Supplementary Information

Molecularly Dispersed Nickel Complexes on N-doped Graphene for Electrochemical CO₂ Reduction

Methasit Juthathan, Teera Chantarojsiri, Kittipong Chainok, Teera Butburee, Patchanita Thamyongkit, Thawatchai Tuntulani, and Pannee Leeladee*

[a]	Methasit Juthathan, Prof. Dr. Patchanita Thamyongkit, Prof. Dr. Thawatchai Tuntulani, Assist. Prof. Dr. Pannee Leeladee
	Department of Chemistry, Faculty of Science
	Chulalongkorn University
	Bangkok, Thailand.
	E-mail: <u>pannee.l@chula.ac.th</u>
[b]	Assist. Prof. Dr. Teera Chantarojsiri
	Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science
	Mahidol University
	Bangkok, Thailand.
[c]	Assoc. Prof. Dr. Kittipong Chainok
	Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology
	Thammasat University
	Pathum Thani, Thailand.
[d]	Dr. Teera Butburee
	National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park
	Pathum Thani, Thailand.

Table of Contents

Synthetic Procedures	3
Step i : Synthesis of 2,2'-iminobis(methyl benzoate)	3
Step ii : Synthesis of 2,2'-iminobis(hydroxymethyl benzene)	3
Step iii: Synthesis of 2,2'-iminobisbenzaldehyde	4
Electrochemical Studies in Non-aqueous Electrolyte	5
UV-visible Spectra of Ni Complexes Before and After Adsorption on NG	17
UV-visible Spectra of Ni Complexes Before and After Adsorption on NG	17 18
UV-visible Spectra of Ni Complexes Before and After Adsorption on NG Scanning Electron Microscopic Images Electrochemical Studies in Aqueous Electrolyte	17 18 20
UV-visible Spectra of Ni Complexes Before and After Adsorption on NG Scanning Electron Microscopic Images Electrochemical Studies in Aqueous Electrolyte Calculation of Faradaic Efficiency	17 18 20 30

Synthetic Procedures

Scheme 1 Synthetic routes of 2,2⁻-iminobisbenzaldehyde. (i) conc. H₂SO₄, MeOH. (ii) LiAlH₄, Et₂O. (iii) MnO₂, Et₂O.

Step i : Synthesis of 2,2'-iminobis(methyl benzoate)

A two-neck round-bottom flask was charged with 2,2'-iminodibenzoic acid (500 mg, 1.94 mmol) and methanol (20 mL), then concentrated H₂SO₄ (1 mL) was slowly added into. The reaction mixture was refluxed for 5 hours and monitored by thin layer chromatography using 1:4 EtOAC: Hexane as a solvent system. After removal of methanol, the reaction was then cautiously added 10 mL of Na₂CO₃ (2.40 g). (Note: the CO₂ bubbling occurs upon the addition of Na₂CO₃). After the bubbling subsides, the solution was extracted with 5 mL of 15% NaCl, followed by CH₂Cl₂ (3 x 10 mL). The combined organic layer was then washed with 10 mL of saturated NaCl, after which the CH₂Cl₂ was removed by reduced pressure to afford the pale-yellow solid as the desired product (477 mg, 86%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 3.94 (s, 6H, CH₃), 6.90 (t, *J* = 7.5 Hz, 2H, Ar*H*), 7.37 (t, *J* = 7.3 Hz, 2H, Ar*H*), 7.55 (d, *J* = 8.5 Hz, 2H, Ar*H*), 7.99 (d, *J* = 6.9 Hz, 2H, Ar*H*), 11.05 (s, 1H, N*H*).

Step ii: Synthesis of 2,2'-iminobis(hydroxymethyl benzene)

To a suspension of LiAlH₄ (151 mg, 3.97 mmol) in anhydrous Et₂O (40 mL) was cautiously added 2,2'-iminobis(methyl benzoate) (453 mg, 1.59 mmol) over a 15 minute period. The resulting mixture was stirred overnight, after which was quenched sequentially in ice bath by ethyl acetate (3 mL), water (3 mL), NaOH (3 mL, 15%) and water (20 mL), and then filtered. The precipitate was extracted with boiling chloroform (3 x 10 mL). The solvent was removed under reduced pressure, resulting the crude off-white solid which was then purified by precipitating in CH₂Cl₂/Hexane to afford the white solid (255 mg, 70%). ¹H NMR (400 MHz, DMSO-*d*₆, 298 K): δ (ppm) = 4.48 (d, *J* = 5.0 Hz, 4H, CH₂), 5.26 (t, *J* = 5.1 Hz, 2H, OH), 6.87 (t, *J* = 7.2 Hz, 2H, ArH), 7.04 (d, *J* = 7.9 Hz, 2H, ArH), 7.15 (t, *J* = 7.4 Hz, 2H, ArH), 7.31 (d, *J* = 7.3 Hz, 2H, ArH), 7.40 (s, 1H, NH).

Step iii: Synthesis of 2,2'-iminobisbenzaldehyde

To a colourless solution of 2,2'-iminobis(hydroxymethyl benzene) (230 mg, 1.00 mmol) in dry Et₂O (30 mL) was added an activated MnO₂ (1.75 g, 20.13 mmol). The resulting black suspension was stirred at room temperature overnight. The MnO₂ was then filtered off and extracted with boiling chloroform (3 x 10 mL). The combined extracts and filtrate were concentrated to yield a yellow solid. This crude yellow solid was purified by chromatography on silica gel with 1:4 EtOAc: Hexane (R_f = 0.4), giving the title product as a bright yellow crystalline solid (138 mg, 62%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 7.08 (t, *J* = 7.3 Hz, 2H, Ar*H*), 7.47 (t, *J* = 7.6 Hz, 2H, Ar*H*), 7.55 (d, *J* = 8.0 Hz, Ar*H*), 7.71 (d, *J* = 7.7 Hz, 2H, Ar*H*), 10.03 (s, 2H, C*H*O), 11.36 (s, 1H, N*H*).

Fig. S1 ¹H NMR spectrum of 2,2'-iminobis(methyl benzoate) in CDCl₃.

Fig. S2 ¹H NMR spectrum of 2,2'-iminobis(hydroxymethyl benzene) in DMSO-d₆.

Fig. S3 ¹H NMR spectrum of 2,2'-iminobisbenzaldehyde in CDCl₃.

Fig. S5 ¹H NMR spectrum of [2-Ni](BF₄) in CD₃CN.

Fig. S6 ¹H NMR spectrum of [2-Ni]^{Me}(BF₄) in CD₃CN.

* some *H* peaks from propylene linkage overlap with the peaks of solvent.

Mass Spectrum List Report

Analysis Info

Analysis Name D:\Data\Data Service\191111\PLMJ046_RA2_01_3478.d Method nv_pos_6min_profile_wguardco1_50-1500_191021.m Sample Name PLMJ046 Comment Acquisition Date 11/11/2019 5:40:19 PM

Operator CU. Instrument / Ser# micrOTOF-Q II 10335

Acquisition	Paramete	r								
Source Type	E	SI		Ion Pola	nity	Positive	Set Neb	lizer	3.0 Bar	
Focus	N	ot active		Set Cap	illary	4000 V	Set Dry I	leater	200 °C	
Scan Begin	50) m/z		Set End	Plate Offset	-500 V	Set Dry (Gas	8.0 Vmin	
Scan End	10	500 m/z		SetCol	ision Cell RF	250.0 Vpp	Set Dive	rt Valve	Waste	
Int	ane									_
	4051									
,	1.5-		0.00.00							
			349.09	57						
	-									
	1.0-									
	1									
	1									
	0.5		1							
	-									
	0.01					760.1793				
	0.0	200		400	enn	800	1000	1200	1400	miz
		ME 100	1.00 min #77	10.000	000	000	1000	12.00	1100	
	+	MS, 1.23*	1.39mm #(/	3-83)						
		Dee	0.01		TANK IN					
-	102 0428	77.67	8/N	269	P WPIM					
	243 9411	8473	902.7	203	0.0248					
	260,0312	91/09	164.3	266	0.0286					
3	200.0312	9014	159.6	200	0.0200					
5	298.2739	9393	575.6	1691	0.0318					
6	299 2777	93.50	108.3	328	0.0320					
7	346.0726	99.88	52.9	382	0.0346					
	347.0796	9845	1530.1	11148	0.0353					
9	348.0841	9542	541.7	3996	0.0365					
10	349.0957	8750	18229.6	136074	0.0399					
11	350.0978	9409	3647.1	27551	0.0372					
12	351.0918	9184	6875.1	52542	0.0382					
13	352.0935	9649	1629.0	12596	0.0365					
14	353.0898	9541	994.4	7778	0.0370					
15	354.0919	98.89	202.3	1601	0.0358					
16	355.0883	9793	225.7	1806	0.0363					
17	356.0916	9698	50.2	407	0.0367					
18	365.0898	9639	54.2	484	0.0379					
19	367.0956	8069	29.7	271	0.0455					
20	733.1599	13351	262.8	1000	0.0549					
21	734.1652	12836	103.0	395	0.0572					
22	735.1579	13189	296.9	1141	0.0557					
23	736.1586	13309	125.5	485	0.0553					
24	737.1551	12689	141.6	0570	0.0581					
25	760.1793	12433	0599.0	2570	0.0611					
26	761.1810	12093	258.6	1115	0.0600					
27	762.1769	12301	010./ 000.4	2230	0.0620					
20	764 17:20	12022	101.0	837	0.0601					
30	765.1746	13720	89.2	392	0.0558					

Fig. S7 High resolution mass spectrum of [1-Ni](BF₄)

Mass Spectrum List Report

Analysis Info

Analysis Name D:\Data\Data Service\191125\PLMJ048_RA3_01_3483.d Method nv_pos_6min_profile_wguardcol_50-1500_191021.m Sample Name PLMU048 Comment

Acquisition Date 11/25/2019 4:38:16 PM

Operator CU.

Instrument / Ser# micrOTOF-Q II 10335

Acquisiti	ion	Paramete	r								
Source Typ	pe	E	SI		lon Po	larity	Positive	SetNebu	lizer	3.0 Bar	
Focus		N	iot active		Set Ca	pillary	4000 V	Set Dry H	leater	200 °C	
Scan Begin	n	5	0 m/z		Set Er	d Plate Offset	-500 V	Set Dry 0	as	8.0 l/min	
Scan End		1	500 m/z		Set Co	lision Cell RF	250.0 Vpp	Set Diver	t Valve	Waste	
	Int	ens.									
	3	x10 ⁵ 1									
		1		377	1267						
				3//	1.07						
		10-1			1						
					1						
		-			1						
		0.5-			1						
		1									
		-									
		0.0 ¹		<u> </u>	ب جب ا						
			200		400	600	800	1000	1200	1400	m/z
		-+	MS, 1.11-	1.29min #	(66-77)						
			-	~ ~ ~							
-	-	284 3 334	90.40	852.4	3438	0.0315					
	2	204.0004	0040	326.0	2055	0.0329					
	3	341 2654	9880	127.5	1952	0.0345					
	4	368.4245	10305	79.2	1665	0.0358					
	5	375,1110	10005	78.2	1753	0.0375					
	6	377.1267	8803	5469.0	124724	0.0428					
	7	378.1291	9683	1203.0	27691	0.0391					
	8	379.1223	9651	2205.5	51223	0.0393					
	9	380.1246	10072	557.9	13078	0.0377					
	10	381.1209	9948	329.4	7790	0.0383					
	11	382.1230	10224	68.0	1624	0.0374					
	12	383.1207	9893	72.8	1754	0.0387					
	13	384.1873	9507	41.4	1008	0.0404					
	14	385.2911	10034	76.1	1869	0.0384					
	15	400.3759	10348	49.2	1087	0.0387					
	16	422.1108	10/1/	55.9	1026	0.0394					
	17	425.3596	10554	185.1	3287	0.0403					
	18	428.4082	10419	122	124/	0.0411					
	19	429.3166	10410	270.0	1056	0.0412					
	20	469.3851	10920	3/9.0	3869	0.0430					
	21	4/0.3004	10832	389.5	3144	0.0434					
	22	5144152	11333	126.1	1020	0.0477					
	24	557 4384	11708	339.0	2818	0.0473					
	25	601 4650	11701	232.1	1991	0.0514					
	26	645 4893	12497	192.9	1709	0.0517					
	27	666,6385	12185	173.8	1564	0.0547					
	28	689.5151	12424	165.8	1452	0.0555					
	29	733.5421	12982	183.7	1399	0.0565					
	30	777.5684	12950	158.6	1036	0.0600					

Fig. S8 High resolution mass spectrum of [2-Ni](BF₄)

Mass Spectrum List Report

Analysis Info		Acquisition Date	12/21/2020 3:44:40 PM
Analysis Name	D:\Data\Data Service\201221\PLMJ079_NiN4Me_RC2_01_5	092.d	
Method	nv_pos_5min_profile_190214.m	Operator	CU.
Sample Name	PLMJ079_NiN4Me	Instrument / Ser#	micrOTOF-Q II 10335
Comment			

Comment											
Acquisition Source Type Focus Scan Begin Scan End	n Para	ESI Not a 100 r 1500	active m/z m/z		lon Polar Set Capi Set End I Set Collis	ity Ilary Plate Offset sion Cell RF	Positive 4000 V -500 V 250.0 Vpp	Set Neb Set Dry Set Dry Set Dive	ulizer Heater Gas ert Valve	3.0 Bar 200 ℃ 8.0 I/min Waste	
Ir	ntens. x10 ⁶ 1.00 0.75 0.50 0.25			391.15	969		869 288	80			
	0.001	200		40		600	800	1000	1200	1400	m/z
	ſ	+MS	.0.14-0.	24min #(8	- -14), Backo	round Subtra	acted				
	. '					-					
	10	5 57037	689.4	167.9	1722	0.02837					
2	19	6.07397	6746	329.1	3363	0.02907					
3	19	6.57268	6441	142.5	1459	0.03052					
4	19	7.07094	6859	141.9	1451	0.02873					
5	39	1.15969	3156	196.8	1033315	0.12395					
6	39	2.14840	6414	155.1	827626	0.06114					
7	39	3.14618	4835	179.7	973995	0.08131					

8	394.14117	8152	86.0	473290	0.04835	
9	395.13697	8588	51.1	285388	0.04601	
10	397.13349	9506	10.3	59077	0.04178	
11	868.29041	11016	11.8	8178	0.07882	
12	869.28880	10413	49.5	34623	0.08348	
13	870.28925	10866	32.4	22957	0.08009	
14	871.28523	10567	44.2	31777	0.08245	
15	872.28516	10800	22.4	16296	0.08076	
16	873.28234	10732	16.3	12062	0.08137	
17	1349.43196	11821	25.5	1120	0.11415	

Fig. S9 High resolution mass spectrum of $[2-Ni]^{Me}(BF_4)$.

Electrochemical Studies in Non-aqueous Electrolyte

Fig. S10 CVs of 1 mM (a) 1-Ni, (b) 2-Ni and (c) $[2-Ni]^{Me}$ recorded in N₂-saturated CH₃CN/ 0.1 M Bu₄NPF₆ solution (v = 0.1 V/s, glassy carbon electrode).

Table ST Liectrochemical data of Schill base nicker macrocycles.								
Complex	E _{pc1} (V)	Е _{ра1} (V)	E _{1/2} (V) ^[b] [ΔE _p (mV)] ^[c]	E _{pc2} (V)	Е _{ра2} (V)	E _{1/2} (V) ^[b] [ΔE _p (mV)] ^[c]		
1-Ni	+0.45	+0.52	+0.49 [73]	-1.89	-1.82	-1.86 [80]		
2-Ni	+0.25	+0.33	+0.29 [82]	-1.75	-1.68	-1.72 [71]		
[2-Ni] ^{Me}	+0.27	+0.34	+0.31 [76]	-1.56	-1.49	-1.52 [66]		

Table S1 Electrochemical data of Schiff base nickel macrocycles.^[a]

^[a] All voltammograms were recorded in CH₃CN; the potentials are reported *vs.* the Fc^{+/0} couple. Conditions: scan rate = 100 mV/s, compound (1 mM), Bu₄NPF₆ (0.1 M), glassy carbon working electrode. Under these conditions we found ΔE_p (Fc^{+/0}) = 65 mV. ^[b] E_{1/2} = (E_{pc} + E_{pa})/ 2, when E_{pc} = cathodic peak potential and E_{pa} = anodic peak potential. ^[C] ΔE_p = |E_{pc} - E_{pa}|.

Fig. S11 CVs of **1-Ni** in CH₃CN at different scan rate and plots of reductive current vs. the square root of the scan rate of **1-Ni** in CH₃CN at E = -1.86 V vs. Fc^{+/0}.

Fig. S12 CVs of **2-Ni** in CH₃CN at different scan rate and plots of reductive and oxidative currents vs. the square root of the scan rate of **2-Ni** in CH₃CN at E = -1.72 V vs. Fc^{+/0}.

Fig. S13 CVs of $[2-Ni]^{Me}$ in CH₃CN at different scan rate and plots of reductive and oxidative currents vs. the square root of the scan rate of $[2-Ni]^{Me}$ in CH₃CN at E = -1.52 V vs. Fc^{+/0}.

Scan rate (V s ⁻¹)	E _{pc} (V)	E _{pa} (V)	E _{1/2} (V)
0.05	-1.89	-1.82	-1.85
0.1	-1.89	-1.82	-1.85
0.25	-1.90	-1.81	-1.85
0.5	-1.90	-1.81	-1.85
1	-1.92	-1.80	-1.85
2.5	-1.92	-1.79	-1.85
5	-1.92	-1.79	-1.85
10	-1.95	-1.78	-1.86

Table S2 Redox potential of Ni^{II}/Ni^{I} couples of **1-Ni** at different scan rates.

 Table S3 Reductive current of Ni^{II}/Ni^I couples of 1-Ni at different scan rates.

Scan rate (V s ⁻¹)	i _{pc} (μΑ)	i _{pa} (μA)	i _{pc} / i _{pa}
0.05	23.01	-	-
0.1	30.96	-	-
0.25	50.35	-	-
0.5	72.12	-	-
1	104.10	-	-
2.5	160.20	-	-
5	230.50	-	-
10	330.75	-	-

Table S4 Redox potential of Ni^{II}/Ni^{I} couples of **2-Ni** at different scan rates.

Scan rate (V s ⁻¹)	E _{pc} (V)	E _{pa} (V)	E _{1/2} (V)
0.05	-1.75	-1.68	-1.72
0.1	-1.75	-1.68	-1.72
0.25	-1.75	-1.68	-1.72
0.5	-1.75	-1.68	-1.72
1	-1.76	-1.67	-1.72
2.5	-1.76	-1.66	-1.71
5	-1.77	-1.66	-1.72
10	-1.78	-1.65	-1.72

Scan rate (V s ⁻¹)	i _{pc} (μΑ)	i _{pa} (μA)	i _{pc} / i _{pa}
0.05	23.01	20.84	1.10
0.1	30.96	28.26	1.10
0.25	50.35	46.62	1.08
0.5	72.12	63.05	1.14
1	104.10	93.20	1.12
2.5	160.20	139.30	1.15
5	230.50	205.80	1.12
10	330.75	285.13	1.16

Table S5 Reductive and oxidative current of Ni^{II}/Ni^I couples of **2-Ni** at different scan rates.

 Table S6 Redox potential of Ni^{II}/Ni^I couples of [2-Ni]^{Me} at different scan rates.

Scan rate (V s ⁻¹)	E _{pc} (V)	E _{pa} (V)	E _{1/2} (V)
0.05	-1.55	-1.49	-1.52
0.1	-1.55	-1.49	-1.52
0.2	-1.56	-1.49	-1.53
0.4	-1.56	-1.48	-1.52
0.6	-1.56	-1.48	-1.52
0.8	-1.56	-1.49	-1.53
1.0	-1.56	-1.48	-1.52

Table S7 Reductive and oxidative current of Ni^{II}/Ni^I couples of [**2-Ni**]^{Me} at different scan rates.

Scan rate (V s ⁻¹)	i _{pc} (μΑ)	i _{pa} (μA)	i _{pc} / i _{pa}
0.05	22.32	21.12	1.05
0.1	31.01	29.83	1.04
0.2	43.74	42.00	1.04
0.4	63.39	60.45	1.05
0.6	76.92	73.76	1.04
0.8	89.57	84.54	1.06
1.0	98.81	94.22	1.05

Fig. S14 Cyclic voltammograms of (a) **1-Ni**, (b) **2-Ni**, and (c) **[2-Ni]**^{Me} at 1 mM concentration in 0.1 M NBu₄PF₆/CH₃CN (v = 0.1 V/s) under N₂ (blue) and under N₂ with 1 M H₂O (pink). Background signals were collected under CO₂-saturated 0.1 M NBu₄PF₆/CH₃CN and illustrated in black-dashed line.

Fig. S15 Cyclic voltammograms (CVs) of (a) 1-Ni, (b) 2-Ni and (c) $[2-Ni]^{Me}$ in CO₂-saturated CH₃CN/ 0.1 M Bu₄NPF₆ with the various concentration of H₂O. CVs in N₂-saturated CH₃CN/ 0.1 M Bu₄NPF₆ were illustrated in the broken line. Glassy carbon (Area = 0.071 cm²) was used as a working electrode.

UV-visible Spectra of Ni Complexes Before and After Adsorption on NG

Fig. S16 UV-visible spectra of (a) **1-Ni**, (b) **2-Ni** and (c) **[2-Ni]**^{Me} complexes before (black solid line) and after (red dotted line) adsorption on NG.

Scanning Electron Microscopic Images

Fig. S17 Scanning electron microscopy (SEM) image of N-doped graphene at 1000-fold magnification and energy dispersive X-ray spectrum (EDS) of NG.

Fig. S18 3000-fold-magnified SEM images coupled with elemental mapping of **1-Ni@NG**. C (red), N (yellow), Ni (green). EDS spectrum of **1-Ni@NG**.

Fig. S19 3000-fold-magnified SEM images coupled with elemental mapping of **2-Ni@NG**. C (red), N (yellow), Ni (green). EDS spectrum of **2-Ni@NG**.

Fig. S20 3000-fold-magnified SEM images coupled with elemental mapping of **[2-Ni]^{Me}@NG**. C (red), N (yellow), Ni (green). EDS spectrum of **[2-Ni]^{Me}@NG**.

Fig. S21 (a) Scanning electron microscopic (SEM) image of pristine CNT and elemental mapping (C = red, O = dark green, Si = light green, Al = orange). (b) Energy dispersive X-ray spectroscopy (EDS) of pristine CNT. Silicon wafer was used as a holder for sample preparation.

Fig. S22 (a) Scanning electron microscopic (SEM) image of **1-Ni@CNT** and elemental mapping (C = red, O = dark green, Si = light green, Al = orange). (b) Energy dispersive X-ray spectroscopy (EDS) of **1-Ni@CNT**. Silicon wafer was used as a holder for sample preparation.

Fig. S23 (a) Transmission electron microscopic (TEM) image of **1-Ni@CNT**. (b) Energy dispersive X-ray spectroscopy (EDS) of **1-Ni@CNT**. Cu grid was used as a holder for sample preparation.

Electrochemical Studies in Aqueous Electrolyte

Fig. S24 (a) Cyclic voltammograms of CNT and **1-Ni@CNT** in 0.5 M NaHCO₃. (b) Chronoamperometric measurement of CNT and **1-Ni@CNT** in CO₂-saturated 0.5 M NaHCO₃ (pH = 7.3) for 1 h. (c) Faradaic efficiency of CNT and **1-Ni@CNT** showing only H₂ was observed during the bulk electrolysis.

Fig. S25 (a) Faradaic efficiencies and (b) current-time profiles for 1 h-controlled potential electrolysis at -0.67 V *vs.* RHE in N₂-saturated 0.1 M K₂HPO₄/KH₂PO₄ (pH 8.1) of NG (black solid line) and **1-Ni@NG** (red solid line) versus in N₂-saturated 0.5 M NaHCO₃ (pH 8.7) of **NG** (black dotted line) and **1-Ni@NG** (red dotted line).

Fig. S26 KSCN poisoning test. (a) and (c) Cyclic voltammograms of NG and **1-Ni@NG** with and without 10 mM KSCN in 0.5 M NaHCO₃. (b) and (d) Current-time profiles of **NG** and **1-Ni@NG** with (red trace) and without (black trace) 10 mM KSCN in 0.5 M NaHCO₃.

Table S8 Electrochemical CO $_2$ reduction in the presence and absence of 10 mM KSCN at -0.67 V vs. RHE for 1 h

Catalysts	[KSCN]	Average Current Density (mA cm ⁻²)		CO (µmol)
NG	0 mM	1.1	22	4.5
	10 mM	1.0	21	4.1
1-Ni@NG	0 mM	2.2	81	37.8
	10 mM	1.4	68	17.6

Fig. S27 Linear sweep voltammetry (LSV) in CO₂-saturated 0.5 M NaHCO₃ for carbon paper (black dotted line), NG (black solid line), **1-Ni@NG** (red solid line), **2-Ni@NG** (green solid line), and **[2-Ni]^{Me}@NG** (blue solid line) at the scan rate of 0.05 V/s.

Fig. S28 Current-density time profiles and faradaic efficiencies of CO (blue) and H₂ (red) evolution in controlled potential electrolysis at -0.67 V vs. RHE (η = 0.56 V) in CO₂-saturated 0.5 M NaHCO₃ using (a)**2-Ni@NG** and (b) **[2-Ni]^{Me}@NG**. Time courses of the moles of CO (blue) and H₂ (red) production from bulk electrolysis and theoretical product yields (black) calculated from e⁻/2 of charge required during the bulk electrolysis for (c) **2-Ni@NG** and (d) **[2-Ni]^{Me}@NG**.

Fig. S29 Cyclic voltammetry in CO₂-saturated 0.5 M NaHCO₃ before (black solid line) and after electrolysis (red-dotted line) at -0.67 V vs. RHE for 4 h for (a) **1-Ni@NG**, (b) **2-Ni@NG** and (c) [**2-Ni]**^{Me}**@NG**.

1-Ni@NG/CP Before Electrolysis

2-Ni@NG/CP Before Electrolysis

1-Ni@NG/CP After Electrolysis

2-Ni@NG/CP After Electrolysis

[2-Ni]^{Me}@NG/CP Before Electrolysis [2-Ni]^{Me}@NG/CP After Electrolysis

Fig. S30 SEM images at 2000-fold magnification of **1-Ni@NG/CP**, **2-Ni@NG/CP** and **[2-Ni]^{Me}@NG/CP** before and after electrocatalysis for 4 h at the applied potential of -0.67 V *vs.* RHE.

Fig. S31 UV-visible spectroscopy (left panel) and cyclic voltammograms (right panel) of (a) 1-Ni, (b) 2-Ni and (c) 2-Ni^{Me} before and after electrolysis at E = -1.85, -1.75 and -1.65 V vs. Fc^{+/0} in CO₂-saturated 0.1 M N₄BuPF₆/CH₃CN.

Fig. S32 A two-compartment three-electrode electrochemical setup for aqueous system.

Fig. S33 GC traces of bulk electrolysis using NG (black) and 1-Ni@NG (blue) in 0.5 M NaHCO₃ at E = -0.77 V *vs.* RHE for 1 h. Retention time of H₂ (0.617), O₂ (0.694), N₂ (0.869), CO (2.010) and CO₂ (4.023). The carrier gas was He and the detector was a thermal conductivity detector (TCD).

Calculation of Faradaic Efficiency

%Faradaic Efficiency =
$$\frac{Q_{output}}{Q_{input}} \times 100$$

where e_{input} = the total number of moles of electrons measured during electrolysis e_{output} = the number of moles of electrons required for reducing CO₂ to CO

For bulk electrolysis at <u>E = -0.77 V vs. RHE</u>

 $e_{input} = \frac{Q}{F} = \frac{\int i \, dt}{F} = \frac{11.60 \, C}{96485 \frac{C}{mole \, of \, electrons}} = 1.20 \times 10^{-4} \text{ mole of electrons}$

Calculation of Faradaic Efficiency of CO

Volume of measured CO from GC = 4.42%, which was calibrated from standard gas Head space of H-type cell = 28 mL

Hence, volume of CO produced = 28 mL x 0.0442 = 1.24 mL <u>Conversion of volume to mole of produced CO</u> From the law of ideal gases, PV = nRT n = PV/RT $n = (1 \text{ atm})(1.24 \text{ x } 10^{-3} \text{ L})/(0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1})(298.15 \text{ K})$ Thus, moles of produced CO $n_{CO} = 5.07 \text{ x } 10^{-5} \text{ mol}$

Electrochemical CO₂-to-CO conversion: $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$

 $e_{output} = 5.07 \times 10^{-5} \text{ mol of CO x } \frac{2 \text{ mol of electrons}}{1 \text{ mol of CO}} = 1.01 \times 10^{-4} \text{ mol of electrons}$ Hence, %Faradaic Efficiency of CO = $\frac{e_{output}}{e_{input}} \times 100 = \frac{1.01 \times 10^{-4} \text{ mol of electrons}}{1.20 \times 10^{-4} \text{ mol of electrons}} \times 100 = 84.2\%$

Calculation of Faradaic Efficiency of H₂

Volume of measured H_2 from GC = 0.87%, which was calibrated from standard gas Head space of H-type cell = 28 mL

Hence, volume of produced H₂ = 28 mL x 0.0087 = 0.24 mL <u>Conversion of volume to mole of produced H₂</u> From the law of ideal gases, PV = nRT n = PV/RT $n = (1 \text{ atm})(0.24 \text{ x } 10^{-3} \text{ L})/(0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1})(298.15 \text{ K})$ Thus, moles of produced H₂ $n_{H2} = \underline{0.98 \text{ x } 10^{-5}}$ mol

Hydrogen Evolution Reaction (HER): $2H^+ + 2e^- \rightarrow H_2$

 $e_{output} = 0.98 \times 10^{-5} \text{ mol of } H_2 \times \frac{2 \text{ mol of electrons}}{1 \text{ mol of } CO} = 1.96 \times 10^{-5} \text{ mol of electrons}$ Hence, %Faradaic Efficiency of $H_2 = \frac{e_{output}}{e_{input}} \times 100 = \frac{1.96 \times 10^{-5} \text{ mol of electrons}}{1.20 \times 10^{-4} \text{ mol of electrons}} \times 100 = 16.3\%$

Summarized Data of Bulk Electrolysis at Various Potential Applied

Table S9 Summary of data in bulk electrolysis in a CO₂-saturated 0.5 M NaHCO₃ solution (pH 7.4) using **1-Ni@NG**

E _{applied} (V vs. RHE)	Time (h)	Charge (C)	CO (µmol)	%FE(CO)	H₂ (µmol)	%FE(H₂)
-0.57	1	3.4	11.0	62	5.9	33
-0.67	1	8.8	37.8	81	7.2	16
-0.77	1	11.6	50.7	84	9.8	16
-0.87	1	14.5	53.4	71	18.9	25

Table S10 Summary of data in bulk electrolysis in a CO₂-saturated 0.5 M NaHCO₃ solution (pH 7.4) using **2-Ni@NG**

E _{applied} (V vs. RHE)	Time (h)	Charge (C)	CO (µmol)	%FE(CO)	H₂ (µmol)	%FE(H ₂)
-0.57	1	3.3	10.7	63	6.1	36
-0.67	1	10.3	40.6	76	13.7	25
-0.77	1	14.7	58.6	77	35.0	23
-0.87	1	24.0	77.3	62	44.1	36

Table S11 Summary of data in bulk electrolysis in a CO₂-saturated 0.5 M NaHCO₃ solution (pH 7.4) using **[2-Ni]^{Me}@NG**

E _{applied} (V vs. RHE)	Time (h)	Charge (C)	CO (µmol)	%FE(CO)	H₂ (µmol)	%FE(H ₂)
-0.57	1	2.0	6.2	58	2.6	25
-0.67	1	5.6	19.2	68	4.9	17
-0.77	1	8.6	29.8	67	9.0	20
-0.87	1	14.1	56.3	77	11.8	16

	1-Ni ^a	2-Ni ^b	[2-Ni] ^{Me}
Bond lengths [Å]			
Ni1-N1	1.869(3)	1.867(2)	1.907(5)
Ni1-N2	1.861(7)	1.894(2)	1.914(4)
Ni1-N3	1.924(4)	1.942(2)	2.115(2)
Ni1-N4	1.830(7)	1.899(2)	2.014(4)
Bond angles [°]			
N1-Ni1-N2	94.9(3)	89.48(10)	87.4(2)
N1-Ni1-N3	179.3(4)	174.78(10)	175.12(2)
N1-Ni1-N4	95.3(3)	90.51(10)	92.0(2)
N2-Ni1-N3	85.2(3)	85.98(10)	88.34(2)
N2-Ni1-N4	169.83(19)	174.32(9)	179.5(2)
N3-Ni1-N4	84.6(3)	94.26(10)	92.2(2)
Twist of phenyl rings [°]	47.3	63.4	60.9

Table S12 Comparison of selected bond lengths (Å), angles (°) and twist of diphenylamine unit for **1-Ni**, **2-Ni** and **[2-Ni]^{Me}**.

^{a,b}Crystallographic data was obtained from ref. [S1] and [S2], respectively.

Catalyst	Cathode Material	Electrolyte	Applied Potential (V vs. RHE)	J (mA/cm²)	Product(s)	%FE	TOF (h ⁻¹)	Method for analyzing active surface area of catalyst	Ref
1-Ni@NG				~2		81	97.2		Thia
2-Ni@NG	Carbon Paper		-0.67	~3	CO	75	151.2	ICP-AES	INS
[2-Ni] ^{Me} @NG		(pn 7.4)		~1.5		68	93.6		WOIK
Pyrene-modified Ni(cyclam)/MWCNT	GDL	0.1 M Bu ₄ NPF ₆ / CH ₃ CN + 1% H ₂ O	-2.54ª	~10	со	>90	4.27(s ⁻¹)	ECSA	S3
NiPc	CFP	0.5 M KHCO ₃ (pH 7.2)	-0.80	-	со	<40	-	-	S4
NiPc/CNT	Carbon Paper	0.5 M KHCO ₃	-0.78	-	0	78	1025	-	S 5
PyNiPc/CNT	Carbon aper	(pH 7.2)	-0.70	-	00	~100	8715	-	
Ni(Salen-NO ₂)	GDL	0.5 M KHCO₃ (pH 7.5)	-1.50 ^b	-	CO CH4 C2H6	~40 ~17 ~17	-	-	S6
Ni(Salen-NH ₂)/Graphite plates	Graphite Electrode	0.5 M KHCO ₃ (pH 7.0)	-1.80°	-	HCOOH CH ₃ OH C ₂ H ₅ OH	4.7 11.4 28.6	0.33(s ⁻¹) 0.8(s ⁻¹) 2.1(s ⁻¹)	-	S7
Ni-CNT-PP	Glassy	0.5 M KHCO3	13.4	13.4	CO	96	0.6 x 10 ⁵	ICP-OES	S8
Ni-CNT-CC	carbon, RDE	(pH 7.3)	-0.71	32.3	CO	99	~105		
Ni-PMOF	Carbon Clath	0.5 M KHCO3	0.90	0.47	CO	18.5	8.11		50
Co-PMOF	Carbon Cloth	(pH 7.2)	-0.80	~18	CO	98.7	1656	-	29
CoPc	CFP	0.5 M KHCO₃ (pH 7.2)	-0.80	-	со	99	~42	ECSA	S4
CoPc/CCG	Carbon paper	0.1 M KHCO₃ (pH 6.8)	-0.59	~0.8	со	63	~2 (s ⁻¹)	ECSA	S10
CoPc-Py/CNT	Carbon paper	0.2 M KHCO₃ (pH 7.0)	-0.63	~5	со	98	34.5(s ⁻¹)	Total Catalyst Loading	S11
CoFPc/carbon cloth	Carbon cloth	0.5 M NaHCO₃ (pH 7.3)	-0.80	~4	со	93	1.6(s ⁻¹)	ICP-OES	S12
Fe(bpc)Cl(H ₂ O)/NG	GC	0.5 M NaHCO₃ (pH 7.3)	-0.58	~6	со	90	2.1(s ⁻¹)	ECSA	S13
Fe-TPPy/CNT	GC	0.1 M NaHCO₃	-0.60	19.6	CO CH₄	37 17	0.97(s ⁻¹) 0.07(s ⁻¹)	-	Q1/
Fe-adj-TPPy/CNT	GC	(pH 6.8)	-0.60	30.4	CO CH₄	67 25	3.49 (s ⁻¹) 0.07(s ⁻¹)	-	014

Table S13 Comparison of the ECR performance of Ni@NG catalysts from this work with high-performance ECR molecular-based catalysts from recent literatures.

^a Applied potential was reported in *V vs. Fc^{+/0}*, ^b Applied potential was reported in *V vs. SHE*, ^c Applied potential was reported in *V vs. Ag/AgCl*, ECSA = electrochemically active surface area, CFP = carbon fibre paper, GDL = gas diffusion electrode, GC = glassy carbon, RDE = rotating disk electrode, Pc = phthalocyanine, bpc = 4,5-dichloro-1,2-bis(pyridine-2-carboximido)benzene, CCG = chemically converted graphene, CNT = carbon nanotube, MWCNT = multi-walled carbon nanotube.

References

[S1] R. Sanyal, S. A. Cameron and S. Brooker, *Dalton Trans.* 2011, 40, 12277-12287.

[S2] R. K. Wilson and S. Brooker, *Dalton Trans.* 2013, 42, 7913-7923.

[S3] S. Pugliese, N. T. Huan, J. Forte, D. Grammatico, S. Zanna, B. L. Su, Y. Li and M. Fontecave, *ChemSusChem*, **2020**, 13, 6449-6456.

[S4] Z. Zhang, J. Xiao, X. J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z. Q. Tian and D. Deng, *Angew. Chem. Int. Ed.*, **2018**, 57, 16339-16342.

[S5] D.-D. Ma, S.-G. Han, C. Cao, X. Li, X.-T. Wu and Q.-L. Zhu, Appl. Catal. B, 2020, 264.

[S6] S. Singh, B. Phukan, C. Mukherjee and A. Verma, RSC Adv., 2015, 5, 3581-3589.

[S7] P. Bose, C. Mukherjee and A. K. Golder, Inorg. Chem. Front., 2019, 6, 1721-1728.

[S8] S. Liu, H. B. Yang, S. F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang and B. Liu, *Angew. Chem. Int. Ed.*, **2020**, 59, 798-803.

[S9] Y. R. Wang, Q. Huang, C. T. He, Y. Chen, J. Liu, F. C. Shen and Y. Q. Lan, *Nat. Commun.*, **2018**, 9, 4466.

[S10] J. Choi, P. Wagner, S. Gambhir, R. Jalili, D. R. MacFarlane, G. G. Wallace and D. L. Officer, *ACS Energy Lett.*, **2019**, 4, 666-672.

[S11] M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang and Y.-F. Han, *Appl. Catal. B*, **2019**, 251, 112-118.

[S12] N. Morlanés, K. Takanabe and V. Rodionov, ACS Catal., 2016, 6, 3092-3095.

[S13] E. A. Mohamed, Z. N. Zahran, Y. Tsubonouchi, K. Saito, T. Yui and M. Yagi, ACS Appl. Energy Mater., **2020**, 3, 4114-4120.

[S14] M. Abdinejad, C. Dao, B. Deng, F. Dinic, O. Voznyy, X.-a. Zhang and H.-B. Kraatz, ACS *Sustain. Chem. Eng.*, **2020**, 8, 9549-9557.