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Experimental Details

Materials and General Methods. All reagents were commercially available and used without 

further purification. The ligand 4,4’-Bispyrazole (H2Bpz) was synthesized according to literature 

method.1 Thermogravimetry analysis was performed using a TGA55 system. Powder X-ray 

diffraction (PXRD) patterns were recorded on a Bruker D8 Advance diffractometer (Cu K). 

Scanning electron microscopy (SEM) images were recorded by a SU8010 system. Transmission 

electron microscopy (TEM) images were recorded by a JEM-ARM200P system. X-ray 

photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250 

spectrometer. Nuclear magnetic resonance (NMR) measurement was performed on a Bruker 

advance III 400 MHz NMR spectrometer. Operando ATR-FTIR tests were performed on a 

Thermo Fisher Nicolet iS5 spectrometer.

Synthesis of CuBpz was carried out according to a previous report.2 A mixture of H2Bpz (26.8 

mg, 0.2 mmol) and 30 mL of acetonitrile was firstly heated at 45 °C. Copper acetate (36.3 mg, 0.2 

mmol) was subsequently added into the dispersion. The solution was subsequently stirred at room 

temperature for one day. The brownish powder was collected by filtration and washed by 

methanol, and dried at 70 °C under vacuum. Yield: 35.5 mg, 75.1% based on H2Bpz.

Electrochemical measurements were carried out in a three-electrode flow cell, in which the Pt 

foil served as counter electrode and Ag/AgCl electrode served as reference electrode. Briefly, 5 

mg sample was dispersed in 0.9 mL ethanol and 0.1 mL Nafion solution, following by sonication 

for half an hour at 25 °C. Then 50 μL mixture was dropped onto the gas diffusion electrode (GDE) 

and dried in vacuum at 70 °C. The CO flow rate (20 sccm) was controlled through a mass flow 

controller. Linear sweep voltammetry (LSV) curves were obtained with a scan rate of 10 mV s-1 

on a CHI660E electrochemical workstation. 

CO electroreduction reaction measurements were carried out in a three-electrode flow cell. 

Two chambers in the reactor were separated by a Fumasep FAB-PK-130 anion membrane. Pure 

CO gas was continuously delivered into the flow cell, and the tail gas was delivered into an 8890B 

gas chromatography system to achieve the online detection. The Faradaic efficiency of a certain 

gas product was calculated by the equation:

𝐹𝐸 =  
𝑃𝑉
𝑇

 ×  
𝜈𝑁𝐹

𝐼

in which P, V and T represent the pressure (1 atm), gas flow rate (30 mL min-1) and room 
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temperature, and ν (vol %), N, F, and I represent the volume concentration of gas product, number 

of the electron transfer in electrocatalysis, Faradaic constant, and current, respectively.

Liquid products of eCORR in catholyte were quantitatively detected using 1H nuclear 

magnetic resonance spectroscopy (1H NMR). 100 μL of D2O was employed as the deuterated 

solution, and 100 μL of 6 mM non-deuterated dimethyl sulfoxide (DMSO) aqueous solution was 

used as the internal standard to qualify the concentration of liquid products. Both of the liquids 

were added into 500 μL of catholyte to prepare the 1H NMR sample. Then the sample was 

analyzed using a Bruker AVIII 400 MHz NMR spectrometer.

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) 

measurements were carried out on a Nicolet 6700 spectrometer. The data were collected for the 

same sample at −1.1 V vs. RHE after purging with high purity carbon dioxide gas for 20 min, and 

8 curves from 0 s to 1800 s were recorded.
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Figure S1. Powder X-ray diffraction (PXRD) patterns of CuBpz after different treatments.
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Figure S2. Thermogravimetric analysis (TGA) of CuBpz.
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Figure S3. CV curve of CuBpz in acetonitrile solution in Ar atmosphere.
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Figure S4. (a and c) Cyclic voltammetry (CV) curves and (b and d) capacitive behaviors of CuBpz and bare electrode at various 
scan rate (10 ~ 50 mV s-1), respectively.
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Figure S5. GC profiles of (a) gas products at −1.1 V vs. RHE and standard mixed gas at different concentrations: (b) 100, (c) 
500, and (d) 1000 ppm.
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Figure S6. 1H NMR spectra of standard samples of (a) 10, (b) 50 (c) 100, (d) 500, and (e) 1000, and the liquid products at 
the potentials of (f) −1.1 V vs. RHE.
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Figure S7. Long-term durability test of CuBPz at the potential of −1.1 V vs. RHE.
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Figure S8. TEM images of CuBpz (a, c, and e) before and (b, d and f) after electrolysis. 
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Figure S9. (a) XPS and (b) auger spectra of CuBpz before and after electrolysis. (c) and (d) are the survey spectra of 
CuBpz before and after electrolysis, respectively. The F1s peak in (d) is generated from the mixing of Teflon from 
electrolyzer and the K2p3 one is attributed to KOH electrolyte.
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Figure S10. (a) 1H NMR spectra of the non-aqueous electrolyte after electrolysis and standard sample. The existence of 
TBABF4 result in the difficulty of lock field, and thus the broadening of resonance peaks of acetate and ethanol. (b) 
Stripping voltammogram of CuBpz.
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Table S1. Acetate selectivities of various reported electrocatalysts for eCORR.

Catalyst Electrolyte Potential (V vs. RHE) FE of acetate (%)

Partial 
current 

density for 
acetate 

(mA cm-2)

Ref.

70 425 3

Cu-Pd alloy 1 M KOH solution -1
65 130 4

Cu nanosheets 2 M KOH solution -0.6 48 131 5

Cu nanocube -- -2.24 43 86 6

Cu(I)-imidazole 
coordination 

polymer
3 M KOH solution -0.59 61 244 7

Cu@8%PMMA-
MS 1 M KOH solution -0.53 ~15 ~6 8

CuBpz 1 M KOH solution −1.1 51.3 95.6 This 
work
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