Supporting information

Facile Fabrication of Au/Cu Bimetallic Nanoclusters Based

Fluorescent Composite Film for Sensitive and Selective Detection of

Cr(VI)

Xirui Miao^a, Jinna Bai^a, Yidan Liang^a, Menglei Sun^a, Yuanqing Sun^{*b}, Xudong Yang^{*a}

^a School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China.

^bState Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, P.R. China

*Corresponding authors:

E-mail addresses: <u>yangxudong10@163.com</u> (Xudong Yang),

<u>yqsun@cup.edu.cn</u> (Yuanqing Sun)

Fig. S1. (a) fluorescence spectra and (b) relative fluorescence intensity line graphs of DPA-Au/Cu NCs with different [Cu(II)]: [Au(III)] amount of substance ratios.

Fig. S2. (a) fluorescence spectra and (b) relative fluorescence intensity line graphs of DPA-Au/Cu NCs under different reaction time conditions.

Fig. S3. Fluorescence spectra of DPA-Cu NCs and DPA-Au/Cu NCs.

Fig. S4. (a) fluorescence spectra and (b) relative fluorescence intensity line graphs of DPA-Au/Cu NCs under different pH values.

Fig. S5. (a) SEM image of CS film. (b) SEM image of DPA-Au/Cu NCs@CS fluorescent composite film. (c) EDS diagram of DPA-Au/Cu NCs@CS fluorescent composite film. (d-f) Elemental mapping of S, Cu, Au for DPA-Au/Cu NCs@CS fluorescent composite film.

Fig. S6. Fluorescence excitation (Ex) and emission (Em) spectra of DPA-Au/Cu NCs plotted with UV absorption spectra (Abs); insets show the images of DPA-Au/Cu NCs in visible light (left) and under 365 nm UV light irradiation (right).

Fig. S7. DPA-Au/Cu NCs@CS at different times of UV lamp (λ =365 nm) irradiation to (a) fluorescence emission spectra and (b) linear plots of relative fluorescence intensity.

Fig. S8. DPA-Au/Cu NCs@CS placed at room temperature for different days corresponding to (a) fluorescence emission spectra and (b) linear plots of relative fluorescence intensity.

Fig. S9. (a) UV–vis absorption spectra of the Cr(VI) and fluorescence excitation spectra of the DPA-Au/Cu NCs; (b) UV–vis absorption spectra of the DPA-Au/Cu NCs, Cr(VI), and DPA-Au/Cu NCs with Cr(VI).

Nanoclusters sensors	Detection limits	Optimal emission wavelength	References
Au NCs	7.2 ppb	480 nm	1
CA-Au/Cu NCs	23.53 ppb	436 nm	2
Cu NCs	0.03 mM	411 nm	3
Cu NCs	43 nM	490 nm	4
BSA-Ag NCs	2.32 nM	707 nm	5
Ir NCs	7.35 ppb	575 nm	6
BSA-Au NCs	0.6 nM	615 nm	7
Au/Ag NCs	0.3 μΜ	610 nm	8
GSA-Au NCs	35.30 ppb	600 nm	9
PEI-Ag NCs	1.1 μM	472 nm	10
DPA-Au/Cu	0.26 ppb	647 nm	This study

 Table S1. Sensing performance of different nanocluster fluorescent sensors

 for the detection of Cr(VI)

- 1. F. Liu, X. Lai, S. Zhao, Z. Lu, P. Han and L. Chen, Food Chem, 2023, 402, 134251.
- 2. M. Shellaiah, T. Simon, N. Thirumalaivasan, K. W. Sun, F. H. Ko and S. P. Wu, *Mikrochim Acta*, 2019, **186**, 788.
- 3. Y. S. Lin, T. C. Chiu and C. C. Hu, *RSC Adv*, 2019, 9, 9228-9234.
- 4. M. Cui, G. Song, C. Wang and Q. Song, *Microchimica Acta*, 2015, **182**, 1371-1377.
- Z. Yuan, Z. Li, X. Zhao, Z. Ding, M. Xia, X. Dong, P. Ni and Y. Lu, *Anal Bioanal Chem*, 2023, 415, 1477-1485.
- 6. M. Cui, C. Wang, D. Yang and Q. Song, *Mikrochim Acta*, 2017, 185, 8.
- 7. G. Jian-feng, H. Chang-jun, Y. Mei, H. Dan-qun and F. Huan-bao, *RSC Advances*, 2016, 6, 104693-104698.
- 8. Y. Yang, Y. Sun, S. Liao, Z. Wu and R. Yu, *Analytical Methods*, 2016, 8, 7237-7241.
- 9. Y. B. Yin, C. L. Conrad, K. N. Heck, F. Lejarza and M. S. Wong, *ACS Appl Mater Interfaces*, 2019, **11**, 17491-17500.
- 10. Q. Xue, X. Li, Y. Peng, P. Liu, H. Peng and X. Niu, *Mikrochim Acta*, 2020, 187, 263.