Supplementary Information

Abbreviations

[Co(4-etpy)₂(hfac)₂] (1), CCDC 2223471 (T = 100 K), this work [Co(4-etpy)₂(hfac)₂] (1c), CCDC 2236260 (T = 296 K), this work [Co(4-bzpyCl)₂(hfac)₂] (2), CCDC 2223472 (T = 100 K), this work [Co(acac)₂(H₂O)₂] (3a), CCDC 1842364 (T = 100 K, $R_{gt} = 2.4\%$) [Co(acac)₂(H₂O)₂] (3b), CCDC 1005484 (T = 293 K, $R_{gt} = 6.1\%$)

Two complexes under study were prepared following the synthetic route in Scheme S1. The organic reactants (4-ethylpyridine, 4-(4-chlorobenzyl)pyridine), inorganic salt cobalt(II) hexafluroacetylacetonate hydrate of reagent grade were purchase and used as received. Acetonitrile was not dried and used without any further purification.

Scheme S1. Synthetic route of 1 and 2.

Synthesis of the complex $[Co(4-etpy)_2(hfac)_2]$ (1).

Cobalt(II) hexafluroacetylacetonate hydrate (0.5 mmol, 0.236 g) was dissolved in acetonitrile (15 cm³) and stirred for 15 min. Afterwards 4-etyhlpyridine (4-etpy) (1.5 mmol, 0.170 cm³) was added. The resulting mixture was stirred and heated under reflux for 2 hours. After refluxing, the solution was filtered off and left for crystallization. The red-orange crystals were collected after 5 days. Yield: 46%. Melting point: 171°C. *Anal Calc.* for C₂₄H₂₀CoF₁₂N₂O₄ (M = 687.351g·mol⁻¹): C, 41.94; H, 2.93; N, 4.08. Found: C, 41.75 H, 2.82; N, 4.16. Selected IR bands / (cm⁻¹): 1641 v_{as} (C-C), 1618 v_{s} (C-O), 1251 v_{s} (C-C) 1209 v_{as} (CF₃), 1193 v_{s} (CF₃) 1138 (C-H), 793 (C-CF₃). UV/Vis (Nujol) $v_{max}/10^3$ cm⁻¹ (relat. absorb.): 27.5, 32.

Synthesis of the complex [Co(4-bzpyCl)₂(hfac)₂] (2).

Cobalt(II) hexafluroacetylacetonate hydrate (0.5 mmol, 0.236 g) was dissolved in acetonitrile (15 cm³) and stirred for 15 min. Afterwards 4-(4-chlorobenzyl)pyridine (4-bzpyCl) (1.5 mmol, 0.263 cm³) was added. The resulting mixture was stirred and heated under reflux for 2 hours. After refluxing, the solution was filtered off and left for crystallization. The orange crystals were collected after 5 days. Yield: 85%. Melting point: 196°C. *Anal Calc.* for $C_{34}H_{22}Cl_2CoF_{12}N_2O_4$ ($M = 880.384 \text{ g}\cdot\text{mol}^{-1}$): C, 46.39; H, 2.52; N, 3.18. Found: C, 47.22 H, 2.06; N, 3.34. Selected IR bands / (cm⁻¹): 1637 v_{as} (C-C), 1612 v_s (C-O), 1256 v_s (C-C), 1193 v_s (CF₃), 1134 (C-H), 793 (C-CF₃). UV/Vis (Nujol) $v_{max}/10^3$ cm⁻¹ (relat. Absorb.): 27.5, 32.

Note about irreducible representations for double groups with degeneracy given by the character of identity Double groups D'_4 , C'_{4v} , and D'_{2d} (h = 16)

	••	24						
Bethe symbol	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6	Γ_7	
Mulliken symbol	A_1	A_2	B_1	B_2	E_1	E _{1/2}	E _{3/2}	
Griffith symbol	A_1	A_2	\mathbf{B}_1	B_2	E	E'	Е"	
Character $\chi(\hat{C}_1)$	+1	+1	+1	+1	+2	-2	-2	

Double groups \mathbf{D}'_2 and \mathbf{C}'_{2v} (h = 8)

Bethe symbol	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5
Mulliken symbol	A/A_1	B_1/A_2	B_2/B_1	B_3/B_2	$E_{1/2}$
Griffith symbol	A/A_1	B_1/A_2	B_2/B_1	B_3/B_2	E'
Character $\chi(\hat{C}_1)$	+1	+1	+1	+1	-2

Fig. S1. IR spectra of [Co^{II}(etpy)₂(hfac)₂], 1, (top) and [Co^{II}(bzpyCl)₂(hfac)₂], 2 (bottom).

Fig. S2. Electronic spectrum of 1 and 2 in Nujol mull. Evident electronic transitions at $\{{}^{4}A_{2g}: 16\ 500\}$, $\{{}^{4}T_{1g}: 24\ 000, 27\ 500\}$, $\{charge-transfer: 33\ 000\}\ cm^{-1}$. *Ab initio* calculated quartet-to-quartet transitions for 2: $\{{}^{4}T_{1g}(ground): 0, 300, 600\}$, $\{{}^{4}T_{2g}: 7400, 7900, 8300\}$, $\{{}^{4}A_{2g}: 16\ 700\}$, $\{{}^{4}T_{1g}: 24\ 200, 24\ 700, 25\ 100\}\ cm^{-1}$.

	$1, \qquad [Coll(otry) (hfor)]$	1c, $[Coll(atrue) (hfee)]$	2,
	$[Co^{(etpy)_2(htac)_2}]$	$\frac{[\text{Co"(etpy)}_2(\text{hfac})_2]}{[\text{Com}(\text{etpy})_2(\text{hfac})_2]}$	$\frac{[CO''(DZPYCI)_2(hTac)_2]}{[CO''(DZPYCI)_2(hTac)_2]}$
Empirical formula	$C_{24}H_{20}CoF_{12}N_2O_4$	$C_{24}H_{20}CoF_{12}N_2O_4$	$C_{34}H_{22}CI_2COF_{12}N_2O_4$
Formula weight	687.351	687.351	880.384
Temperature/K	100	296	100
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/n$
a/Å	8.0773(3)	7.9911(18)	9.1173(9)
b/Å	26.4017(12)	9.202(2)	14.4277(13)
c/Å	19.7244(9)	20.709(5)	14.3485(14)
$\alpha/^{\circ}$	90	90	90
β/°	100.742(3)	100.335	107.966(3)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	4132.6(3)	1498.2(6)	1795.4(3)
Z	6	2	2
$\rho_{\rm calc} {\rm g/cm^3}$	1.657	1.524	1.629
μ/mm^{-1}	5.969	0.679	0.731
F(000)	2066.90	690	884.1
Crystal size/mm ³	$0.21 \times 0.17 \times 0.06$	$0.26 \times 0.24 \times 0.12$	0.21 imes 0.20 imes 0.18
Radiation	Cu Ka ($\lambda = 1.54186$)	Mo K α ($\lambda = 0.71073$)	Mo Ka ($\lambda = 0.71073$)
2Θ range /°	5.66 to 143. 68	4.0 to 50.05	4.1 to 61.2
Index ranges	-9 < h < 9	-9 < h < 9	-12 < h < 13
inden funges	-32 < k < 25	-9 < k < 10	$-19 \le k \le 20$
	-17 < 1 < 24	-24 < 1 < 24	-20 < 1 < 19
Reflections collected	47313	8680	24070
Independent reflections	7914 [R . = 0.0758	2643 [R] = 0.0292	5045 [R] = 0.0337
independent reflections	$\mathbf{P}_{\rm m} = 0.06501$	$P_{\rm ref} = 0.02501$	$\mathbf{P}_{int} = 0.02841$
Data/restraints/norometers	$R_{s1gma} = 0.00500$	$R_{sigma} = 0.0257$	$R_{sigma} = 0.0204$
Goodness of fit on E2	1 026	1 080	1 051
Final D indexes	P = 0.0457	P = 0.0506	P = 0.0302
Γ mar K muexes	$R_1 = 0.0437$,	$R_1 = 0.0300$,	$R_1 = 0.0302$
$\begin{bmatrix} I > = 20 \\ I \end{bmatrix}$	$WR_2 = 0.0783$	$WR_2 = 0.1421$	$WR_2 = 0.0366$
Final R indexes [all data]	$R_1 = 0.0957,$	$R_1 = 0.0661,$	$R_1 = 0.0408$
	$WR_2 = 0.0943$	$WR_2 = 0.1548$	$WR_2 = 0.0611$
Largest diff. peak/hole / e Å ⁻³	0.59/-0.58	0.29/-0.30	0.76/-0.54
Color	Orange-red	Orange-red	Orange
CCDC No	2223471	2236260	2223472

11

Table SI. Crystal data and structure refinement parameters of T at
--

Fig. S3. Powder diffraction pattern for 1 and 2: black – theoretical, generated from cif-files determined at T = 100 K; blue – experimental, and recorded pattern at the room temperature; red – generated form cif-file for 1 determined at the room temperature. Experimental X-ray powder diffraction (XPD) patterns for 1 measured at the room temperature match those generated from the cif-file determined by single crystal diffraction (SCD) at the room temperature; this confirms the phase identity and purity of the sample 1. The shift of the theoretical patterns on cooling reflects the structural changes as confirmed by Table S1.

	a tettagenai enpj				
No	Co-A ax	Co-B eq	Complex	CCDC No	Ref.
1a	Co-N 2.132	Со-О 2.052	[Co(hfac) ₂ (etpy) ₂]	2223471	This work
1b	Co-N 2.151	Со-О 2.049	[Co(hfac) ₂ (etpy) ₂]	2223471	This work
1c	Co-N 2.135	Со-О 2.053	[Co(hfac) ₂ (etpy) ₂]	2236260	This work
2	Co-N 2.137	Co-O 2.061	[Co(hfac) ₂ (bzpyCl) ₂]	2223472	This work
3a	Co-O 2.157	Со-О 2.038	$[Co(acac)_2(H_2O)_2]$	1842364	S 1
3 b	Co-O 2.199	Со-О 2.050	$[Co(acac)_2(H_2O)_2]$	1005484	S2
4	Co-N 2.133	Co-N 2.117	$[Co(abpt)_2(tcm)_2]$	997721	S3
5	Co-O 2.150	Co-O 2.061	$[\mathrm{Co}^{\mathrm{II}}\mathrm{Co}^{\mathrm{III}}(\mathrm{LH}_2)_2(\mathrm{H}_2\mathrm{O})$	1440294	S4
			$(CH_3COO)] \cdot (H_2O)_3$		
6	Co-N 2.147	Co-O 2.113	$[Co(bz)_2(H_2O)_2(nca)_2]$	804191	S5
7	Co-O 2.113	Со-О 2.042	[Co(H ₂ O) ₆](OHnic) ₂	FONQUV	S 6
8	Co-Cl 2.468	Co-S 2.527	$[Co(tu)_4Cl_2]$	1131921	S7
	_		· _ ·		

Table S2. Comparison of averaged metal-ligand distance (Å) for Co(II) complexes with shape of an elongated tetragonal bipyramid. ^a

^a Averaged distances \overline{d} (Co–N) = 2.185 Å, \overline{d} (Co–O) = 2.085 Å.

Ab initio calculations

Basis set

 $Co \ : 17s12p7d2f1g \ contracted \ to \ 10s7p4d2f1g \ pattern \ \{811111111/6111111/4111/11/1\}$

F : 7s4p1d contracted to 3s2p1d pattern {511/31/1}

O : 11s6p2d1f contracted to 6s3p2d1f pattern {611111/411/11/1}

- N : 11s6p2d1f contracted to 6s3p2d1f pattern $\{611111/411/11/1\}$
- C : 7s4p1d contracted to 3s2p1d pattern $\{511/31/1\}$
- H : 4s contracted to 2s pattern $\{31\}$

Table S3. Results of *ab initio* calculations for [Co(acac)₂(H₂O)₂]. ^a

3b , $[Co(acac)_2(H_2O)_2]$, structure CCDC 1005484 at 293 K, $R_{gt} = 6.1\%$					
CAS theory: spin-o	orbit multiplets and t	heir compositions			
KD1, $N_{1,2} = 0.77$	KD2, $N_{3,4} = 0.90$	KD3	KD4		
$\delta_{1,2} = 0$ (ground)	$\delta_{3,4} = 171$	$\delta_{5,6} = 850$	$\delta_{7,8} = 1121$		
54· ±1/2> _{0,1,2} +	$46 \cdot \pm 1/2 >_{0,1,2} +$	$56 \cdot \pm 1/2 >_{0,1,2} +$	$40 \cdot \pm 1/2 >_{0,1} +$		
$45 \cdot \pm 3/2 >_{0,1,2}$	$52 \cdot \pm 3/2 >_{0,1}$	$42 \cdot \pm 3/2 >_{0,1,2}$	$57 \cdot \pm 3/2 >_{0,1}$		
Approximate SH theory: score $S = 68$					
$^{4}\Delta_{0} = 0$ (ground)	D = +80.2	E/D = 0.21	$g_1 = 1.910$		
$^{4}\Delta_{1} = 676$	$D_1 = 44.4$	$E_1 = 44.4$	$g_2 = 2.533$		
$^{4}\Delta_{2} = 1166$	$D_2 = 27.3$	$E_2 = -27.2$	$g_3 = 2.863$		
			$g_{\rm iso} = 2.435$		

3a , [Co(acac) ₂ (H ₂ O) ₂], structure CCDC 1842364 at 100 K, <i>H</i>	$R_{gt} = 2.4\%$
CAS theory: spin-orbit multiplets and their compositions	

KD1, $N_{1,2} = 0.81$	KD2, $N_{3,4} =$	KD3	KD4
	0.93		
$\delta_{1,2} = 0$ (ground)	$\delta_{3,4} = 155$	$\delta_{5,6} = 915$	$\delta_{7,8} = 1153$
53· ±1/2> _{0,1,2} +	$46 \cdot \pm 1/2 >_{0,1,2} +$	$56 \cdot \pm 1/2 >_{0,1,2} +$	$40 \cdot \pm 1/2 >_{0,1} +$
$45 \cdot \pm 3/2 >_{0,1,2}$	$52 \cdot \pm 3/2 >_0$	$40 \cdot \pm 3/2 >_{1,2}$	$57 \cdot \pm 3/2 >_{0,1}$
Approximate SH t	heory: score $S = 91$		
$^{4}\Delta_{0} = 0$ (ground)	D = +72.0	E/D = 0.23	$g_1 = 1.943$
$^{4}\Delta_{1} = 763$	$D_1 = 39.7$	$E_1 = 39.6$	$g_2 = 2.462$
$^{4}\Delta_{2} = 1398$	$D_2 = 22.7$	$E_2 = -22.8$	$g_3 = 2.804$
			$q_{iso} = 2.403$

^a Score $S = \Delta_1 \cdot (\delta_{5,6} - \delta_{3,4}) \cdot g_1 \cdot N_{1,2} / 10000$

Crystal-field calculations

This method (GCFT – Generalized Crystal-Field Theory) works in the basis set of atomic terms characterized by the angular momentum quantum numbers $|I\rangle = |d^n : v, L, M_L, S, M_S\rangle$ (v – seniority number for repeating terms). The space covers 120 functions for a d⁷ system. By applying the irreducible tensor algebra, the matrix elements of the interaction operators are evaluated: the interelectron repulsion \hat{H}^{ee} , crystal field \hat{H}^{ef} , spinorbit coupling \hat{H}^{so} , Zeeman orbital and Zeeman spin interactions; their explicit forms were published elsewhere.^{S8,S9,S12} The parameters dependent upon the radial functions are expressed by the Racah *B* and *C* parameters for the interelectron repulsion, and the crystal-field poles $F_2(L)$ and $F_4(L)$ for individual ligands L, respectively. The crystal-field pole is an individual integral for a ligand that characterizes its strength. It is

introduced integral over radial part of the atomic functions as an wave $F_k(R_L) = \left\langle \frac{r_{>}^k}{r_{.}^{k+1}} \right\rangle = \int_{-\infty}^{\infty} R_{n,l}^*(r) \frac{r_{<}^k}{r_{.}^{k+1}} R_{n,l}(r) r^2 dr \approx R_L^{-(k+1)} \cdot \left\langle r^k \right\rangle.$ Then, for instance, the traditional, collective octahedral $10Dq = (10/6)F_4(R_L)$; The spin-orbit interaction is characterized by the spin-orbit coupling constant ξ_{Co} . The diagonalization of the matrix $\langle J | \hat{H}^{\text{ee}}(B,C) + \hat{H}^{\text{ef}}(F_2,F_4) + \hat{H}^{\text{so}}(\xi) | I \rangle$ yields the crystal-field multiplets $|K\rangle = |(d^n \nu LS); \Gamma'_a, \gamma'_a, a\rangle$ where we used labeling of the irreducible representations (IRs) and their components $\{\Gamma'_a, \gamma'_a, a\}$ within the double point group of symmetry. The diagonalization matrix U in $E_{cm} = \mathbf{U}^+ (\mathbf{H}^{ee} + \mathbf{H}^{ef} + \mathbf{H}^{so}) \mathbf{U}$ transforms the atomic terms to the crystal-field multiplets. The complex coefficients $w_{I,K}$ (I – atomic term, K – crystal-field multiplet) are used to calculate weights in % $w_{I,K} = [\text{Re}(u_{I,K})^2 + \text{Im}(u_{I,K})^2]^* 100$. In this way the composition of the multiplets from the spin states is evaluated, e.g. $|K:\Gamma',\gamma',a\rangle = \sum_{i} w_{I,K} |I:\nu,L,M_L,S,M_S\rangle$. The evaluation of the spin-Hamiltonian parameters represents an approximation based upon the construction of the Λ -tensor by means the 2nd-order perturbation theory $\Lambda_{ab} = \mathbf{h}^{-2} \sum_{L=0} \left\langle 0 \left| \hat{L}_a \right| J \right\rangle \left\langle J \left| \hat{L}_b \right| 0 \right\rangle / (E_J - E_0)$ where the summation runs over all excited terms $|J\rangle$. The Λ tensor is used in the definition of the **D**-tensor $D'_{ab} = -\lambda^2 \Lambda_{ab}$ where $\lambda = \pm \xi / 2S$ is the spin-orbit splitting parameter within the ground term having the negative sign for d7 shells. In the traceless form $D_{ab} = D'_{ab} - \delta_{ab} (D'_{xx} + D'_{yy} + D'_{zz})/3$ the axial and rhombic zero-field splitting parameters are expressed as $D = (-D'_{rr} - D'_{vv} + 2D'_{zz})/2$ and $E = (D'_{rr} - D'_{vv})/2$.

In the GCFT calculations the key role plays an appropriate choice of the crystal field poles for individual ligands. In the present study the data selected in Table 2 were applied.

Table S4. Averaged metal-lip	gand distances (Å) in 2 and assigned cr	ystal-field	poles (cm ⁻¹)
0 0					. /

Average	2	Standard	Used $F_4(L)$
d(Co-N) = 2.185	Co-N 2.137	$F_4(N) = 6500$	7300
d(Co-O) = 2.085	Co-O 2.062	$F_4(O) = 5500$	6000
	Co-O 2.081	$F_4(O) = 5500$	5200

	Table S5. Calculated energy 1	evels and SH parameters	by GCFT for	$\{\underline{\text{CoO}_2\text{O'}_2\text{N}_2}\}$	moiety
--	-------------------------------	-------------------------	-------------	---	--------

Spin-orbit multiplets and their compositions by GCFT					
KD1	KD2	KD3	KD4		
$\delta_{1,2} = 0$ (ground)	$\delta_{3,4} = 184$	$\delta_{5,6} = 652$	$\delta_{7,8} = 967$		
$85 \cdot \pm 1/2 >_{0,1,2} +$	$11 \cdot \pm 1/2 >_{0,1,2} +$	$22 \cdot \pm 1/2 >_{0,1,2} +$	$89 \cdot \pm 1/2 >_{0,1} +$		
$15 \cdot \pm 3/2 >_{0,1}$	$89 \cdot \pm 3/2 >_{0,1,2}$	$78 \cdot \pm 3/2 >_{1,2}$	$11 \cdot \pm 3/2 >_{0,1}$		
Electronic transitio	ons and virtual SH p	parameters by GCF	Г		
${}^{4}\Delta_{0} = 0, {}^{4}B_{1}$	D = +94	E/D = 0.18	$g_1 = 2.002$		
$^{4}\Delta_{1} = 561, {}^{4}B_{2}$			$g_2 = 2.896$		
${}^{4}\Delta_{2} = 906, {}^{4}B_{3}$			$g_3 = 3.300$		
- , ,			$g_{\rm iso} = 2.733$		

According to Table S5, the calculated key characteristics of the model complex are close to those obtained by *ab initio* calculations for **2**.

DC magnetic data

DC magnetic data (temperature dependence of the molar susceptibility and field fependence of the magnetization per formula unit) have been fitted simultaneously by own program MIF&FIT.^{S10} The Griffith-Figgis Hamiltonian working in the space of spin-orbit kets $|L, M_L, S, M_S\rangle$ reads

$$\hat{H}^{\rm GF} = -A\kappa\lambda(\hat{L}_{\rm p}\cdot\hat{S})h^{-2} + [\Delta_{\rm ax}(\hat{L}_{\rm p,z}^2 - \hat{L}_{\rm p}^2/3) + \Delta_{\rm rh}(\hat{L}_{\rm p,x}^2 - \hat{L}_{\rm p,y}^2)]h^{-2} + \mu_{\rm B}\hat{B}\cdot(g_{\rm e}\hat{S} - A\kappa \hat{L}_{\rm p})h^{-1}$$

where $A\lambda$ – spin-orbit splitting parameter modified by the Figgis CI factor A (3/2 for the weak crystal field), Δ_{ax} (Δ_{rh}) – axial (rhombic) crystal-field splitting energy, $Ag_L = -A\kappa$ is the effective orbital magnetogyric factor (negative owing to the T-p isomorphism), κ – orbital reduction factor.^{S11,S12} This formula has been extended by considering the asymmetry of the Zeeman term

$$\hat{H}_{n}^{\text{GF}} = -A\kappa\lambda(\dot{L}_{p}\cdot\dot{S})\mathbf{h}^{-2} + \Delta_{ax}(\hat{L}_{p,z}^{2} - \dot{L}_{p}^{2}/3)\mathbf{h}^{-2} + \mu_{\text{B}}Bg_{\text{e}}(\cos\vartheta_{n}\hat{S}_{z} + \sin\vartheta_{n}\hat{S}_{x})\mathbf{h}^{-1} - \mu_{\text{B}}B(A\kappa_{z}\cos\vartheta_{n}\hat{L}_{p,z} + A\kappa_{x}\sin\vartheta_{n}\hat{L}_{p,x})\mathbf{h}^{-1}$$

where *n* is the position of the grid distributed uniformly over the polar angle θ_n . In practice, n = 11 distributed along half of the meridian secures the correct powder average for the sample with an axial character. This Hamiltonian acts to the basis set formed of twelve $|L = 1, M_L, S = 3/2, M_S >$ kets. Formally, the above Hamiltonian is isomorphous with the exchange coupled dimer possessing the axial zero-field splitting adapted for the powder average.

AC susceptibility

Temperature-frequency dependence of the AC susceptibility shows that the slow magnetic relaxation survives until $T \sim 7$ K.

Fig. S4. Temperature-frequency dependence of the AC susceptibility for 1 and 2.

Havriliak-Negami model (5 free parameters χ_s , χ_T , α' , τ , β) is based upon the equation

$$\chi(\omega) = \chi_{S} + \frac{\chi_{T} - \chi_{S}}{\left[1 + (i\omega\tau)^{\alpha'}\right]^{\beta}}$$

with the asymmetry parameters β and $\alpha' = 1 - \alpha$. It yields formulae for the in-phase and out-of-phase susceptibility

$$\chi'(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{\cos(\beta\varphi)}{\left[1 + 2(\omega\tau)^{\alpha'}\cos(\pi\alpha'/2) + (\omega\tau)^{2\alpha'}\right]^{\beta/2}}$$
$$\chi''(\omega) = (\chi_{T} - \chi_{S}) \frac{\sin(\beta\varphi)}{\left[1 + 2(\omega\tau)^{\alpha'}\cos(\pi\alpha'/2) + (\omega\tau)^{2\alpha'}\right]^{\beta/2}}$$

with

 $\varphi = \arctan\left\{\frac{(\omega\tau)^{\alpha}\sin(\pi\alpha/2)}{1+(\omega\tau)^{\alpha}\cos(\pi\alpha/2)}\right\}$

For β = 1 the Havriliak–Negami equation reduces to the Cole–Cole equation, for α' = 1 to the Cole–Davidson equation.^{S13}

With two relaxation channels, the fitting of the AC susceptibility data is based upon an extended **Debye model**

$$\chi(\omega) = \chi_{S} + \frac{\chi_{T1} - \chi_{S}}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{\chi_{T2} - \chi_{T1}}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}} \text{ or } \chi(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \left[\frac{x_{1}}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{x_{2}}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}} \right]$$

Here x_1 and x_2 are the weights of the individual relaxation channels (branches); $\omega = 2\pi f$. The parameters of the theory involve: one adiabatic susceptibility χ_s (this is a high-frequency limit), isothermal susceptibilities χ_{Tk} , distribution parameters α_k , and the relaxation times τ_k . The complex equation decomposes into two explicit formulae for

a) the in-phase component

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

b) the out-of-phase component

$$\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega \tau_1)^{1-\alpha_1} \cos(\pi \alpha_1 / 2)}{1 + 2(\omega \tau_1)^{1-\alpha_1} \sin(\pi \alpha_1 / 2) + (\omega \tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega \tau_2)^{1-\alpha_2} \cos(\pi \alpha_2 / 2)}{1 + 2(\omega \tau_2)^{1-\alpha_2} \sin(\pi \alpha_2 / 2) + (\omega \tau_2)^{2-2\alpha_1}}$$

with the constraint for the isothermal susceptibilities $\chi_S < \chi_{T1} < \chi_{T2}$. The functional to be minimized accounts to the relative errors of both susceptibility components $F = w \cdot E(\chi') + (1-w) \cdot E(\chi'')$ with the typical weight w = 0.07, or $F = E(\chi') \cdot E(\chi'')$ with $E(\chi) = (1/N) \left[\sum_{i}^{N} \left| (\chi_i^e - \chi_i^e) / \chi_i^e \right| \right]$. The optimization multiple reference to the generic electric electric transformation.

routine refers to the genetic algorithm [D. L. Carroll, Univ. Illinois, Urbana, USA, 1998.] The quality of the fit is expressed by discrepancy factors for the in-phase and out-of phase susceptibilities $R(\chi')$ and $R(\chi'')$

defined as $R(\chi) = \sqrt{\left|\sum_{i} (\chi_{i}^{e} - \chi_{i}^{e})^{2}\right|} / \left|\sum_{i} (\chi_{i}^{e})^{2}\right|}$ and by the standard deviation for each optimized

parameter; this is given in parentheses, e.g. 12.3(45) means 12.3 \pm 4.5 (at 95% probability level). The retrieved parameters should follow a systematic trend along a smooth dependence.

Fig. S5. Frequency-temperature dependence of the AC susceptibility for 1 at B_{DC} = 0.15 and 0.35 T.

Easy-axis magnetic anisotropy in tetragonally elongated cobalt(II) complexes beyond the spin-Hamiltonian formalism
R. Mičová, C. Rainák, J. Titiš, A. Bienko, J. Moncoľ, E. Samoľová, R. Boča

Table S6. Parameters of the AC susceptibility for 1 at B_{DC} = 0.15 T. ^a							
<i>Т/</i> К	R(χ')	R(\chi")	Χs	$\chi_{ extsf{T}}$	ά	<i>τ</i> /ms	β
1.8	0.3	1.0	0.66(3)	13.6(1)	.98(1)	28.6(5)	.63(1)
2.0	0.4	2.0	0.63(3)	12.5(1)	.97(1)	19.6(4)	.67(1)
2.2	0.9	1.9	0.62(4)	11.2(1)	.96(1)	12.7(4)	.72(2)
2.6	0.6	1.9	0.54(3)	9.6(1)	.97(1)	5.3(1)	.77(2)
3.0	0.7	1.7	0.43(4)	8.3(1)	.99(1)	2.36(7)	.79(2)
3.4	0.4	1.1	0.42(3)	7.4(1)	.98(1)	1.02(2)	.89(2)
4.0	0.4	1.0	0.42(5)	6.3(1)	.98(1)	0.35(1)	.98(3)
4.6	0.2	1.0	0.37(6)	5.6(1)	.98(1)	0.17(1)	.99(4)
5.2	0.2	1.3	-	4.9(1)	1.0(1)	0.10(1)	.80(10)
5.8	0.2	1.5	-	4.4(1)	.98(1)	0.047(2)	.89(4)
6.4	0.3	4.2	-	4.1(1)	.99(1)	0.032(7)	.77(15)
7.0	0.2	3.9	-	3.7(1)	.99(1)	0.033(7)	.46(9)

 $\frac{7.0}{^{\circ}} \frac{0.2}{^{\circ}} \frac{3.9}{^{\circ}} - \frac{3.7(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{0.033(7)}{^{\circ}} \frac{.46(2)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac{.46(2)}{^{\circ}} \frac{.99(1)}{^{\circ}} \frac$

discrepancy factors of the fit.

Table S7. Parameters	s of the AC sus	ceptibility for 1	for B _{DC} = 0.25 T. ^a
----------------------	-----------------	--------------------------	--

T/K	R(\chi')	R(\chi")	χs	$\chi_{ au}(HF)$	$\chi_{ au}(HF)$	lpha(HF)	$ au_{ m HF}/ m ms$	X _{HF}
1.8	0.3	1.2	0.25(1)	2.9(9)	14.4(9)	.13(1)	2.19(1)	.81
2.0	0.3	1.0	0.20(2)	3.5(8)	13.6(7)	.14(1)	1.88(1)	.75
2.2	0.4	1.1	0.21(3)	3.6(8)	12.9(7)	.13(1)	1.62(1)	.73
2.6	0.4	1.2	0.20(3)	2.3(5)	10.5(3)	.11(1)	1.11(1)	.80
3.0	0.3	1.1	0.17(2)	1.8(5)	9.3(4)	.09(1)	0.72(1)	.82
3.4	0.4	1.2	0.17(3)	1.3(4)	8.1(4)	.06(1)	0.44(1)	.86
4.0	0.3	1.0	0.19(2)	1.0(3)	7.0(4)	.04(1)	0.22(1)	.88
4.6	0.2	0.9	0.24(3)	0.7(3)	6.1(2)	.02(1)	0.13(1)	.93
5.2	0.6	1.5	-	0.09(9)	5.2(1)	.02(1)	0.064(1)	.98
5.8	0.2	1.0	-	0.05(2)	4.6(1)	.02(1)	0.037(1)	.99
6.4	0.1	4.4	-	0.01(1)	4.2(1)	.04(1)	0.022(1)	1
7.0	0.1	5.1	-	0.03(3)	3.9(1)	.04(1)	0.014(1)	1

^a Two-set extended Debye model. Molar susceptibilities in units of 10⁻⁶ m³ mol⁻¹.

Fig. S6. Field-frequency dependence of the AC susceptibility at T = 2.0 K for **2** in comparison with **1**. Findings: there is a field supported slow magnetic relaxation.

Fig. S7. Frequency-temperature dependence of the AC susceptibility for 2 in comparison with 1.

Fig. S8. Temperature dependence of the relaxation time for **2** in comparison with **1**. Straight line – regressions $\ln \tau = b_0 + b_1 \cdot \ln T$; $m = -b_1$ is the temperature coefficient in $\tau^{-1} = CT^m$.

<i>Т/</i> К	R(\chi')	$R(\chi'')$	χs	$\chi_{ au}$	ά	τ/ms	β
1.8	0.34	1.7	0.80(3)	15.0(1)	0.89(1)	8.5(2)	0.89(2)
2.0	0.63	1.3	0.76(4)	13.4(1)	0.89(1)	6.2(2)	0.89(2)
2.2	0.58	1.5	0.69(4)	12.3(1)	0.89(1)	4.5(1)	0.89(2)
2.6	0.71	1.3	0.54(5)	10.4(1)	0.92(1)	2.40(8)	0.85(2)
3.0	0.82	1.1	0.48(6)	9.15(1)	0.94(1)	1.17(5)	0.86(3)
3.4	0.97	0.86	0.47(10)	8.01(1)	0.96(1)	0.61(4)	0.87(5)
4.0	1.1	1.1	0.44(23)	6.84(1)	0.98(1)	0.26(3)	0.87(10)
4.6	0.96	1.7	0.40	6.03(1)	0.98(2)	0.13(3)	0.87(23)
5.2	0.99	3.3	0.78	5.33(1)	0.98(3)	0.066(44)	1
5.8	0.89	5.6	1.0	4.79(1)	0.95(4)	0.041	1
6.4	0.78	13	2.0	4.35(1)	0.97(7)	0.039	1
7.0	0.63	11	2.6	4.00(1)	0.95(7)	0.044	1

Table S8. Parameters of the AC susceptibility for 2 at B_{DC} = 0.10 T.^a

12

References to SI

- S1 D. H. Moseley, S. E. Stavretis, K. Thirunavukkuarasu, M. Ozerov, Y. Cheng, L. L. Daemen, J. Ludwig, Z. Lu, D. Smirnov, C. M. Brown, A. Pandey, A. J. Ramirez-Cuesta, A. C. Lamb, M. Atanasov, E. Bill, F. Neese, Z.-L. Xue, *Nature Commun.*, 2018, 9, 2572.
- S2 S. Gómez-Coca, A. Urtizberea, E. Cremades, P. J. Alonso, A. Camón, E. Ruiz, F. Luis, *Nature Commun.*, 2014, 5, 4300.
- S3 R. Herchel, L. Váhovská, I. Potočňák, Z. Trávníček. Inorg. Chem. 2014, 53, 5896-5898.
- S4 E. A. Buvaylo, V. N. Kokozay, O. Yu. Vassilyeva, B. W. Skelton, A. Ozarowski, J. Titiš, B. Vranovičová, R. Boča, *Inorg. Chem.* 2017, **56**, 6999–7009.
- S5 J. Hudák, R. Boča, Ľ. Dlháň, J. Kožíšek, J. Moncol', Polyhedron. 2011, 30, 1367-1373.
- S6 X. L. Zhang, S. W. Ng, Acta Cryst. 2005, E61, m1140-m1141.
- S7 J. E. O'Connor, E. L. Amma, Inorganic Chemistry, 1969, 8, 2367,
- S8 R. Boča, Struct. Bonding. 2006, 117, 1-260.
- S9 R. Boča, R. Herchel. Program TERMS22 1.0. University of SS Cyril and Methodius, Trnava, © 2022.
- S10 R. Boča, Program MIF&FIT_2.0. University of SS Cyril and Methodius, Trnava, © 2022.
- S11 O. Kahn, Molecular Magnetism. VCH, Weinheim, 1993.
- S12 R. Boča, A Handbook of Magnetochemical Formulae. Elsevier, Amsterdam, 2012.
- S13 S. Havriliak, S. Negami, Polymer. 1967, 8, 161–210.