Ar-CH), 6.70 (s, 2H, indole CH), 6.61 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic}$), 6.48 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic}$), 6.32 (two overlapped doublets, t, J = 15.6 Hz, 2H, Hvinylic), 5.00-4.94 (m, 2H, CH), 3.74 + 3.75 (two overlapped singlets, 6H, OMe), 3.65 (two overlapped singlets, 6H, NMe); ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CDCl₃, 298 K) δ : 159.1, 158.4, 143.5, 137.3, 136.20, 136.18, 135.3, 132.7, 130.5, 130.28, 130.26, 130.25, 130.2, 129.4, 128.98, 128.95, 128.7, 128.62, 128.61, 128.5, 127.6, 127.3, 126.6, 126.4, 124.62, 124.60, 122.4, 117.2, 117.1, 114.09, 114.05, 114.0, 112.46, 112.45, 110.85, 110.84, 55.42 (OMe), 55.39 (OMe), 46.0 (CH), 45.1 (CH), 33.0 (NMe); IR v_{max} (cm⁻¹): 3024, 2930, 2833, 1732, 1606, 1508, 1474, 1422, 1246, 1175, 1031. HRMS (CI) [M] [C₂₅H₂₂ON⁷⁹Br]: calculated 431.0879, found 431.0874.

Synthesis of (E)-3-(3-(4-methoxyphenyl)-1-phenylallyl)-1H-indole (3y) and (E)-3-(1-(4-methoxyphenyl)-3-phenylallyl)-1H-indole (3y')

Synthesized in accordance with General Procedure e using B(3,4,5-Ar^F)₃ (6 mg, 0.015 mmol 0.15 equiv.), (E)-3-(4-methoxyphenyl)-1-phenylallyl acetate 1f (28 mg, 0.1 mmol, 1 equiv.), and indole (12 mg, 0.1 mmol, 1 equiv.) in CHCl₃ to afford 2y and 2y'. The crude reaction mixture was purified via preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. A 1:1 inseparable regionsometric mixture of $2\mathbf{y}$ and $2\mathbf{y}'$ was obtained as a vellow oil. Combined yields: 23 mg, 0.07 mmol, 68%. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.97 (s, br, 2H, NH), 7.46 (d, J =8.0, 2H, Ar-CH), 7.41-7.26 (m, 14H, Ar-CH), 7.26-7.17 (m, 4H, Ar-CH), 7.08-7.02 (m, 2H, Ar-CH), 6.91–6.90 (m, 2H, indole CH), 6.90–6.83 (m, 4H, Ar–CH), 6.74 (dd, J = 15.8, 7.3 Hz, 1H, $H_{vinvlic}$), 6.61 (dd, J = 15.8, 7.4 Hz, 1H, $H_{vinvlic}$), 6.43 (t, J = 15.7 Hz, 2H, $H_{vinvlic}$), 5.12 + 5.10 (two overlapped doublets, d, J = 7.4 Hz, 1H, CH, d, J = 7.4 Hz, 1H, CH), 3.81 (two overlapped singlets, 6H, OMe); ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) δ: 159.0, 158.2, 143.8, 137.7, 136.81, 136.79, 135.6, 133.0, 130.6, 130.5, 130.4, 130.0, 129.6, 128.61, 128.56, 128.52, 127.6, 127.2, 127.0, 126.9, 126.4, 122.72, 122.66, 122.20, 122.18, 120.07, 120.05, 119.5, 119.10, 119.05, 114.0, 113.9, 111.22, 111.21, 55.42 (OMe), 55.38 (OMe), 46.3 (CH), 45.5 (CH); IR v_{max} (cm⁻¹): 3416, 3026, 2932, 2835, 1607, 1508, 1456, 1246, 1175, 1032. HRMS (CI) [M] [C₂₄H₂₁ON]: calculated 339.1618, found 339.1615.

5. NMR Spectra

Figure S1: ¹**H NMR** (500 MHz, CDCl₃, 298 K) spectrum of **1a**. $\frac{\alpha}{2}$

									CDC																					
7.46 7.45 7.44 7.43 7.41	7.41	7.40	7.37	7.36	7.33	7.31	7.30	7.29	7.26	7.25	7.25	7.24	7.23	7.22	6.63	6.62	6.60	6.59	6.40	6.39	6.37	6.36	6.35	6.34	6.32	6.30	5.13	5.12	5.11	5.09
					L	-	L			5			\swarrow	_	5	-	Y	_ n	4	2	_	_	_	_			F	2	1	_

Figure S2: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **1a**.

79.36
 79.23
 77.16 CDCl3

									'		· · · ·			- I				'	'	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S3: ¹⁹**F NMR** (471 MHz, CDCl₃, 298 K) spectrum of **1a**.

Figure S5: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of 1b.

NIK (126 MI	HZ, $CDC1_3$, 298 K) spectrum of ID .)Cl3
- 170.05 \int 163.73 \int 163.62 \int 161.76 \int 161.66	\bigwedge 135.14 135.14 135.14 132.31 132.31 122.31 128.96 115.16 115.76 115.76 115.59	→ 77.16 CE → 75.47

— 21.40

				'	· · · · ·					'				·	·		·	· 1	· · · ·	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S6: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of 1b.

-113.44-113.66

	· · ·				'	· I	·			· I	· · ·	· ·	· · ·	'		'	· · ·	'	·	· · ·	·	'	· I	· ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S7: ¹**H NMR** (500 MHz, CDCl₃, 298 K) spectrum of **1c**.

Ō	
G	
2225664 2255664 22556664 22556664 22556664 22556664 22556666666666	81 81
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ຕໍ່ຕໍ
	$\checkmark$

- 2.12

MeO OMe



# Figure S8: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **1c**.

<b>N</b> ( 1	20 MIIL, CL	2 $2$ $2$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $2$ $3$ $3$ $2$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$				
Ì				DCI3		
170.19	159.62 159.53	131.98 131.70 129.08 128.60 127.99 125.55	114.06 114.05	77.16 C 76.14	55.37 55.35	
	$\vee$		$\vee$	52	$\vee$	

— 21.49





200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S9: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of 1d.


## Figure S10: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of 1d.

139.37 136.30 136.30 128.75 128.71 128.71 128.31 128.31 128.20 127.64 127.18 126.83

— 170.16

77.16 CDCl3 76.27

— 21.48





· · · · ·			- I											· · · ·				· · · ·	——————————————————————————————————————	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0



S38

## Figure S12: ¹³C{¹H} **NMR** (126 MHz, CDCl₃, 298 K) spectrum of **1e**.

 $\int_{-12}^{132.48} \int_{-128.79}^{132.46} \int_{-128.37}^{131.59} \int_{-128.37}^{128.79} \int_{-127.43}^{128.37} \int_{-127.43}^{128.37} \int_{-127.43}^{127.43} \int_{-127.43}$ 

— 170.15

77.16 CDCl3 76.21

O CH ₃ F			

																		·		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

## Figure S13: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of 1e.



1 1	1 1																					· · · ·		1
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22













200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0



### Figure S17: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3a**.







Figure S19: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3b**.







3.62 

## Figure S21: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3c**.







### Figure S23: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3d**.







S51

Figure S25: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3e**.



			·			·			·			· · · ·	1 1				·	·	1 1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0













								· .							·									
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:



6.11∄ 1.07差 5.08∄ 1.01_¶

7.0

8.0

8.5

7.5

10.0

9.5

9.0

1.00-I

6.5



4.5

5.0

3.02-I

3.5

3.0

4.0

3.00-I

2.0

1.5

1.0

0.5

0.0

2.5

1-66.0

5.5

6.0



### S57







							· I		· I		· I	· · ·	· I	· .	· I	• •	· I		· I	• • •			· I	· 1
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22







Ö Figure S34: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of **3h**.



									· I		· I		· I	· .	· I	· .	· .		· .	· .	· I	· I		· 1
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:







Figure S37: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of **3i**.

∕_ -114.80 ∕_ -116.48



						· · ·	'	· ·	'			· ·	· ·	· I	· ·	· · ·		'	'	'		· I	·	· ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S38: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **3j**.

	CI3	
	C	
000 $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$ $000$	$\begin{array}{c} 223\\ 223\\ 223\\ 223\\ 223\\ 223\\ 223\\ 223$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$
		$\begin{array}{c} - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\$



### Figure S39: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3**j.

63.25
62.66
61.29
61.29
60.72
160.72
139.05
133.61
133.58
133.58
133.58
132.18

03 96 69

30

119.88	119.68	118.59	115.60	115.42	115.25	111.33
_						

.67 .39

4

— 45.48







∽ -114.96 ~ -116.78



	1 1										' '	· ·	· I	· ·	· ·	· · ·	· I	·	· I	· ·				· 1
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2

Figure S41: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **3**k.  $\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$  $\begin{array}{c} 7,45\\ 7,45\\ 7,33\\ 7,33\\ 7,33\\ 7,33\\ 7,33\\ 7,26\\ 6,86\\ 6,86\\ 6,86\\ 6,86\\ 6,86\\ 6,86\\ 6,86\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\ 6,56\\$ 3.81 3.80 3.74  $\lor$ 4  $\searrow$ MeO -OMe Мe 1.02년 6.29년 4.12건 0.99년 0.98년 0.98년 6.20 3.01∄ F70.0

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.0

4.0

4.5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

5.5

Figure S42: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3k**.

158.97 158.17	137.55 137.55 136.03 137.55 138.05 138.05 122.55 122.55 122.55 122.55 122.55 122.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 123.55 12	- 77.16 CDCl3	<ul> <li>55.41</li> <li>55.37</li> <li>45.41</li> </ul>
52			$\vee$ I

— 32.79



								'																	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C	) .	-10

# Figure S43: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **3**l.

Ö			
C			
7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.12	8.81 8.80 8.69	.40












Figure S46: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3m**.









## Figure S48: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3n**.





# Figure S50: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **30**.

20 10111	L, CDCI3, 270 R spectrum of $50$ .		
		DCI3	
158.99 158.19	136.84 135.89 130.52 129.78 129.78 122.15 122.66 122.15 1122.15 119.47 119.33 119.33 119.33 119.33 111.21	77.16 CI	55.43 55.38
52			$\vee$

---- 45.46







S79



∕_ -115.23 ∕_ -116.96







Figure S55: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3q** and **3q'**.









Figure S58: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3r** and **3r'**.







**S**87



Figure S61: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3s** and **3s'**.

Figure S62: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of **3s** and **3s'**.

∕_ -115.02 ∕_ -116.59







Figure S64: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3t** and **3t'**.



∕~ -115.21 ∕~ -116.93





Figure S66: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of **3u** and **3u'**.

Figure S67: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3u** and **3u'**.

20 101112,	$c_{D}c_{1}, c_{J}c_{J}$	, it, speed and		<i>.</i>		
		/ <b>1</b>				33
						0
						<u> </u>
NΜ	∞ ← ∅ ∞ ►	t 4 N 00 N - 0	0 0 0 4 0 4 0	7 3 7 3 6 7 0 3	N0400108	0
o vi	0 N U U N T	- 1 4 0 0 0 0	ດ ທີ່ທີ່ທີ່ 4 4 ພ	0040VV	04400000	078040
တ္ဆ	5 7 7 2 S		8887777		8 V V 4 4 6 0	
<u> </u>	400000					N 0 0 4 4 0
C)						
17						









Figure S69: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3v** and **3v'**.





Figure S71: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3w** and **3w'**.





Figure S73: ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of **3x** and **3x'**.









0.0

### 6. Computational Data

### **6.1 Computational details**

Gaussian 16¹¹ was used to fully optimize all the structures at the M06-2X level¹² of theory using the SMD solvation model¹³ in Chloroform. The 6-31G(d) basis set¹⁴ was chosen for all atoms. Frequency calculations were carried out at the same level of theory as those for thestructural optimization. Transition structures were located using the Berny algorithm and intrinsic reaction coordinate (IRC) calculations^{15,16} were employed to confirm the connectivity between transition structures and minima. To further refine the energies obtained from the SMD/M06-2X/6-31G(d) calculations, single-point energy calculations using the M06-2X functional method were carried out for all of the structures with a larger basis set def2-TZVP¹⁷ and the SMD solvation model in dichloromethane. Furthermore, the B3LYP^{18–22} and B3LYP-D3²³ functional methods were utilized to perform single-point energy calculations for **TS**₃, with the aim of investigating the impact of dispersive interactions. All thermodynamic data were calculated in the standard state (298.15 K and 1 atm). An additional correction for compression of 1 mol of an ideal gas from 1 atm to the 1 M solution phase standard state (1.89 kcal/mol) was applied.²⁴

# 6.2 Cartesian coordinates and total energies for the calculated structures in Chloroform 1a·B(C₆F₃H₂)₃

E(SMD/M06.2Y/6.21C(d)) = .2717.528012  au					
E(SWD/W00-2X/0-510(u)) = -2/17.338915 au					
H(SMD/M06-2X/6-31G(d)) = -2717.020889 au					
G(SM	D/M06-2X/6-31G(d	)) = -2717.145	445 au		
E(SM	E(SMD/M06-2X/def2-TZVP//SMD/M06-2X /6-31G(d)) = -2718.668489 au				
С	-8.00127900	2.70430800	0.60223800		
С	-6.64406200	2.46233200	0.41060200		
С	-6.08625900	1.21421600	0.71421800		
С	-6.92899300	0.20299100	1.19701500		
С	-8.28425200	0.44363700	1.38784400		
С	-8.82565900	1.69571300	1.09428300		
Н	-8.41442900	3.67993900	0.36453900		
Н	-6.00156300	3.24994500	0.02453400		
Н	-6.52649700	-0.78355200	1.40832600		
Н	-8.92389700	-0.35139000	1.75933800		
Н	-9.88557500	1.87934400	1.24153900		
С	-4.64087500	1.01674000	0.50557400		
С	-3.91810500	0.00622000	0.99477900		
С	-2.45432700	-0.21070600	0.75888500		
С	-2.15678600	-1.49961400	0.02048300		
С	-2.64236100	-1.66878300	-1.28036500		

С	-1.40372100	-2.50653900	0.62098300
С	-2.36414100	-2.83789500	-1.97839100
Н	-3.23252200	-0.88082000	-1.74234400
С	-1.14391800	-3.68882000	-0.07460500
Н	-1.00929500	-2.36592700	1.62489400
С	-1.61766900	-3.85131000	-1.37338900
Н	-2.72697800	-2.96093900	-2.99381900
Н	-0.55321500	-4.47178800	0.39215700
Н	-1.40150200	-4.76423600	-1.91984300
Н	-4.36524000	-0.76838300	1.61419800
Н	-4.14743000	1.78541500	-0.08596300
0	-1.99118500	0.91255100	-0.07541900
С	-0.72490900	1.09044100	-0.22179100
0	0.12945600	0.50002700	0.43305900
С	-0.43813000	2.12662600	-1.33175900
F	-0.51396300	1.53138700	-2.51807500
F	-1.35118600	3.09047700	-1.27818300
F	0.76339100	2.65853200	-1.17967600
Н	-1.89162200	-0.17350600	1.69739000
В	1.75850000	0.04448500	0.14732300
С	2.67549600	1.22412100	0.73104700
С	4.06738100	1.07225300	0.62643500
С	2.18463800	2.34808600	1.40450400
С	4.92041200	2.02161000	1.15975200
Н	4.50743300	0.20972500	0.13217200
С	3.05689400	3.28452800	1.93760000
Н	1.12140900	2.52539800	1.53409500
С	4.42947600	3.13879000	1.82160800
С	1.80341300	-1.26701900	1.08667000
С	2.10528800	-2.54485100	0.60647500
С	1.50848100	-1.12463600	2.45288900
С	2.07624700	-3.63834200	1.45942200
Н	2.34487100	-2.72263400	-0.43727300
С	1.48528200	-2.22591500	3.28707000
Н	1.28873900	-0.15142700	2.88480800
С	1.76021200	-3.49889500	2.80059900
С	1.78297300	-0.20458500	-1.44287500
С	2.58350800	0.54887300	-2.31014900
С	0.90993800	-1.15325400	-2.00321900
С	2.50970200	0.35363400	-3.67971800

Н	3.26154700	1.31221300	-1.94064700
С	0.84623700	-1.32868300	-3.37373900
Н	0.26689400	-1.76931000	-1.37909600
С	1.64172000	-0.57806800	-4.22844700
F	2.32400000	-4.87305800	0.99995900
F	1.72749000	-4.55974200	3.61124600
F	1.19808100	-2.10373500	4.59004400
F	6.24899300	1.88875300	1.05837300
F	5.26109800	4.04895800	2.33634600
F	2.59180500	4.36278900	2.58298500
F	0.01615800	-2.22731700	-3.91979000
F	1.57365800	-0.75140300	-5.55004300
F	3.26704100	1.07165400	-4.51895100
1a			
E(SMD/	M06-2X /6-31G(	d)) = -1105.19	1193 au
H(SMD/	M06-2X/6-31G(d	)) = -1104.904	906 au
G(SMD/	M06-2X/6-31G(d	)) = -1104.977	'169 au
E(SMD/]	M06-2X/def2-TZ	VP//SMD/M0	6-2X/6-31G(d)) = -1105.639887 au
С	-5.28226500	-1.10323300	0.70738500
С	-3.89799400	-1.15160400	0.56816400
С	-3.20342400	-0.13910100	-0.10599100
С	-3.93799800	0.92940400	-0.64142500
С	-5.31967300	0.97866500	-0.50340400
С	-5.99871000	-0.03668700	0.17166400
Η	-5.79964600	-1.89933900	1.23440700
Н	-3.34054900	-1.98564400	0.98733900
Н	-3.42916100	1.72931700	-1.17137200
Н	-5.87149500	1.81361300	-0.92501000
Н	-7.07848000	0.00567800	0.27742600
С	-1.73786100	-0.24947700	-0.21833200
С	-0.92277500	0.62883300	-0.80757100
С	0.56792900	0.49048000	-0.90628500
С	1.31492100	1.64666500	-0.27101600
С	0.99976600	2.04687200	1.02989800
С	2.33092200	2.29832000	-0.96880300
С	1.69568100	3.09355700	1.62548700
Н	0.20627000	1.53638200	1.57009200
С	3.02141400	3.35345500	-0.37534400
Н	2.58522900	1.97344200	-1.97421800
С	2.70496200	3.75067000	0.92127100

Н	1.44859900	3.40087000	2.63712600
Н	3.80935500	3.86000600	-0.92432300
Н	3.24425500	4.57117700	1.38503900
Н	-1.30052800	1.53988100	-1.26702500
Н	-1.30675900	-1.14366000	0.22731900
0	0.93913000	-0.74464700	-0.24001700
С	2.09741800	-1.27891200	-0.58549000
0	2.87701800	-0.88172800	-1.40609300
С	2.33428300	-2.54752100	0.25118900
F	3.42871900	-3.17442600	-0.15972400
F	2.47958000	-2.22967600	1.53965700
F	1.29564500	-3.37984800	0.14451400
Н	0.86867300	0.40250100	-1.95633500
2a			
E(SM	D/ M06-2X /6-31G(	d)) = -402.966	6165 au
H(SM	D/M06-2X/6-31G(d	)) = -402.7979	92 au
G(SM	D/M06-2X/6-31G(d	)) = -402.8396	99 au
E(SM	D/M06-2X/def2-TZ	VP//SMD/M06	6-2X/6-31G(d) = -403.116407 au
С	0.38628600	0.98631200	0.00000400
С	-0.15278800	-0.32622300	-0.00006100
С	0.65476600	-1.47036700	-0.00002800
С	2.02680400	-1.28032200	-0.00000700
С	2.58621000	0.01445600	0.00002900
С	1.78307500	1.14243100	0.00003100
С	-0.72986600	1.88807900	0.00004200
С	-1.85784400	1.11387600	-0.00003500
Н	0.22244800	-2.46688500	-0.00001200
Н	2.68482500	-2.14418500	-0.00001500
Н	3.66658400	0.12405900	-0.00000200
Н	2.22372200	2.13571200	0.00009100
Н	-0.69732800	2.96849300	0.00001900
Н	-2.90115900	1.40125800	-0.00001100
Ν	-1.52273600	-0.22026700	-0.00014000
С	-2.44320600	-1.33719700	0.00010600
Н	-2.29819000	-1.95592800	-0.89075500
Η	-2.29868800	-1.95524100	0.89153100
Η	-3.46368600	-0.95168000	-0.00035900
3a			
E(SM	D/ MOG 2V /6 21C(	(4)) = 0.091.552	2214 ou

E(SMD/M06-2X/6-31G(d)) = -981.5522314 au H(SMD/M06-2X/6-31G(d)) = -981.144385 au

G(SMD/M06-2X/6-31G(d)) = -981.218499 au				
E(SMD/M06-2X/def2-TZVP//SMD/M06-2X/6-31G(d)) = -981.9093043 au				
С	5.70913000	-1.13440100	0.20669900	
С	4.61573400	-0.31852600	-0.07031800	
С	3.30491100	-0.79827300	0.05223500	
С	3.12017000	-2.12069100	0.48293700	
С	4.21112100	-2.93624500	0.76039200	
С	5.51105700	-2.44892100	0.62128900	
Н	6.71601400	-0.74132100	0.10049200	
Н	4.77372000	0.70781400	-0.39284800	
Н	2.11533600	-2.51072700	0.61739900	
Н	4.04666800	-3.95629000	1.09537300	
Н	6.36080500	-3.08779200	0.84223100	
С	2.18456200	0.10623400	-0.26831100	
С	0.91628600	-0.26233800	-0.47143700	
С	-0.23674500	0.65876600	-0.83553800	
С	0.02109800	2.12362500	-0.53564500	
С	0.37367000	2.54032900	0.75432700	
С	-0.12177000	3.08843300	-1.53342300	
С	0.57122600	3.88865300	1.03651900	
Н	0.49898200	1.79688300	1.53789600	
С	0.07861200	4.44034500	-1.25538600	
Н	-0.39450700	2.77829000	-2.53932100	
С	0.42424300	4.84432000	0.03079700	
Н	0.84446700	4.19438100	2.04236200	
Н	-0.03520800	5.17589500	-2.04638700	
Н	0.58192800	5.89616300	0.24998400	
Н	0.64775700	-1.31669500	-0.41478400	
Н	2.45284000	1.15846900	-0.35520900	
Н	-0.37486400	0.56859000	-1.92474600	
С	-2.17242000	-1.08187100	-0.49876000	
С	-3.32785400	-1.15278300	0.31928000	
С	-4.20828400	-2.24040900	0.28116900	
С	-3.91464000	-3.26627300	-0.60280000	
С	-2.77643100	-3.21407100	-1.43301200	
С	-1.90722200	-2.13582900	-1.38983400	
С	-1.51876400	0.16621300	-0.19618800	
С	-2.29323400	0.77604300	0.75573200	
Н	-5.08807900	-2.27642300	0.91727200	
Н	-4.57547800	-4.12605400	-0.65975700	
Η	-2.58173100	-4.03406200	-2.11763700	
---------------------------------	-------------------	----------------	----------------------------------	
Н	-1.03499700	-2.10463900	-2.03839200	
Н	-2.16676900	1.73420100	1.24231800	
Ν	-3.37880900	-0.00840300	1.07498500	
С	-4.41432500	0.31109800	2.03405300	
Н	-5.39325100	0.34725600	1.54611100	
Н	-4.44196100	-0.43414500	2.83508400	
Η	-4.20078800	1.28845000	2.46899800	
B(C ₆ F ₃	3 <b>H</b> 2)3			
E(SMI	D/ M06-2X /6-31G(	d)) = -1612.33	3093 au	
H(SMI	D/M06-2X/6-31G(d	)) = -1612.102	2882 au	
G(SMI	D/M06-2X/6-31G(d	)) = -1612.181	13 au	
E(SMI	D/M06-2X/def2-TZ	VP//SMD/M0	6-2X/6-31G(d)) = -1613.023787 au	
В	-0.00223000	0.00194000	-0.00223600	
С	0.36852200	-1.52059000	-0.00307800	
С	-0.44851500	-2.45887400	-0.65722600	
С	-0.10407100	-3.79816500	-0.66077400	
С	1.02988400	-4.24744300	0.00264800	
С	1.83136500	-3.32570600	0.66282100	
С	1.52352400	-1.97749200	0.65450200	
С	-1.50626400	0.44333400	-0.00122200	
С	-1.90776000	1.62583400	-0.64695400	
С	-3.23963400	1.99788900	-0.65173400	
С	-4.19807300	1.23478400	0.00134500	
С	-3.80377500	0.07359800	0.65249600	
С	-2.48251000	-0.33414800	0.64538100	
С	1.13330200	1.08205000	-0.00321800	
С	0.95614100	2.31263700	0.65280700	
С	1.97298900	3.24987900	0.65925800	
С	3.17075300	3.01121700	-0.00109700	
С	3.34393100	1.80344300	-0.66399000	
С	2.35264700	0.83907500	-0.65921100	
F	-0.85699000	-4.70355400	-1.29377600	
F	1.34262100	-5.54091300	0.00563000	
F	2.91385700	-3.78298300	1.30045000	
F	-3.64548300	3.10679100	-1.27830100	
F	-5.47444400	1.61077800	0.00455200	
F	-4.74425200	-0.64213600	1.27757800	
F	4.50326000	1.59913700	-1.29792000	
F	4.13702000	3.92595100	0.00100600	

F	1.83183700	4.41745200	1.29485800
Н	-1.35114400	-2.15881400	-1.17968200
Н	2.18645200	-1.29631900	1.17808700
Н	2.53982700	-0.09343100	-1.18232200
Н	0.03623100	2.55082100	1.17693100
Н	-1.19556000	2.26005700	-1.16499300
Н	-2.22624000	-1.25466000	1.15993400
Ι			
E(SMD/	M06-2X /6-31G(	d)) = -578.973	7561 au
H(SMD/	M06-2X/6-31G(d	)) = -578.7248	34 au
G(SMD/	M06-2X/6-31G(d	)) = -578.7780	87 au
E(SMD/N	M06-2X/def2-TZ	VP//SMD/M06	5-2X / (6-31G(d)) = -579.1808252 au
С	4.89921900	-0.78721900	0.00042300
С	3.58623500	-1.22770900	0.00044200
С	2.51951700	-0.30181400	0.00002800
С	2.80582400	1.08303000	-0.00047300
С	4.11888900	1.51516700	-0.00053300
С	5.16350700	0.58315900	-0.00008800
Н	5.71564000	-1.50124700	0.00075500
Н	3.36104900	-2.29064800	0.00082400
Н	2.00305800	1.81286700	-0.00085200
Н	4.34082000	2.57689500	-0.00091900
Н	6.19147200	0.93225900	-0.00017500
С	1.19005000	-0.82509800	0.00000200
С	-0.00000400	-0.11339000	-0.00010000
С	-1.19005800	-0.82510500	-0.00004900
С	-2.51954600	-0.30184100	0.00012000
С	-2.80580900	1.08300800	0.00063700
С	-3.58625600	-1.22772400	-0.00035700
С	-4.11886400	1.51519000	0.00051800
Н	-2.00300100	1.81279800	0.00119700
С	-4.89922200	-0.78720100	-0.00046600
Н	-3.36108700	-2.29066900	-0.00065300
С	-5.16347900	0.58318700	-0.00007400
Н	-4.34079200	2.57691600	0.00090700
Н	-5.71567100	-1.50120000	-0.00085300
Н	-6.19144800	0.93228100	-0.00023000
Н	-0.00001900	0.97151100	-0.00009900
Н	1.11539600	-1.91280100	0.00011400
Н	-1.11543500	-1.91280400	-0.00018600

II

E(SMD/ M06-2X /6-31G(d)) = -2138.536235 au			
H(SM)	D/M06-2X/6-31G(d)) = -2138.270746 au		
G(SM)	D/M06-2X/6-31G(d)) = -2138.36283 au		
E(SMI	D/M06-2X/def2-TZVP//SMD/M06-2X /6-31C	G(d) = -2139.471387 au	
С	-0.20560700 -1.45390400 2.1654700	0	
Ο	-0.65603400 -2.43564800 1.622959	00	
Ο	0.07110400 -0.28606500 1.6785200	00	
С	0.18841900 -1.49830900 3.6539350	00	
F	-0.22195800 -2.62334900 4.2352090	00	
F	-0.32393700 -0.46612900 4.3330800	00	
F	1.52498600 -1.43439200 3.7713920	0	
В	-0.06018600 0.03856300 0.1825820	00	
С	0.92508100 -0.95245100 -0.6563330	00	
С	0.75704200 -1.16990100 -2.0314040	00	
С	2.04419400 -1.52989800 -0.0379990	00	
С	1.66608500 -1.93444900 -2.7440540	00	
Н	-0.09038600 -0.75578400 -2.571288	00	
С	2.93931200 -2.29376600 -0.7652790	00	
Н	2.23856500 -1.38999800 1.0223660	00	
С	2.76596100 -2.50695100 -2.1249550	00	
С	-1.63270500 -0.05007900 -0.250920	00	
С	-2.47724400 1.05779300 -0.0840780	00	
С	-2.20672500 -1.23535800 -0.736368	00	
С	-3.82542200 0.97820700 -0.3911290	00	
Н	-2.09668900 2.00471100 0.2884760	00	
С	-3.55449700 -1.29535000 -1.044147	00	
Н	-1.61124400 -2.13380300 -0.863355	00	
С	-4.38126500 -0.19376400 -0.878695	00	
С	0.52266700 1.55576800 0.0526190	00	
С	0.44324500 2.24418700 -1.1685630	00	
С	1.15480800 2.19836900 1.1245510	0	
С	0.97481000 3.51358200 -1.3003190	00	
Н	-0.04011300 1.80152800 -2.036157	00	
С	1.68274000 3.47097700 0.9722680	0	
Н	1.24119600 1.71656400 2.0931480	00	
С	1.60233900 4.14523800 -0.2349370	00	
F	4.01063700 -2.85219300 -0.1781120	00	
F	3.63794700 -3.24943900 -2.8205800	00	
F	1.50623800 -2.14946100 -4.0603660	00	

F	-4.10926400	-2.42563400	-1.51306200
F	-5.68388100	-0.26177700	-1.18274300
F	-4.63662800	2.03755900	-0.23181300
F	0.89929600	4.18045700	-2.46392900
F	2.11227600	5.37694500	-0.37241200
F	2.28869100	4.09386100	1.99712200
III			
E(SMD/ M(	)6-2X /6-31G(	d)) = -981.976	5869 au
H(SMD/M0	6-2X/6-31G(d	)) = -981.5556	44 au
G(SMD/M0	6-2X/6-31G(d	)) = -981.6279	55 au
E(SMD/M0	6-2X/def2-TZ	VP//SMD/M06	6-2X/6-31G(d) = -982.3291514 au
С	6.08276100	0.65895300	0.25993200
С	4.72579600	0.93256600	0.11382500
С	3.81789100	-0.07808500	-0.22745900
С	4.30680000	-1.38090700	-0.40587900
С	5.66103400	-1.65534900	-0.25929000
С	6.55547100	-0.63701200	0.07268300
Η	6.76926500	1.45856500	0.52101800
Η	4.35860500	1.94541800	0.25976300
Н	3.62639000	-2.19087500	-0.65263500
Н	6.02203300	-2.66986100	-0.39978100
Н	7.61258900	-0.85596000	0.18786300
С	2.39440200	0.27807500	-0.37240500
С	1.43127700	-0.50782600	-0.86397600
С	-0.01865600	-0.12898900	-1.04891500
С	-0.46982500	1.15802600	-0.38578000
С	-0.27969600	1.38188900	0.98322600
С	-1.14920400	2.12159200	-1.13372500
С	-0.76313300	2.53872000	1.58837300
Н	0.27217600	0.65847000	1.58046500
С	-1.63115100	3.28240000	-0.53216200
Н	-1.30361100	1.95826600	-2.19767000
С	-1.44229200	3.49187900	0.83106400
Н	-0.60135000	2.70022100	2.64991900
Н	-2.15465700	4.02188400	-1.13033300
Н	-1.81727600	4.39526800	1.30208700
Н	1.67850200	-1.50825600	-1.21966700
Н	2.14113600	1.28877500	-0.05598700
Н	-0.20845500	-0.03662800	-2.12710900
С	-2.40517000	-1.08095400	-0.81533400

С	-3.03445900	-1.15865800	0.42424900
С	-4.38938300	-0.95574900	0.62244300
С	-5.13280000	-0.65006500	-0.51687700
С	-4.52656600	-0.55905000	-1.77334800
С	-3.15610200	-0.77152400	-1.93885200
С	-0.93543300	-1.32820600	-0.61652800
С	-0.87558800	-1.58757800	0.84988400
Н	-4.84896300	-1.02762400	1.60238800
Н	-6.19983400	-0.47846300	-0.42377200
Н	-5.13505600	-0.31690200	-2.63855900
Н	-2.69628700	-0.69628800	-2.91944800
Н	-0.58369800	-2.22356100	-1.14842100
Н	0.00572000	-1.82545400	1.43754400
Ν	-2.03836000	-1.47573800	1.40080400
С	-2.33776800	-1.59709600	2.82461900
Н	-2.71959500	-0.63598800	3.17506400
Н	-3.09451100	-2.37199500	2.95822100
Н	-1.42382700	-1.86116600	3.35482500
IV			
E(SMD/ M(	)6-2X /6-31G(	d)) = -2138.954	4116 au
H(SMD/M0	6-2X/6-31G(d	)) = -2138.674	906 au
G(SMD/M0	6-2X/6-31G(d	)) = -2138.771	202 au
E(SMD/M0	6-2X/def2-TZ	VP//SMD/M06	5-2X/6-31G(d) = -2139.884572 au
C	-0.75968500	-1.13150700	2.16574200
0	-1.58202600	-1.93753900	1.59316800
0	-0.07201000	-0.25000200	1.65083000
С	-0.61116300	-1.38383200	3.67567600
F	-1.78754400	-1.67388100	4.21154500
F	-0.09854900	-0.31564500	4.26085000
F	0.20872600	-2.41881900	3.84488000
В	0.04823300	0.10915900	0.04811200
С	1.01173200	-1.03391700	-0.56235400
С	1.29997000	-0.96794100	-1.93610500
С	1.60952100	-2.05375800	0.18633900
С	2.13826300	-1.89630000	-2.52424000
Н	0.88075900	-0.18716700	-2.56573400
С	2.45093600	-2.97370000	-0.42336900
Н	1.46941200	-2.15792300	1.25871700
С	2.72360700	-2.91217800	-1.77859100
С	-1.47298900	0.11583800	-0.51552700

С	-2.38305000	1.05539800	0.00119700
С	-1.93936900	-0.79787400	-1.47427700
С	-3.69486700	1.07411400	-0.43335200
Н	-2.07448500	1.79416500	0.73627400
С	-3.26214700	-0.75873000	-1.89908300
Н	-1.28552200	-1.54177900	-1.92054000
С	-4.15174600	0.16928300	-1.38546300
С	0.75252200	1.55590000	0.06072000
С	0.42800500	2.52286400	-0.89774200
С	1.77039700	1.84555400	0.98149600
С	1.10397300	3.73287200	-0.92879900
Η	-0.35644300	2.35913200	-1.63133700
С	2.42313400	3.06402700	0.94098800
Η	2.06769500	1.13191900	1.74429400
С	2.10257000	4.02099300	-0.01274700
F	3.02622600	-3.94861700	0.29098700
F	3.53156500	-3.80385300	-2.35640100
F	2.41332200	-1.84491000	-3.83256800
F	-3.71015200	-1.61953000	-2.81662000
F	-5.41837500	0.20036100	-1.79591400
F	-4.56844700	1.96326300	0.04614100
F	0.80128700	4.66513000	-1.84160000
F	2.73986700	5.19441600	-0.04180100
F	3.38841800	3.35968100	1.82119700
Н	-1.68508800	-1.74479200	0.62646700
TFA			
E(SMD/	M06-2X /6-31G(	d)) = -526.610	5371 au
H(SMD/	M06-2X/6-31G(d	)) = -526.5644	47 au
G(SMD/	M06-2X/6-31G(d	)) = -526.6001	94 au
E(SMD/	M06-2X/def2-TZ	VP//SMD/M06	5-2X/6-31G(d) = -526.8568165 au
С	-0.93463900	0.15668800	-0.00245600
0	-1.50640900	-1.03938000	-0.00115000
0	-1.48270500	1.22184800	-0.00090900
С	0.59421400	-0.00099300	-0.00063400
F	0.99067700	-0.70442400	-1.06303400
F	0.99000500	-0.64760400	1.09793500
F	1.17860500	1.18874800	-0.03136800
Н	-2.47812100	-0.92440700	0.00321500
TS1			
E(SMD/	M06-2X /6-31G(	d)) = -2717.53	7557 au

S114

H(SMD/M06-2X/6-31G(d)) = -2717.020517 au				
G(SMD/M(	)6-2X/6-31G(d	)) = -2717.144	114 au	
E(SMD/M0	6-2X/def2-TZ	VP//SMD/M06	6-2X/6-31G(d)) = -2718.667579 au	
С	-7.95082900	-2.66002100	-1.30020800	
С	-6.60336300	-2.44011100	-1.02923200	
С	-6.06978400	-1.14521100	-1.03563900	
С	-6.92843800	-0.06888700	-1.30104300	
С	-8.27393900	-0.28749000	-1.57124800	
С	-8.79048300	-1.58370500	-1.57496300	
Н	-8.34430600	-3.67207300	-1.29422400	
Н	-5.94888300	-3.28116400	-0.81363200	
Н	-6.54625100	0.94761300	-1.27937300	
Н	-8.92567400	0.55759300	-1.77217700	
Н	-9.84289000	-1.75065400	-1.78336400	
С	-4.63287800	-0.97189200	-0.75761100	
С	-3.92482300	0.13673800	-0.98674000	
С	-2.46710300	0.31216300	-0.68292400	
С	-2.20550600	1.41911500	0.31869300	
С	-2.70197300	1.28995500	1.61990000	
С	-1.48111800	2.55345300	-0.04113700	
С	-2.46733700	2.28977200	2.55599900	
Н	-3.26758700	0.40233100	1.89341200	
С	-1.26343400	3.56587500	0.89569500	
Н	-1.07641600	2.64372700	-1.04714700	
С	-1.75084900	3.43195300	2.19249800	
Н	-2.84096900	2.18094000	3.56915700	
Н	-0.69540200	4.44885200	0.61724500	
Н	-1.57061000	4.21414700	2.92356700	
Н	-4.37974500	1.02522600	-1.41984100	
Н	-4.12948700	-1.84604900	-0.34922200	
0	-1.99414100	-0.94844800	-0.10861200	
С	-0.71204200	-1.15813400	-0.08854000	
0	0.12864500	-0.46586300	-0.62986600	
С	-0.38351900	-2.41822000	0.73635000	
F	-0.46034400	-2.13506000	2.03566300	
F	-1.25656800	-3.38382800	0.46119400	
F	0.83851100	-2.84680700	0.45452100	
Н	-1.89532000	0.49378500	-1.59946000	
В	1.97855200	0.11863100	-0.09909300	
С	2.91156600	-0.87792600	-0.91569400	

С	4.29556300	-0.71925000	-0.73632400		
С	2.46599900	-1.83596500	-1.83257400		
С	5.18806200	-1.50458600	-1.44438600		
Н	4.69936000	0.01810900	-0.04707900		
С	3.37900700	-2.60704600	-2.53435400		
Н	1.41143900	-2.00606600	-2.01839900		
С	4.74425700	-2.45643500	-2.35142300		
С	1.82802400	1.56975200	-0.73617300		
С	1.97511900	2.73809500	0.01936400		
С	1.55278100	1.69105800	-2.10854400		
С	1.82015500	3.97901500	-0.57921900		
Н	2.19531400	2.71066200	1.08187800		
С	1.39704900	2.93677800	-2.68413400		
Н	1.44955300	0.81461200	-2.74239400		
С	1.52119500	4.09659900	-1.92639600		
С	1.82830300	-0.07282700	1.47205200		
С	2.58175200	-1.03568400	2.15748700		
С	0.87951400	0.67228000	2.19482500		
С	2.39560600	-1.23371400	3.51487300		
Н	3.31179700	-1.65536100	1.64599400		
С	0.70459900	0.45267200	3.54914200		
Н	0.25762700	1.42311000	1.71302500		
С	1.45683200	-0.49959900	4.22399400		
F	1.91843700	5.10509700	0.14080000		
F	1.36504600	5.29580000	-2.48933500		
F	1.12467600	3.06985800	-3.98812700		
F	6.50886000	-1.36653900	-1.27740800		
F	5.61292200	-3.20838700	-3.03186500		
F	2.96187300	-3.52681500	-3.41392100		
F	-0.19397900	1.14890700	4.25592100		
F	1.27929300	-0.70309900	5.52948400		
F	3.10814900	-2.14906700	4.18208900		
TS2					
E(SMD/M06-2X/6-31G(d)) = -2717.522813 au					
H(SN	MD/M06-2X/6-31G(d	l)) = -2717.007	'117 au		
G(SN	G(SMD/M06-2X/6-31G(d)) = -2717.13123 au				
E(SN	/ID/M06-2X/def2-TZ	VP//SMD/M0	6-2X/6-31G(d)) = -2718.655148 au		
С	-7.87107800	-2.74512100	0.36101400		
С	-6.56738200	-2.37804500	0.05278600		
С	-6.12453500	-1.06244300	0.26866900		

С	-7.02097500	-0.11731700	0.80033000
С	-8.32190400	-0.48661100	1.10511100
С	-8.74876900	-1.79915500	0.88681600
Н	-8.20264600	-3.76448000	0.19234000
Н	-5.87574100	-3.10908100	-0.35737700
Н	-6.70065300	0.90521900	0.97380100
Н	-9.00963500	0.24620800	1.51461700
Н	-9.76887300	-2.08183000	1.12825600
С	-4.74992800	-0.74025700	-0.06617700
С	-4.12741900	0.46072300	0.07090200
С	-2.78067400	0.59092700	-0.36318800
С	-2.15230000	1.88115200	-0.59640500
С	-2.39209400	2.97427900	0.25544300
С	-1.31030900	2.03222900	-1.70830500
С	-1.79243600	4.19587700	-0.00521700
Н	-3.01344900	2.84523600	1.13713100
С	-0.74945000	3.27524800	-1.99017600
Н	-1.10851500	1.18066000	-2.35320700
С	-0.98151700	4.34939700	-1.13498300
Н	-1.94964000	5.03217100	0.66794000
Н	-0.10617600	3.39638100	-2.85624700
Н	-0.51899500	5.31049600	-1.33791100
Н	-4.63439700	1.33287100	0.47176900
Н	-4.16420000	-1.56226200	-0.47902900
0	-1.84411000	0.10759100	1.43242200
С	-0.65350200	-0.21219700	1.38124900
0	-0.03425400	-0.48900700	0.30651600
С	0.03214100	-0.30054500	2.77095300
F	0.27999500	0.92147900	3.24439900
F	-0.80026300	-0.90926700	3.61805500
F	1.16826700	-0.98883300	2.74684700
Н	-2.34100700	-0.25913500	-0.88218900
В	1.49662600	-0.37059500	-0.10497500
С	2.21311000	-1.80475500	0.10263600
С	3.54034100	-1.96838500	-0.32573400
С	1.54961400	-2.92570400	0.61491000
С	4.17168600	-3.19456500	-0.21773500
Η	4.09947000	-1.14237700	-0.75870900
С	2.19527000	-4.14866600	0.70582800
Н	0.51949000	-2.87323800	0.95416700

С	3.51025700	-4.30088000	0.29738100	
С	1.35775900	-0.07085900	-1.70177700	
С	1.85390500	1.07787900	-2.32437500	
С	0.65659500	-0.99676300	-2.49378500	
С	1.62310300	1.30254500	-3.67400500	
Н	2.39873000	1.83667300	-1.77040800	
С	0.43999100	-0.75844800	-3.83770900	
Н	0.26669100	-1.91787100	-2.06746500	
С	0.91014300	0.40052500	-4.44554500	
С	2.11228200	0.87641800	0.73138000	
С	3.28188300	0.80018800	1.49655100	
С	1.41685400	2.09714900	0.71965800	
С	3.72901300	1.90064800	2.21022600	
Н	3.85362000	-0.11998000	1.57121600	
С	1.87457900	3.18397000	1.44200800	
Н	0.49884000	2.21744800	0.14955500	
С	3.03672900	3.10211500	2.19509500	
F	2.05223300	2.42986600	-4.26410000	
F	0.68762100	0.62971000	-5.74377500	
F	-0.23259500	-1.63365700	-4.59979900	
F	5.44151200	-3.35592900	-0.61703300	
F	4.12593000	-5.48483700	0.39127200	
F	1.56095600	-5.22560500	1.19397000	
F	1.20886500	4.34891500	1.43502100	
F	3.47687300	4.15493400	2.89156200	
F	4.84560300	1.83409800	2.94937600	
TS3				
E(SMD/ N	A06-2X /6-31G(	d)) = -981.946	285 au	
H(SMD/M	106-2X/6-31G(d	l)) = -981.5276	i99 au	
G(SMD/N	106-2X/6-31G(d	l)) = -981.5994	-14 au	
E(SMD/M06-2X/def2-TZVP//SMD/M06-2X/6-31G(d)) = -982.2989694 au				
E(SMD/B3LYP/def2-TZVP//SMD/M06-2X/6-31G(d)) = -982.7266612 au				
E(SMD/B	3LYP-D3/def2-'	TZVP//SMD/N	A06-2X / 6-31G(d)) = -982.7826158 au	
C	5.99993700	1.03936200	0.34468300	
a	4 < 1070000	1 01 577000	0 10 6 5 1 5 0 0	

C	5.99995700	1.03930200	0.34408300
С	4.64270300	1.21577000	0.10651500
С	3.83467300	0.13089400	-0.27312500
С	4.41945100	-1.14263700	-0.39834600
С	5.77372400	-1.31605800	-0.15708700
С	6.56694700	-0.22664500	0.21221400
Н	6.61437600	1.88579500	0.63396200

Н	4.19365200	2.20011000	0.20998400
Н	3.81261600	-1.99963700	-0.67458500
Н	6.21699300	-2.30194500	-0.25382900
Н	7.62684500	-0.36879300	0.39948100
С	2.42170000	0.37904300	-0.50537600
С	1.53009900	-0.49670200	-1.04514800
С	0.16703400	-0.17730400	-1.31711800
С	-0.60499700	0.90136600	-0.77337900
С	-0.37803300	1.43832300	0.51295200
С	-1.69817800	1.37568800	-1.53196000
С	-1.19196200	2.45220900	0.99649300
Н	0.40731300	1.02519100	1.13936100
С	-2.50637100	2.38776300	-1.04415600
Н	-1.88693900	0.94229700	-2.50977200
С	-2.25416900	2.92392400	0.22142100
Н	-1.01680700	2.86443300	1.98505500
Н	-3.34089800	2.75093800	-1.63452600
Н	-2.89684900	3.70755300	0.61123800
Н	1.87343400	-1.45978600	-1.41359300
Н	2.08640500	1.38776100	-0.27340900
Н	-0.26314400	-0.65540400	-2.19510000
С	-2.44460700	-1.57783300	-0.46166300
С	-2.67777000	-0.92338000	0.76944800
С	-3.84601200	-0.21278100	1.04079100
С	-4.79731100	-0.16005700	0.03023800
С	-4.58636400	-0.79472300	-1.20726900
С	-3.41988000	-1.50161500	-1.46566800
С	-1.12315600	-2.13836500	-0.38413700
С	-0.65364700	-1.85237300	0.89357900
Н	-4.00460800	0.27931100	1.99568700
Н	-5.72328500	0.38058800	0.19922000
Н	-5.35493500	-0.73227300	-1.97132500
Н	-3.26754200	-1.99082800	-2.42365600
Н	-0.64768300	-2.80157800	-1.09351100
Н	0.28955700	-2.11616300	1.35461600
Ν	-1.55954100	-1.11693300	1.57289800
С	-1.43846300	-0.65241100	2.94291000
Н	-1.63477500	0.42169600	2.98893400
Н	-2.15384200	-1.17763100	3.58154300
Н	-0.42518300	-0.85186500	3.29307000

**TS3'** 

F	E(SMD/M06-2X/6-31G(d)) = -981.9344145 au				
ŀ	H(SMD/M0	)6-2X/6-31G(d	)) = -981.5158	341 au	
(	G(SMD/M0	)6-2X/6-31G(d	)) = -981.5881	69 au	
H	E(SMD/M0	6-2X/def2-TZ	VP//SMD/M00	6-2X/6-31G(d) = -982.2865278 au	
(	2	6.20270800	0.06546800	-0.15640000	
	С	4.89081500	0.51483800	-0.25425100	
	С	3.81558500	-0.38110200	-0.15317100	
	С	4.08671100	-1.74315800	0.06047700	
	С	5.39652800	-2.18987400	0.15991700	
	С	6.45761200	-1.28839200	0.04955000	
	Н	7.02411300	0.77013000	-0.23863300	
	Н	4.68575400	1.57047600	-0.41255000	
	Н	3.27207800	-2.45407200	0.15976700	
	Н	5.59543800	-3.24368400	0.32775000	
	Н	7.48041600	-1.64362500	0.12870700	
	С	2.46170600	0.15588600	-0.26268900	
	С	1.32290300	-0.56867200	-0.34640600	
	С	-0.00119900	-0.00340600	-0.51906800	
	С	-0.29497600	1.43031300	-0.44018100	
	С	0.27315800	2.27401200	0.53036400	
	С	-1.21952100	1.96069700	-1.35351000	
	С	-0.04925900	3.62345000	0.55547400	
	Н	0.94424600	1.86390500	1.28049600	
	С	-1.53301900	3.31615800	-1.33084400	
	Н	-1.67723400	1.30425500	-2.08888100	
	С	-0.94701200	4.14741300	-0.37826300	
	Н	0.38960000	4.26983400	1.30866800	
	Н	-2.23726200	3.72066600	-2.05066600	
	Н	-1.19601600	5.20378700	-0.35394900	
	Н	1.37646700	-1.65333600	-0.37701000	
	Н	2.40499500	1.23986800	-0.32949500	
	Н	-0.63303000	-0.52934600	-1.23210800	
	С	-2.53524000	-2.02028200	0.13289500	
	С	-3.17897200	-0.79586000	0.48059200	
	С	-4.50961600	-0.52782400	0.11616100	
	С	-5.17164500	-1.51235500	-0.58623000	
	С	-4.55126700	-2.74128000	-0.94137800	
	С	-3.24773100	-3.00284100	-0.59744200	
	С	-1.22552000	-1.94070400	0.63657000	

С	-1.07402700	-0.65962800	1.21140200
Н	-4.99141100	0.40880200	0.37611000
Н	-6.20272100	-1.34562000	-0.88245900
Н	-5.12459600	-3.47692300	-1.49533900
Н	-2.76796100	-3.93815900	-0.86792200
Н	-0.44385300	-2.68532900	0.56125200
Н	-0.32344500	-0.33019100	1.91923600
Ν	-2.29941900	-0.02010900	1.17498500
С	-2.60729400	1.27182300	1.76506700
Н	-2.69403300	2.04408300	0.99409500
Н	-3.54577700	1.19769400	2.31964600
Н	-1.80841600	1.53946400	2.45657200

#### TS4

E(SMD/M06-2X/6-31G(d)) = -3120.521855 au H(SMD/M06-2X/6-31G(d)) = -3119.837982 au G(SMD/M06-2X/6-31G(d)) = -3119.981429 au E(SMD/M06-2X/def2-TZVP//SMD/M06-2X/6-31G(d)) = -3121.798433 au С 7.29050500 4.47754600 0.42298000 С 6.84876400 3.15850300 0.47482000 С 5.48325200 2.85186700 0.41607400 С 4.56821600 3.90674300 0.28260200 С 5.00828300 5.22401400 0.23117300 С 6.37071900 5.51615000 0.30356000 Η 8.35360400 4.69300600 0.47511300 Η 7.56829200 2.34884200 0.56927500 Η 3.50567000 3.69565200 0.20561400 Η 4.28541800 6.02783300 0.12694700 Η 6.71099700 6.54628800 0.26060300 С 5.07002700 1.43813900 0.49070400 С 3.82981000 0.99767300 0.72203900 С 3.40386200 -0.45463300 0.77446100 С 4.57515300 -1.41921300 0.89197600 С 5.15663000 -2.02755200 -0.22119000 С 5.11647400 -1.67082200 2.15617200 С 6.25834000 -2.86944100 -0.07480200 Η 4.74456500 -1.85220800 -1.21239000 С 6.21435800 -2.51242800 2.30648700 Η 4.67072000 -1.19800400 3.02856700 С 6.78978800 -3.11481100 1.18852900 Η 6.69736100 -3.33794300 -0.95070400

Н	6.61852200	-2.70085700	3.29671700
Н	7.64399500	-3.77528000	1.30276600
Н	3.02341100	1.70938900	0.89040900
Н	5.87342700	0.71293000	0.36555000
Н	2.79770100	-0.57428300	1.68456900
С	1.78856000	-2.05593400	-0.55548100
С	1.46740500	-2.18808900	-1.91738700
С	0.72966400	-3.26015100	-2.42120400
С	0.31493400	-4.21674800	-1.50518600
С	0.62276300	-4.10214900	-0.13711900
С	1.35509800	-3.02869300	0.35131900
С	2.49345300	-0.78380300	-0.40088400
С	2.63629000	-0.29752200	-1.71609400
Н	0.47707900	-3.33580300	-3.47485700
Н	-0.26952700	-5.06301100	-1.85074800
Н	0.27190900	-4.86418100	0.55177400
Н	1.57804300	-2.94334500	1.41103100
Н	1.29688500	-0.00790700	-0.09764400
Н	3.14307600	0.59954600	-2.05236300
Ν	2.00193700	-1.08803700	-2.59113000
С	1.90138500	-0.87925600	-4.02821700
Н	2.48082100	-1.64566800	-4.54900500
Н	0.85986300	-0.93694800	-4.34745900
Н	2.29780200	0.10757600	-4.26782200
С	-0.38018300	1.34532500	0.26752700
0	0.20748800	0.24135700	0.32565700
0	-1.60915100	1.52195500	0.41522200
С	0.42652400	2.62781400	-0.01189000
F	1.37245900	2.36755600	-0.92049100
F	1.02338400	3.05035500	1.10293500
F	-0.35661000	3.58996600	-0.47406300
В	-2.68691000	0.33411700	0.32836000
С	-2.36318000	-0.40765300	-1.08388900
С	-2.61327100	-1.77087800	-1.28746000
С	-1.86889500	0.33571400	-2.16855100
С	-2.34173100	-2.36349700	-2.51045500
Н	-2.99556400	-2.40510200	-0.49311200
С	-1.60413800	-0.27482300	-3.37942000
Н	-1.68392600	1.40539600	-2.09644500
С	-1.82660100	-1.63019800	-3.56618400

С	-2.53219500	-0.57816200	1.66056200
С	-3.26712400	-0.28267300	2.81777700
С	-1.62849600	-1.65036800	1.71818900
С	-3.09963800	-1.03003600	3.97224200
Н	-3.98426200	0.53276600	2.84046500
С	-1.47703000	-2.38799300	2.87806000
Н	-1.02243200	-1.92260600	0.86049000
С	-2.20741600	-2.09060300	4.01946000
С	-4.09487300	1.12250300	0.22794800
С	-5.28938200	0.38605500	0.25305500
С	-4.17883000	2.50924900	0.05348800
С	-6.50982300	1.02028700	0.11127500
Н	-5.28595100	-0.69279800	0.38697600
С	-5.41303900	3.12532500	-0.08629200
Н	-3.29149900	3.13351000	0.02233700
С	-6.59003300	2.39597700	-0.06024600
F	-1.09637100	0.42309800	-4.40925200
F	-1.49869400	-2.22153300	-4.72312600
F	-2.52537000	-3.67752700	-2.69614400
F	-0.61134800	-3.41470700	2.93514400
F	-2.05588000	-2.80877200	5.13622700
F	-3.79841800	-0.75134500	5.08236800
F	-7.65685700	0.32663200	0.13608900
F	-7.77587800	3.00011000	-0.19454900
F	-5.50241600	4.45370400	-0.25077400
1a•B(C	C6F3H2)3_(al)		
E(SME	D/ M06-2X /6-31G(	d)) = -2267.31	7761 au
H(SMI	D/M06-2X/6-31G(d	)) = -2266.820	045 au
G(SMI	D/M06-2X/6-31G(d	)) = -2266.933	423 au
E(SME	D/M06-2X/def2-TZ	VP//SMD/M0	6-2X/6-31G(d)) = -2268.255705 au
С	-6.87105500	-0.82289800	-0.91166000
С	-5.51087600	-0.55338200	-0.79166400
С	-4.63117800	-1.50967700	-0.26919400
С	-5.14651300	-2.75621200	0.11373000
С	-6.50440100	-3.02596200	-0.00663700
С	-7.37266200	-2.06038700	-0.51707600
Н	-7.53751100	-0.06643800	-1.31482600
Η	-5.12112100	0.41397300	-1.09951000
Н	-4.48186800	-3.52603600	0.49496100
Н	-6.88723000	-3.99703900	0.29269600

Н	-8.43255000	-2.27593500	-0.61171300
С	-3.20417700	-1.16206900	-0.14700200
С	-2.29092600	-1.83913300	0.55466400
С	-0.83289900	-1.48885700	0.66393000
С	0.05548400	-2.68279900	0.37013500
С	0.25040000	-3.14352900	-0.93248300
С	0.66152000	-3.34901000	1.43510900
С	1.08241900	-4.23486800	-1.16812000
Н	-0.23868300	-2.65577600	-1.77443200
С	1.47758700	-4.45333400	1.20180500
Н	0.51050300	-2.98722600	2.44954300
С	1.69890600	-4.88996600	-0.10222800
Н	1.24791600	-4.57541500	-2.18579900
Н	1.95458000	-4.95845200	2.03592200
Н	2.34963400	-5.73835700	-0.29039800
Н	-2.55872200	-2.73177300	1.11618300
Н	-2.90910800	-0.25518800	-0.67256900
0	-0.55329100	-0.34052600	-0.19309300
Н	-0.60772500	-1.12143700	1.66949700
В	0.73834900	0.68585800	-0.02815600
С	0.39628400	1.85443600	-1.09240800
С	1.43515700	2.60119300	-1.66722100
С	-0.92230400	2.23405800	-1.38244300
С	1.15670800	3.66923800	-2.50292900
Н	2.47773900	2.36466800	-1.47418800
С	-1.18008000	3.29975900	-2.22863400
Н	-1.77601500	1.72796700	-0.94075900
С	-0.14961700	4.02907000	-2.80113800
С	0.62470800	1.26166200	1.47194100
С	1.76539700	1.74540700	2.12677000
С	-0.61844400	1.43049900	2.10132600
С	1.65908000	2.35975100	3.36391200
Н	2.75384900	1.65872000	1.68430200
С	-0.70199800	2.03886900	3.34180600
Н	-1.54500700	1.09670000	1.63926700
С	0.43083600	2.51010000	3.98940700
С	2.02534500	-0.21978600	-0.38696300
С	2.37023200	-0.45860200	-1.72678300
С	2.69545800	-0.95480500	0.60001800
С	3.32700400	-1.40392100	-2.05388900

Н	1.88692900	0.07261800	-2.54191500
С	3.63631400	-1.90935800	0.25435700
Н	2.46221300	-0.83541700	1.65414800
С	3.96393400	-2.14761700	-1.07205900
F	2.74453000	2.82304900	3.99669400
F	0.33958400	3.09466200	5.18705300
F	-1.88330800	2.19366400	3.95399800
F	2.14381700	4.38438300	-3.05717600
F	-0.40803700	5.05468200	-3.61681600
F	-2.43865500	3.65986300	-2.51449000
F	4.23826000	-2.65280200	1.19175700
F	4.85983300	-3.08289600	-1.39552900
F	3.64960600	-1.64622700	-3.33220300
Н	-0.67776000	-0.57785300	-1.13475200

#### 1a_(al)

E(SMD/M06-2X/6-31G(d)) = -654.9603465 au H(SMD/M06-2X/6-31G(d)) = -654.69513 au G(SMD/M06-2X/6-31G(d)) = -654.752487 au E(SMD/M06-2X/def2-TZVP//SMD/M06-2X/6-31G(d)) = -655.2136466 au С 4.75489000 0.26438100 0.60727900 С 3.50513400 0.87396900 0.54005000 С 2.40309200 0.20646300 -0.01039900 С 2.58667600 -1.10358900 -0.47766200 С 3.83383400 -1.71344800 -0.41162600 С 4.92495300 -1.03226400 0.12907000 Η 5.59529400 0.80279200 1.03553100 Η 3.37561000 1.88653700 0.91439100 Η 1.74405100 -1.65625900 -0.88338200 Η 3.95456200 -2.72926800 -0.77671200 Η 5.89714900 -1.51283300 0.18243500 С 1.10600900 0.90456200 -0.06869600 С 0.03750300 0.51585900 -0.76860800 С -1.27651100 1.24990200 -0.78192100 С -2.38235700 0.33593300 -0.27152600 С -2.51481100 0.11577000 1.10194300 С -3.24731400 -0.30750900 -1.15519400 С -3.50538200 -0.73386100 1.58351400 Η -1.83603800 0.61967200 1.78512000 С -4.23606400 -1.16549300 -0.67452800 Η -3.15014400 -0.13247500 -2.22440800

С	-4.36755000	-1.37827700	0.69525700
Н	-3.60487500	-0.89795400	2.65257100
Н	-4.90741900	-1.66042700	-1.37013100
Н	-5.14001700	-2.04226000	1.07165100
Н	0.05488700	-0.38599300	-1.37828900
Н	1.03950000	1.82850300	0.50191300
0	-1.15251400	2.41612100	0.00714500
Н	-1.51130600	1.51499100	-1.82598000
Н	-2.02376300	2.84159800	0.03640500
H ₂ O			
E(SMD/ M	06-2X /6-31G(	d)) = -76.38034	4807 au
H(SMD/M	06-2X/6-31G(d	)) = -76.35521	7 au
G(SMD/M	06-2X/6-31G(d	)) = -76.37666	1 au
E(SMD/M(	)6-2X/def2-TZ	VP//SMD/M06	5-2X/6-31G(d)) = -76.43310411 au
0	0.00000000	0.00000000	0.11955600
Н	0.00000000	-0.76140300	-0.47822400
Н	0.00000000	0.76140300	-0.47822400
II_(al)			
E(SMD/ M	06-2X /6-31G(	d)) = -1688.28	613 au
H(SMD/M	06-2X/6-31G(d	)) = -1688.041	308 au
G(SMD/M	06-2X/6-31G(d	)) = -1688.124	258 au
E(SMD/M(	)6-2X/def2-TZ	VP//SMD/M06	5-2X/6-31G(d)) = -1689.027399 au
0	0.01967700	0.07942400	-2.48195500
В	-0.04660400	-0.00062000	-1.00851200
С	0.87776300	-1.24655100	-0.45094000
С	0.83068500	-1.71221700	0.87379400
С	1.80753800	-1.84454600	-1.31243600
С	1.67612400	-2.72026600	1.30223400
Н	0.12587400	-1.30184300	1.59338500
С	2.64610900	-2.85334400	-0.86798900
Н	1.88286300	-1.51315300	-2.34422500
С	2.59435000	-3.30527100	0.44108900
С	0.60518800	1.38686500	-0.43444000
С	0.48712400	1.77948400	0.90828800
С	1.35472300	2.20920600	-1.28678300
С	1.09496800	2.93517400	1.36549200
Н	-0.09236400	1.19583200	1.61966000
С	1.95686100	3.36253900	-0.81187900
Н	1.46741100	1.95027000	-2.33497400
С	1.83836000	3.74218500	0.51596800

С	-1.61509000	-0.16558100	-0.52429000
С	-2.20248400	-1.42226500	-0.31144800
С	-2.45728700	0.95627300	-0.44459800
С	-3.55464300	-1.54304800	-0.03286600
Н	-1.61245600	-2.33403400	-0.35758800
С	-3.80507500	0.81996200	-0.16373100
Н	-2.06847600	1.95888600	-0.60354300
С	-4.37345000	-0.42839200	0.04728000
F	0.98020700	3.32021000	2.64936800
F	2.42001800	4.86350000	0.96904600
F	2.67582100	4.15703300	-1.62599300
F	1.63304400	-3.17328200	2.56799100
F	3.40692600	-4.28493900	0.86559100
F	3.53960100	-3.43009900	-1.69226700
F	-4.61210100	1.89251100	-0.08350400
F	-5.67982300	-0.55174500	0.32331800
F	-4.11670000	-2.74781800	0.17110000
Н	-0.42077900	-0.69783300	-2.85284100
III_(al)			
E(SMD/ M	06-2X /6-31G(	d)) = -2670.30	1229 au
H(SMD/M	06-2X/6-31G(d	)) = -2669.634	594 au
G(SMD/M	06-2X/6-31G(d	)) = -2669.765	655 au
E(SMD/M	)6-2X/def2-TZ	VP//SMD/M06	6-2X/6-31G(d) = -2671.386557 au
С	-1.83266000	6.35366100	0.12254100
С	-2.51695100	5.16390400	-0.10826500
С	-1.94710200	4.14459700	-0.88079600
С	-0.68450400	4.36379800	-1.45083100
С	-0.00004800	5.55164600	-1.22037700
С	-0.56784800	6.54871400	-0.42711000
Н	-2.28691600	7.12797400	0.73370300
Н	-3.50140600	5.01088000	0.32762700
Н	-0.23840700	3.60377200	-2.08690800
Н	0.97835600	5.70302300	-1.66669900
Н	-0.03062300	7.47507000	-0.24775400
С	-2.67686500	2.87236700	-1.03348000
С	-2.10909500	1.71278600	-1.37786600
С	-2.79124800	0.37359700	-1.52467600
С	-4.26112900	0.31295100	-1.16084300
С	-4.71323900	0.64035500	0.12314000
0	5 10//0000	0 11/07200	2 10697000

С	-6.06236800	0.53949100	0.45086500
Н	-4.01085900	1.00212400	0.87149700
С	-6.54638200	-0.21635600	-1.78338400
Н	-4.85878100	-0.37220200	-3.10854600
С	-6.98362200	0.10874500	-0.50265800
Н	-6.39490100	0.80271300	1.45056700
Н	-7.25606400	-0.55135200	-2.53381200
Н	-8.03609300	0.03056400	-0.24773200
Н	-1.03665000	1.66727100	-1.57317300
Н	-3.74144500	2.90949900	-0.80658100
Н	-2.69331500	0.07083600	-2.57663700
С	-2.35600600	-2.11980600	-0.85660900
С	-2.42906300	-2.65256200	0.42905700
С	-2.71386100	-3.98003700	0.70351400
С	-2.95036100	-4.79653000	-0.40150000
С	-2.89748600	-4.28638600	-1.70225600
С	-2.59733200	-2.94521500	-1.94609000
С	-1.95302200	-0.67837900	-0.74466500
С	-1.90285400	-0.49478200	0.72586300
Н	-2.75040700	-4.36655000	1.71674100
Н	-3.17721000	-5.84607800	-0.24692900
Н	-3.08634700	-4.95056300	-2.53943100
Н	-2.54694900	-2.56268100	-2.96126000
Н	-0.89758200	-0.54221000	-1.08243600
Н	-1.67352100	0.41905000	1.26630300
Ν	-2.14812200	-1.60156600	1.35330600
С	-2.12519600	-1.80015600	2.79849800
Н	-3.06066300	-2.27816500	3.09494300
Н	-1.27901200	-2.44225400	3.05346200
Н	-2.02526100	-0.83261300	3.28797500
0	0.91021100	0.08894600	-1.60117300
В	1.80783400	-0.25177900	-0.46265700
С	1.12425500	0.43770200	0.86143900
С	0.93796200	-0.20967900	2.09098800
С	0.70688200	1.77763600	0.76369800
С	0.35930300	0.45656200	3.16260000
Н	1.23362600	-1.24527500	2.23816700
С	0.12472500	2.42588300	1.83883000
Н	0.84306300	2.33477800	-0.15943100
С	-0.06790000	1.77021200	3.05208600

С	1.92569300	-1.88442200	-0.29166600
С	2.85232300	-2.49625800	0.57007800
С	1.05756400	-2.72977000	-0.99709600
С	2.88417600	-3.87120100	0.72272500
Η	3.57447000	-1.91179200	1.13406700
С	1.10290000	-4.10620100	-0.83624100
Η	0.33204300	-2.32969100	-1.69868100
С	2.01030300	-4.69659100	0.02751600
С	3.30036500	0.40504900	-0.67248700
С	4.18025500	0.62031900	0.40049000
С	3.74554400	0.76956200	-1.95030500
С	5.44398300	1.14519500	0.19194800
Н	3.88789700	0.40080900	1.42466300
С	5.01228100	1.29585300	-2.14276800
Η	3.10859000	0.66439900	-2.82408000
С	5.88027300	1.48780300	-1.07957600
F	-0.26540700	3.70439600	1.75778600
F	-0.63220400	2.39915300	4.08956000
F	0.15460200	-0.17062400	4.33487200
F	0.26698400	-4.90879100	-1.51561400
F	2.05179500	-6.02623700	0.18280200
F	3.76524300	-4.45527900	1.55045100
F	6.28535600	1.35281100	1.21795100
F	7.10168800	2.00328600	-1.27142400
F	5.43684800	1.64457400	-3.36878100
Η	1.24730500	-0.31774500	-2.41325800
III_(al)	,		
E(SMD	/ M06-2X /6-31G(	d)) = -2670.31	6109 au
H(SMD	/M06-2X/6-31G(d	)) = -2669.647	'829 au
G(SMD	/M06-2X/6-31G(d	)) = -2669.783	655 au
E(SMD	/M06-2X/def2-TZ	VP//SMD/M0	6-2X/6-31G(d) = -2671.400647 au
С	-7.79699300	2.22535500	0.22900400
С	-6.87916700	1.37936700	-0.38722600
С	-5.58395000	1.22284900	0.12310300
С	-5.23672800	1.92827700	1.28484000
С	-6.15247600	2.77321300	1.90081100
С	-7.43588600	2.92782300	1.37571800
Η	-8.79458400	2.33364400	-0.18639100
Η	-7.16334300	0.83143900	-1.28230800
Н	-4.24785500	1.80964900	1.71736000

Н	-5.86547300	3.31021500	2.80021300
Н	-8.14904800	3.58698000	1.86143300
С	-4.65316300	0.31899100	-0.57818400
С	-3.33708600	0.22577400	-0.36814200
С	-2.38963100	-0.70909800	-1.09209800
С	-3.07199100	-1.53075800	-2.17514600
С	-3.73561500	-2.72172200	-1.86891100
С	-3.07572600	-1.07726100	-3.49576400
С	-4.38671700	-3.44526700	-2.86457700
Н	-3.73671500	-3.08226000	-0.84317100
С	-3.72413200	-1.80030200	-4.49547500
Н	-2.56702900	-0.14727900	-3.74099400
С	-4.38129200	-2.98758100	-4.18156800
Н	-4.89678100	-4.37035900	-2.61224200
Н	-3.71373500	-1.43614700	-5.51862100
Н	-4.88487600	-3.55478300	-4.95864100
Н	-2.85815000	0.86316600	0.37607200
Н	-5.11117700	-0.30696200	-1.34285700
Н	-1.65312600	-0.06661300	-1.60345100
С	-0.63075700	-2.55907200	-0.41689900
С	-0.22925300	-3.14359900	0.81344700
С	0.72952800	-4.16316000	0.87917000
С	1.29507400	-4.58448400	-0.31307600
С	0.92010300	-4.01133700	-1.54710600
С	-0.03615700	-3.01110300	-1.61281000
С	-1.64240000	-1.57690300	-0.10426800
С	-1.80168000	-1.62767000	1.25933800
Н	1.01457600	-4.60737500	1.82815000
Н	2.04647400	-5.36722000	-0.29829200
Н	1.38159100	-4.37375200	-2.46047200
Н	-0.34337300	-2.59620700	-2.57032700
Н	0.42944000	-0.68263500	-0.71069000
Н	-2.47540600	-1.06666200	1.89550100
Ν	-0.95531900	-2.55314900	1.81623400
С	-0.88536100	-2.91000300	3.22010900
Н	-1.33887600	-3.89092600	3.39268500
Н	0.15584300	-2.93048200	3.55002400
Н	-1.42215400	-2.15843200	3.80253400
0	1.01569300	-0.04831600	-1.18715000
В	2.03553900	0.70474000	-0.12941600

С	1.17333000	0.66783800	1.23808400	
С	1.54377300	-0.09418600	2.35272500	
С	-0.02493600	1.39961300	1.30116800	
С	0.73928800	-0.12143100	3.48098300	
Н	2.46180000	-0.67391100	2.36628100	
С	-0.82072600	1.34192400	2.42933900	
Н	-0.35237100	2.02021200	0.47017200	
С	-0.45666700	0.57636200	3.52847200	
С	3.37194900	-0.20125800	-0.13099000	
С	4.65241700	0.35846000	-0.21748800	
С	3.26582500	-1.59922900	-0.03749300	
С	5.77547300	-0.45284900	-0.20202700	
Н	4.79919200	1.43099100	-0.30338700	
С	4.39965100	-2.39326500	-0.02951700	
Н	2.30139000	-2.09658900	0.04629000	
С	5.66635300	-1.83228800	-0.11229500	
С	2.23301000	2.19132600	-0.71164600	
С	2.71480400	3.19676500	0.14062600	
С	1.98368800	2.52368800	-2.04857700	
С	2.94369700	4.47477300	-0.33859100	
Н	2.91336900	3.00020600	1.19111400	
С	2.21107100	3.81173400	-2.50691200	
Н	1.60023200	1.79849800	-2.75979100	
С	2.69407100	4.80049600	-1.66447100	
F	-1.99149800	1.99747100	2.48576300	
F	-1.25288700	0.49401100	4.59849600	
F	1.07926800	-0.85288900	4.55236700	
F	4.31180400	-3.72709700	0.06045100	
F	6.75554100	-2.60504200	-0.10655400	
F	7.00462800	0.07205900	-0.28515800	
F	3.40475800	5.44116500	0.46627900	
F	2.90858800	6.03980000	-2.11580000	
F	1.96788000	4.13929700	-3.78351000	
Н	1.49370100	-0.57535300	-1.86064400	
IV_(al)				
E(SMD/M06-2X/6-31G(d)) = -1688.738139 au				
H(SMD/M06-2X/6-31G(d)) = -1688.479598 au				
G(SMD/M06-2X/6-31G(d)) = -1688.562628 au				
E(SMD/M06-2X/def2-TZVP//SMD/M06-2X/6-31G(d)) = -1689.473372 au				

O 0.00181800 0.00370900 -2.42031500

В	-0.06217500	-0.00297500	-0.76654200
С	0.78540400	-1.31043100	-0.35767000
С	0.63258900	-1.85890300	0.92453900
С	1.74850700	-1.87358400	-1.20577100
С	1.41049600	-2.92979900	1.32791000
Н	-0.09448300	-1.46294700	1.62842100
С	2.51138800	-2.95117000	-0.78489000
Н	1.93623900	-1.48385200	-2.20200200
С	2.35489100	-3.49298000	0.48089300
С	0.70431100	1.35325500	-0.35482900
С	0.46214600	1.94065400	0.89548500
С	1.69189100	1.92191700	-1.17143500
С	1.18005300	3.05281200	1.30005400
Н	-0.28900200	1.54455300	1.57326400
С	2.39200800	3.04097500	-0.75138200
Н	1.94631700	1.50336800	-2.14103300
С	2.14840800	3.62021100	0.48424800
С	-1.64192000	-0.04966400	-0.42296700
С	-2.32022500	-1.26985300	-0.27796400
С	-2.40029000	1.13091200	-0.37256800
С	-3.69061200	-1.29705500	-0.07927300
Н	-1.79398500	-2.21950200	-0.30864300
С	-3.76971400	1.08385400	-0.17395200
Н	-1.93728200	2.10822100	-0.47627500
С	-4.43170000	-0.12598000	-0.02369500
F	0.95468400	3.62133900	2.49129200
F	2.82930600	4.69895600	0.88034700
F	3.33036500	3.59577800	-1.53007700
F	1.27047300	-3.46148400	2.54881100
F	3.09445000	-4.53245900	0.87684200
F	3.42765500	-3.50009300	-1.59363100
F	-4.49773700	2.20632200	-0.12158400
F	-5.75114200	-0.16207500	0.17095900
F	-4.34334600	-2.45737600	0.06313600
Н	-0.44916500	-0.78353700	-2.79041900
Η	-0.46047200	0.78770200	-2.78333500

## TS2_(al)

$$\begin{split} & E(SMD/M06\text{-}2X/6\text{-}31G(d)) = -981.946285 \text{ au} \\ & H(SMD/M06\text{-}2X/6\text{-}31G(d)) = -981.527699 \text{ au} \\ & G(SMD/M06\text{-}2X/6\text{-}31G(d)) = -981.599414 \text{ au} \end{split}$$

# $E(SMD/M06\text{-}2X/def2\text{-}TZVP//SMD/M06\text{-}2X\ /6\text{-}31G(d)) = -982.2989694\ au$

С	5.45628900	-1.36774800	-0.17288700
С	4.60067900	-0.38167700	-0.64051200
С	3.66222400	0.21916400	0.21918600
С	3.59696800	-0.19789500	1.56183000
С	4.45023100	-1.18989000	2.02407900
С	5.37704600	-1.77575400	1.15940900
Н	6.16974600	-1.83272800	-0.84522300
Н	4.63189300	-0.07764300	-1.68343900
Н	2.86450100	0.23363800	2.23765600
Н	4.38397400	-1.52163500	3.05518600
Н	6.03127300	-2.56208400	1.52335800
С	2.73814600	1.17688400	-0.34886800
С	1.78481600	1.88126600	0.33441500
С	0.78566700	2.64512200	-0.30083600
С	0.89120800	3.37987900	-1.54465600
С	2.12693500	3.70411800	-2.13299600
С	-0.29398200	3.85950600	-2.13589100
С	2.16707600	4.43666200	-3.31267500
Н	3.05225200	3.43216200	-1.63729400
С	-0.25013800	4.57959400	-3.31767500
Н	-1.24710900	3.65069300	-1.65692400
С	0.98276200	4.86128100	-3.91209900
Н	3.12390900	4.69152300	-3.75619400
Н	-1.16895100	4.93209300	-3.77434000
Н	1.01879500	5.43460100	-4.83330900
Н	1.65939700	1.72547100	1.40036100
Н	2.77435300	1.26636700	-1.43323500
0	-0.60691700	0.97913000	-1.08915800
Н	-0.08153100	2.88226100	0.31077400
В	-0.97958400	-0.10086700	-0.10633100
С	-2.29835200	-0.89978700	-0.66477600
С	-3.12863300	-1.64744500	0.18431600
С	-2.59093600	-0.90994000	-2.03581300
С	-4.19549200	-2.36725400	-0.32398600
Н	-2.96015200	-1.67475300	1.25799600
С	-3.66675200	-1.63194900	-2.52658800
Н	-1.97674400	-0.35920900	-2.74328900
С	-4.48202100	-2.36883700	-1.68229200
С	0.26082700	-1.16199100	-0.09646400

С	0.53411800	-2.03935800	0.96319100
С	1.06283500	-1.26614400	-1.24476400
С	1.59329200	-2.93162200	0.89005500
Н	-0.06387600	-2.04235900	1.87045100
С	2.10260400	-2.17573500	-1.30604200
Н	0.89049000	-0.61368000	-2.09567200
С	2.39490300	-3.01010200	-0.23795800
С	-1.31629600	0.60189400	1.34594500
С	-2.50341900	1.34814400	1.46213500
С	-0.45065000	0.61494000	2.44898900
С	-2.79305100	2.06560500	2.60935300
Н	-3.23203600	1.37199500	0.65479100
С	-0.75534000	1.33508400	3.59471100
Н	0.48583300	0.06417400	2.44023200
С	-1.92482500	2.07046700	3.69286200
F	1.89042200	-3.73513600	1.92343300
F	3.43388300	-3.85371500	-0.28685400
F	2.90139700	-2.24194500	-2.38560800
F	-4.99652700	-3.08130700	0.48257600
F	-5.52237700	-3.06163800	-2.16288400
F	-3.95458700	-1.63879500	-3.83848800
F	0.08401300	1.34492300	4.64289700
F	-2.21214100	2.76410300	4.80003900
F	-3.92403600	2.78005400	2.71318500
Н	-1.41561500	1.44263000	-1.35780400
TS4_(a	<b>l</b> )		
E(SMD	/ M06-2X /6-31G(	d)) = -2670.29	5984 au
H(SMD	0/M06-2X/6-31G(d	)) = -2669.633	613 au
G(SMD	0/M06-2X/6-31G(d	)) = -2669.763	916 au
E(SMD	/M06-2X/def2-TZ	VP//SMD/M06	6-2X/6-31G(d) = -2671.380302 au
С	-4.21384700	4.70102700	1.33295400
С	-4.30791700	3.39314300	0.86662600
С	-3.42385600	2.91118400	-0.10635600
С	-2.46176800	3.78810400	-0.62849200
С	-2.36788900	5.09495100	-0.16399600
С	-3.23918600	5.55532100	0.82296200
Н	-4.90275300	5.05313600	2.09513900
Н	-5.06796900	2.72713200	1.26812900
Н	-1.79213500	3.44970600	-1.41482300
Н	-1.61667200	5.76022000	-0.57944000

Н	-3.16414200	6.57662800	1.18387100
С	-3.52334700	1.50220200	-0.52865800
С	-2.53884200	0.80831900	-1.10740500
С	-2.59491700	-0.65223600	-1.50125300
С	-4.00404700	-1.21993800	-1.55631700
С	-4.51783000	-2.08074600	-0.58707800
С	-4.83228600	-0.83624300	-2.61798900
С	-5.83076200	-2.54667100	-0.67194400
Н	-3.89556200	-2.40737600	0.24245800
С	-6.14025300	-1.29829500	-2.70664400
Н	-4.44232300	-0.16092300	-3.37644900
С	-6.64520200	-2.15723000	-1.72985900
Н	-6.21194200	-3.21892900	0.09100600
Н	-6.76651900	-0.99010700	-3.53859300
Н	-7.66574200	-2.52167000	-1.79726800
Н	-1.57173100	1.27545700	-1.28920000
Н	-4.47154000	1.00931400	-0.31418800
Н	-2.17688100	-0.72001800	-2.51624300
С	-1.27075600	-2.85053100	-0.85952500
С	-0.98751700	-3.43605300	0.38185600
С	-0.47473800	-4.72137000	0.52468600
С	-0.27071800	-5.43893200	-0.64762400
С	-0.56994800	-4.88466200	-1.90227500
С	-1.06441100	-3.59042300	-2.02438500
С	-1.63764900	-1.44329100	-0.60585000
С	-1.68206500	-1.36090400	0.82550500
Н	-0.23607000	-5.13888300	1.49771500
Н	0.13251900	-6.44469700	-0.59218200
Н	-0.40433700	-5.47914500	-2.79511400
Н	-1.28386900	-3.16710900	-3.00030600
Н	-0.52737300	-0.83788400	-0.82336400
Н	-1.94547000	-0.50394600	1.43862000
Ν	-1.27180400	-2.48706000	1.38021900
С	-1.09061600	-2.74115800	2.80237100
Н	-1.61880200	-3.66091000	3.06303100
Н	-0.02688800	-2.84792600	3.02757600
Н	-1.50667900	-1.90696400	3.36584200
0	0.56454100	-0.13574000	-1.32299400
В	1.67015800	0.26324500	-0.34383300
С	0.90383000	0.60809800	1.06001000

С	1.04376800	-0.17392600	2.21345500
С	0.03977800	1.71590200	1.12414500
С	0.34209800	0.13666100	3.36887000
Н	1.70319900	-1.03762900	2.23476100
С	-0.65446100	2.01193400	2.28489400
Н	-0.08815400	2.38023000	0.27291000
С	-0.52100000	1.21921600	3.41984300
С	2.70903300	-0.98825300	-0.17146100
С	4.00606000	-0.80854000	0.33445400
С	2.31198400	-2.29967600	-0.47417200
С	4.84936100	-1.88837800	0.52788600
Н	4.38698800	0.17853200	0.58061600
С	3.17180100	-3.36978000	-0.28013500
Н	1.32523100	-2.52293400	-0.87193500
С	4.44793100	-3.18223800	0.22463900
С	2.41823500	1.59252800	-0.92279300
С	3.14408200	2.44841600	-0.07906100
С	2.37627000	1.91092000	-2.28670400
С	3.80876900	3.55109200	-0.58777700
Н	3.19098700	2.27738400	0.99369300
С	3.04279500	3.02120900	-2.77849200
Н	1.81497700	1.30643800	-2.99317200
С	3.76931700	3.85327300	-1.94130800
F	-1.46561200	3.07377700	2.36338300
F	-1.18971500	1.51018100	4.54084500
F	0.46051900	-0.62247300	4.47187200
F	2.79139100	-4.62287700	-0.57472600
F	5.27389400	-4.21838900	0.41025300
F	6.08851300	-1.71888200	1.01214100
F	4.50295500	4.37135300	0.21569400
F	4.40674900	4.92670000	-2.42383900
F	3.00016000	3.32917800	-4.08453700
Н	0.92976500	-0.62928700	-2.07690700

## References

- 1 M. Santi, D. M. C. Ould, J. Wenz, Y. Soltani, R. L. Melen and T. Wirth, *Angew. Chemie Int. Ed.*, 2019, **58**, 7861–7865.
- A. M. Martínez-Gualda, R. Cano, L. Marzo, R. Pérez-Ruiz, J. Luis-Barrera, R. Mas-Ballesté, A. Fraile, O. de la Peña, A. Víctor and J. Alemán, *Nat. Commun.*, 2019, **10**, 1– 10.
- A. Dasgupta, K. Stefkova, R. Babaahmadi, L. Gierlichs, A. Ariafard and R. L. Melen, *Angew. Chemie Int. Ed.*, 2020, **59**, 15492–15496.
- 4 D. McLeod, N. Inunnguaq Jessen, T. V. Q. Nguyen, M. Espe, J. D. Erickson, K. Anker Jørgensen, L. Yang and K. N. Houk, *Chem. Eur. J.*, 2022, **28**, e202202951.
- 5 W. Wang, Q. Xiong, L. Gong, Y. Wang, J. Liu, Y. Lan and X. Zhang, *Org. Lett.*, 2020, **22**, 5479–5485.
- 6 T. Schlatzer, H. Schröder, M. Trobe, C. Lembacher-Fadum, S. Stangl, C. Schlögl, H. Weber and R. Breinbauer, *Adv. Synth. Catal.*, 2020, **362**, 331–336.
- 7 H. Le, A. Batten and J. P. Morken, Org. Lett., 2014, 16, 2096–2099.
- 8 D. Paul and P. N. Chatterjee, *European J. Org. Chem.*, 2020, **2020**, 4705–4712.
- 9 G.-P. Fan, Z. Liu and G.-W. Wang, *Green Chem.*, 2013, **15**, 1659–1664.
- 10 B. Yang, K. Dong, X.-S. Li, L.-Z. Wu and Q. Liu, Org. Lett., 2022, 24, 2040–2044.
- D. J. F. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V., *Gaussian 16, Revision B.01*, Gaussian, Inc., Wallingford CT, 2016.
- 12 Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167.
- 13 A. V Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 14 P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.
- 15 K. Fukui, J. Phys. Chem., 1970, 74, 4161–4163.
- 16 K. Fukui, Acc. Chem. Res., 1981, 14, 363–368.
- 17 F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys., 2003, 119, 12753–12762.
- 18 M. Head-Gordon, J. A. Pople and M. J. Frisch, *Chem. Phys. Lett.*, 1988, **153**, 503–506.
- 19 A. D. Becke, J. Chem. Phys, 1993, 98, 5648–5652.
- 20 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 21 S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200–1211.
- 22 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.
- 23 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 24 J. W. Ochterski, 2000.