Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Impact of regiochemistry in energetic materials science: a case of (nitratomethyl-1,2,3-triazolyl)furazans

Margarita A. Epishina,¹ Alexander S. Kulikov,¹ Ivan V. Ananyev,^{2,3} Aleksei A. Anisimov,^{3,4} Konstantin A. Monogarov,⁵ Leonid L. Fershtat^{*1}

^{1.} N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991 (Russian Federation).

^{2.} N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect, 31, 119991 Moscow, Russia.

^{3.} National Research University Higher School of Economics 101000, Myasnitskaya str., 20, Moscow (Russian Federation).

⁴ Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow, Russia, 119991

^{5.} N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991 (Russian Federation).

*E-mail: <u>fershtat@bk.ru</u>

Table of Contents

S1. Crystallographic data	2
S2. Computational details	7
S3. Copies of NMR spectra	7

S1. Crystallographic data

	3c	4 a
Formula	$C_6H_6N_6O_5$	$C_5H_3N_7O_6$
Mass	242.17	257.14
Т, К	100	100
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	$P2_1/n$
Z (Z')	8 (1)	4 (1)
a, Å	18.5628(3)	11.2782(3)
b, Å	7.92780(10)	6.3430(2)
c, Å	13.6589(2)	13.7366(4)
α, °	90	90
β, °	111.2210(10)	104.6130(10)
γ, °	90	90
V, Å ³	1873.77(5)	950.90(5)
$d_{cryst}, g \cdot cm^{-3}$	1.717	1.796
F(000)	992	520
$2\theta_{\rm max}$, °	60	58
Number of reflections measured	25668	11887
Independent reflections	2710	2533
Reflections with I>2o(I)	2598	2374
Number of parameters	178	175
\mathbf{R}_1	0.0299	0.0306
wR ₂	0.0777	0.0840
GOF	1.040	1.038
Residual electron density, $e \hat{A}^{-}$ ³ (d_{min}/d_{max})	0.481/-0.213	0.392/-0.277

Table S1. Crystallographic details and refinement parameters for 3c and 4a.

Figure S1. A general view of the independent unit of the FAZGOF structure.

Figure S2. A general view of the independent unit of the YASJIM structure.

Figure S3. The best root-mean-square overlap for the non-hydrogen atoms of the crystal (dashed lines) and the equilibrium isolated (full lines) molecular conformations of **3c**.

Figure S4. A general view of the independent unit of the ELIGUD structure.

Figure S5. A general view of the independent unit of the ZUJCUF structure.

Figure S6. A general view of the independent unit of the HEGLEM structure.

Figure S7. A general view of the independent unit of the KOXWIF structure.

Figure S8. A general view of the independent unit of the NILZAM structure.

Figure S9. A general view of the molecule in the TAXDUU structure.

Figure S10. A general view of the independent unit of the WANVEP structure.

Figure S11. The best root-mean-square overlap for the non-hydrogen atoms of the crystal (dashed lines) and the equilibrium isolated (full lines) molecular conformations of **4a**.

S2. Computational details

A general formula used for the calculation of the enthalpies of formation was as follows:

$$\Delta_{f} H^{0}_{(g)} = \Sigma H_{atom} - \Sigma \Delta_{thermal} H_{atom} - \Sigma D_{0}$$

$$\Sigma D_{0} = \Sigma CBS-4M(H_{atom}) - CBS-4M(H_{molecule})$$

Corrections on values of enthalpies of sublimation and enthalpies of vaporization were calculated according to empirical formulae:

$$\Delta_f H^0_{(subl)} = 0.04476 \cdot T_m$$
$$\Delta_f H^0_{(vap)} = 0.02095 \cdot T_{vap}$$

		$\Delta_{\rm f} {\rm H}^0$ (0K),	Thermal $\Delta\Delta H$,	CBS-4M,
	multiplicity	kcal mol ⁻¹	kcal mol ⁻¹	hartree
Н	2	51.63	1.01	-0.500991
С	3	169.98	0.25	-37.786156
Ν	4	112.53	1.04	-54.522462
Ο	3	58.99	1.04	-74.991202

Table S2. Atomic contributions to the enthalpies of formation.

Table S3. Calculated enthalpies of formation.

	4a	4b	4c	
CBS-4(H _{molecule}),	1025 207561	1025 204723	13/3 03672	
hartree	-1023.297501	-1023.294723	-1343.93072	
$\Sigma CBS-4M(H_{atom}),$	1022 038100	1022 038100	1330 821/11/	
hartree	-1022.030133	-1022.038179	-1337.821414	
ΣD_0 , hartree	3.259362	3.256524	4.115306	
$\Delta_f H^0_{(g)}$, kcal mol ⁻¹	83.4	85.2	52.0	
$\Delta_f H^0_{(cond)}$, kcal mol ⁻¹	67.9 (solid)	76.0 (liquid)	42.9 (liquid)	

S3. Copies of NMR spectra

