Supplementary Information

Potassium-rich antiperovskites K₃HTe and K₃FTe and their structural relation to lithium- and sodium-rich counterparts

Koji Okada,^a Susumu Fujii,^{b,c} Cédric Tassel,^a Shenghan Gao,^a Hiroki Ubukata,^a Wenli Pan,^d Kentaro Yamamoto,^{d,e} Yoshihisa Uchimoto,^d Akihide Kuwabara,^{b*} Hiroshi Kageyama^{a*}

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

^b Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan.

^c Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan.

^d Graduate School of Human and Environment Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

^e Faculty of Engineering, Nara Women's University, Kitauoyanishimachi, Nara 630-8506, Japan.

*Corresponding author: kuwabara@jfcc.or.jp and kage@scl.kyoto-u.ac.jp

Table of Contents:	
Section 1. XRD patterns of K_3 HTe and K_3 FTe	3-
4	
Su	upplementary Figures 1, 2
Section 2. Size-flexibility of soft anions	5
	Supplementary Figure 3
Section 3. The migration barriers in K_3HTe and K_3FTe	
6	
	Supplementary Figure 4
Section 4. The ionic conduction in pristine and iodine substit	tuted K ₃ HTe7
	Supplementary Figure 5
Section 5. Supplementary references	8
Section 5. Supplementary references	8

Section 1. XRD patterns of K₃HTe and K₃FTe

Figure S1 XRD patterns of (a) K_3 HTe synthesized under high pressure using a mixture of KH and K_2 Te in a molecular ratio of 2:1 and reported cubic Na₃HTe,¹ and (b) K_3 FTe synthesized under high pressure using a mixture of KF and K_2 Te in a molecular ratio of 1:1 and reported cubic Na₃FTe.² The diffraction peaks are indexed in a cubic symmetry and labelled with the Miller indices of the lattice planes.

Figure S2 XRD patterns of (a) K_3 FTe synthesized under ambient pressure (top) and under high pressure (bottom), and (b) K_3 FTe synthesized under ambient pressure (top) and under high pressure (bottom). The diffraction peaks are indexed in a cubic symmetry and labelled with the Miller indices of the lattice planes. Almost the same diffraction patterns (i.e., almost the same lattice constants) are obtained for both conditions in both compounds.

Figure. S3 Le Bail refinement for K_3 HTe (a) synthesized under ambient pressure and (b) synthesized under high pressure and for K_3 FTe (c) synthesized under ambient pressure and (d) synthesized under high pressure, respectively. The red circles, green solid lines, and blue solid lines represent the observed, calculated, and difference intensities, respectively. The green and yellow ticks indicate the calculated Bragg reflections from $K_{\alpha 1}$ and $K_{\alpha 2}$ Cu x-ray, respectively. The peak of Kapton tape in the low angle is removed from the refinement.

Section 2. Size-flexibility of soft anions

Figure S4 Size flexibility of (a) H in rock-salt type *M*H (*M* = Li, Na, K, Rb, Cs)^{3,4} and (b) Te in anti-fluorite type M_2 Te (*M* = Li, Na, K, Rb)^{5,6} depending on the Shannon ionic radius⁷ of alkali metal cation species (alkali metal: green, H: blue, Te: yellow). Unexpected contracts in the soft anions, H and Te, is seen in Li systems in each series. This is attributed to the surface charge density of the alkali metal as seen in antiperovskites M_3 HTe and M_3 FTe (*M* = Li, Na, K).

Figure S5 (a,b) Migration energy barriers of M_3BCh (M = Li, Na, K; B = H,F; Ch = S, Se, Te) for (a) vacancy and (b) interstitial dumbbell mechanisms as a function of force constant k_{rot} . The migration energy barriers of Li- and Na-rich antiperovskites are taken from our previous papers.^{1,2} k_{rot} is related to the rotational phonon mode of BM_6 and was

estimated by the equation of simple harmonic motion $\omega_{rot} = \sqrt{k_{rot}/m_M}$, where ω_{rot} is the phonon frequency of the rotational mode at the M point and m_M is the atomic mass of M. Small k_{rot} indicates that the octahedron is more easily rotated (see our previous papers^{1,2} for more details). The black line is a least-squares approximation of the points. The activation energy decreases with decreasing k_{rot} for both mechanisms, suggesting that k_{rot} is an important factor in determining the activation energy in M_3BCh . (c,d) Same as (a,b) but compounds are categorized into six groups: Li₃HCh, Li₃FCh, Na₃HCh, Na₃FCh, K₃HCh and K₃FCh. (e,f) Same as (a,b) but compounds are categorized into five groups: M_3 HS, M_3 HSe, M_3 FSe, M_3 HTe, and M_3 FTe. In (c) and (d), the activation energy decreases with increasing k_{rot} for each group, but the gradient and magnitude of energy are different. In (e) and (f), the activation energy decreases as k_{rot} decreases in most groups, though increases in M_3 FTe with the vacancy mechanism. These results indicate that there are other factors influencing the activation energy than k_{rot} , such as the structural distortion in the vicinity of migrating M^+ ion.

Figure S6 Cole-Cole plots for (a) pristine K₃HTe and (b) iodine doped K₃HTe.

Section 5. Supplementary references

- S. Gao, T. Broux, S. Fujii, C. Tassel, K. Yamamoto, Y. Xiao, I. Oikawa, H. Takamura,
 H. Ubukata, Y. Watanabe, K. Fujii, M. Yashima, A. Kuwabara, Y. Uchimoto and H.
 Kageyama, *Nat. Commun.*, 2021, **12**, 201.
- 2 S. Fujii, S. Gao, C. Tassel, T. Zhu, T. Broux, K. Okada, Y. Miyahara, A. Kuwabara and H. Kageyama, *J. Am. Chem. Soc.*, 2021, **143**, 10668–10675.
- 3 E. Zintl and A. Harder, *Z. Phys. Chem.*, 1931, **B14**, 265–284.
- 4 L. Elansari, L. Antoine, R. Janot, J. C. Gachon, J. J. Kuntz and D. Guérard, *J. Alloys Compd.*, 2001, **329**, 5–8.
- 5 E. Zintl, A. Harder and B. Dauth, *Ztschr. Elektrochem.*, 1934, **40**, 588–593.
- 6 H. Sommer and R. Hoppe, 1977, **429**, 118–130.
- 7 R. D. Shannon, Acta Crystallogr. Sect. A, 1976, **32**, 751–767.