Supporting Information

First principles prediction of two-dimensional Janus STiXY₂ (X = Si, Ge; Y=N, P, As) materials

Zhen Gao a , Xin He a , Wenzhong Li a , YaoHe a,* , and Kai Xiong b

^aDepartment of Physics, Yunnan University, Kunming 650091, People's Republic of China. ^bMaterials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

*E-mail: yhe@ynu.edu.cn

Fig S1 The electron localization function (ELF) for 2D Janus (a) $STiSiN_2$, (b) $STiSiP_2$, (c) $STiSiAs_2$, (d) $STiGeN_2$, (e) $STiGeP_2$, and (f) $STiGeAs_2$ monolayers. The isosurface for ELF is 0.75 eÅ⁻³.

Fig S2 Ab initio molecular dynamics (AIMD) simulation results at 300 K for 2D Janus (a) STiSiN₂, (b) STiSiP₂, (c) STiSiAs₂, (d) STiGeN₂, (e) STiGeP₂, and (f) STiGeAs₂ monolayers.

Fig S3 strain-stress curve for for 2D Janus (a) STiSiN₂, (b) STiSiP₂, (c) STiSiAs₂, (d) STiGeN₂, (e) STiGeP₂, and (f) STiGeAs₂ monolayers.

Fig S4 Energy-strain curves of for 2D Janus (a) STiSiN₂, (b) STiSiP₂, (c) STiSiAs₂, (d) STiGeN₂, (e) STiGeP₂, and (f) STiGeAs₂ monolayers.

Fig S5 Phonon spectrum of (a) $STiSiN_2$, (b) $STiSiP_2$, (c) $STiSiAs_2$, (d) $STiGeN_2$, (e) $STiGeP_2$, and (f) $STiGeAs_2$ monolayers under strain of -10 %.

Fig S6 Phonon spectrum of (a) $STiSiN_2$, (b) $STiSiP_2$, (c) $STiSiAs_2$, (d) $STiGeN_2$, (e) $STiGeP_2$, and (f) $STiGeAs_2$ monolayers under strain of +10 %.

Fig S7 Electronic band structure under biaxial strain of 2D Janus (a) STiSiN₂, (b) STiSiP₂, (c) STiSiAs₂, (d) STiGeN₂, (e) STiGeP₂, and (f) STiGeAs₂ monolayers.

Fig S8 Band gaps under (a) strain and (b) external electric field of 2D Janus $STiSiXY_2(X = Si, Ge; Y = N, P, As)$ by PBE method.

Fig S9 Orbital projected band structures for $STiSiN_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S10 Orbital projected band structures for $STiSiP_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S11 Orbital projected band structures for $STiSiAs_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S12 Orbital projected band structures for $STiGeN_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S13 Orbital projected band structures for $STiGeP_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S14 Orbital projected band structures for $STiGeAs_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S15 Band gaps under external electric field of 2D STiSiAs₂ by HSE method.

Fig S16 Orbital projected band structures for $STiSiAs_2$ monolayer under different strengths of electric field of (a) E = -5 V/nm and (b) E = 5 V/nm

Fig S17 Orbital projected band structures for STiGeAs₂ monolayer under different strengths of electric field of (a) E = -5 V/nm and (b) E = 5 V/nm

Fig S18 The calculation of carrier mobility is carried out in rectangular cell in the black dotted box, the x and y directions also been indicate.