Supporting Information

Active-sites-enriched dendritic crystal Co/Fe-doped Ni₃S₂

electrocatalyst for efficient oxygen evolution reaction

Yanan Cui, Chenxu Zhang, Yaxin Li, Zhengyan Du, Chong Wang, Shansheng Yu,

Hongwei Tian*, Weitao Zheng

Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China *Corresponding author. E-mail address: tianhw@jlu.edu.cn (H. Tian).

1

Fig. S1. (a-d) Low- and high-resolution TEM images of NS.

Fig. S2. (a-d) The SEM images of F-NS, C₂F₈-NS, C₈F₂-NS, and C-NS.

Fig. S3. XRD of NS, F-NS, C₂F₈-NS, C₅F₅-NS, C₈F₂-NS, and C-NS.

Fig. S4. XPS survey spectra of of NS, C-NS, F-NS, and C₅F₅-NS.

Fig. S5. (a-g) Cyclic voltammograms of NF, NS, F-NS, C_2F_8 -NS, C_5F_5 -NS, C_8F_2 -NS, and C-NS. (h) Estimation of C_{dl} by plotting the current density variation vs. scan rate to fit a linear regression of NF, NS, F-NS, C_2F_8 -NS, C_5F_5 -NS, C_8F_2 -NS, and C-NS.

The ECSA of the samples can be calculated by Eq. $(S1)^{1}$:

$$ECSA = \frac{C_{dl}}{C_s} \cdot S$$
(S1)

where S represents the geometric area of the working electrode (in this work, S = 1 cm²) and C_s is the specific capacitance of the sample or the capacitance of an atomically smooth planar surface of the material per unit area under identical electrolyte conditions. We used general specific capacitances of C_s = 0.040 mF cm⁻² in 1 M KOH based on typical reported values ².

Fig. S6. The TOF values of C_5F_5 -NS.

For OER, the TOF values can be obtained by Eq. (S2):

$$TOF = \frac{I}{4nF}$$
(S2)

where I is the current during the LSV measurement in 1 M KOH solution, F is the Faraday constant, and n is the molar number of active sites for the electrocatalyst. n was obtained in 1 M PBS solution using the CV method (the potential range was -0.2 to 0.6 V (vs. RHE) and scan rate was 50 mV/s)³. With a given geometric area A, the

number of active sites "n" is proportional to the charge Q, which can be calculated from the obtained CV curve by integrating. Therefore, substituting $Icv = Jcv \cdot A$ and

 $t = \frac{Ucv}{v}$, we derived the following Eq. (S3)³:

$$Q = \frac{1}{2} \int d(Icvt) = A/2v \int d(UcvIcv) = \frac{SA}{2v}$$
 S3

Because the charge Q of surface active sites (n) can be described by Q = nF, therefore,

$$n = \frac{SA}{2vF}$$

where I_{cv} , J_{cv} , U_{cv} are the current, current density, and potential obtained from CV curve, v is the scan rate (50 mV/s in this work), S is the integrated area of CV curve ³.

Fig. S7. Raman spectra of C₅F₅-NS before and after durability tests for OER.

Fig. S8. (a) Ni 2p, (b) S 2p, (c) Co 2p and (d) Fe 2p high-resolution XPS spectra of C_5F_5 -NS before and after durability tests for OER in the 1.0 M KOH electrolyte.

Fig. S9. (a-c) TEM images of C_5F_5 -NS after durability tests and (d) XRD of C_5F_5 -NS

before and after durability tests for OER in the 1.0 M KOH electrolyte.

Fig. S10. The v-t curves at 500 mA cm⁻² of C_5F_5 -NS toward OER in 1.0 M KOH electrolyte.

Catalysts	Ni (%)	Co (%)	Fe (%)
C-NS	59	12.6	-
F-NS	58.5	-	11.8
C ₂ F ₈ -NS	58	2.76	10.6
C ₅ F ₅ -NS	58.4	6.97	6.3
C ₈ F ₂ -NS	58.1	11	2.7

 Table S1. The element atomic content of the as-obtained electrocatalysts via ICP

 analysis.

Table S2. The element atomic content of Ni³⁺ in the as-obtained electrocatalysts via

XPS analysis.

Element	NS (%)	C-NS (%)	F-NS (%)	C5F5-NS (%)
Ni ³⁺	36.02	38.97	44.81	47.89

TOF₃₅₀ TOF₂₅₀ $TOF_{\rm 300}$ TOF₃₇₀ TOF_{380} **TOF**₄₀₀ References Catalysts (s^{-1}) (s^{-1}) (s^{-1}) (s^{-1}) (s^{-1}) (s^{-1}) C₅F₅-NS 0.477 0.707 0.972 1.086 1.143 1.264 This work 4 FeNi-1/2-600/Ni 0.11 -_ _ _ _ 5 CoCu-MOF NBs 0.326 _ 6 NiP_c-NiFe_x MOFs 0.194 _ _ _ _ -7 r-CoFe 0.151 _ _ 8 CoO-NiFe LDH/NF 0.590 _ -_ _ 9 0.100 0.480 Ni_{0.81}Fe_{0.19}O 10 Co_{0.5}V_{0.5}-COF-SO₃ 0.098 _ _ 11 Hollow CoP OCHs 0.072 12 CoOOH 0.040 _ _ 13 Co-MnO₂/MnCo₂O_{4.5} 0.034 14 NiO/Fetrace 0.030 _ _ 15 α -Co₄Fe(OH)_x 0.027 Co0.4Fe0.6LDH/ 16 0.250 $g-CN_x$ 17 Pd₁₈₀ 0.200 β-Ni(OH)₂ ultrathin 18 0.078 nanomeshes 19 NiP nanocoatings 0.05 20 Fe-NS 0.021 $\{(Ni(L_1)(TA)(H_2O)_2) \cdot 2$ 21 0.600 _ H_2O_n 22 0.585 $Cr_{0.2}Co_{1.8}P/CB$ _ _ 23 Co QD/rGO 0.181 24 CoNi hydroxide UNSs 0.160 _ _ _ _ MWCNT-bpyRutpy 25 0.583 _ 0.042 26 $Co_3O_{3.87}F_{0.13}$ _ _ _ 27 EK-b 0.012 _ _ _ _ _

Table S3. The TOF values of the as-obtained C_5F_5 -NS electrocatalyst for OER in comparison with reported electrocatalysts.

Note: TOF_x (x = 250, 300, 350, 370, 380 and 400) represents the TOF at x mV.

Catalysts	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Stability (h)	References
C ₅ F ₅ -NS	146	26	86	This work
NiS/G	300	55.8	72	28
FeNi-1/2-600/Ni	200	30	20	4
FeS ₂ /C	291	65.6	15	29
Ni-P alloys	335	70	12	19
NF@NiMoCo	277	87.0	24	30
EK-b	378	60	12	27
Co ₉ S ₈ /NOSC-900	340	68.0	10	31
O-doped Co ₂ P/CuO NWs/CF	270	74.4	30	32
Ni ₃ S ₂ /Ni	310	80.1	30	33
Ni ₃ S ₂ films	400	51.0	24	34
Ni ₃ S ₂ /NF	296	65.1	50	35
ANF/NW	382	103.0	20	36
MoS ₂ /NiS ₂	278	91.7	24	37
ZnCo ₂ S ₄	278	64.3	25	38
MoS ₂ /NiS	350	108.0	24	39
Co-NC/Mo ₂ C	347	61.0	20	40
Ni ₁₂ P ₅ /Ni ₃ (PO ₄) ₂	318	51.7	10	41
Fe_7S_8	270	43.0	24	42
NiVB/rGO	267	44.0	12	43
6-FP-Co-OMC-1	355	67	11	44
Co ₂ P@Co ₃ O ₄	335	60.0	8	45

Table S4. The OER activity of the as-obtained C_5F_5 -NS electrocatalyst in comparison with reported electrocatalysts.

Note: η_{10} represents the overpotential at 10 mA cm $^{\text{-}2}$.

Catalysts	Electrolyte	$\eta_{10}(mV)$	Mass activities (mA mg ⁻¹)
NS	1.0 M KOH	333	$0.94 \ (\eta = 0.27 \ V)$
F-NS	1.0 M KOH	244	7.72 ($\eta = 0.27 \text{ V}$)
C ₂ F ₈ -NS	1.0 M KOH	181	18.48 ($\eta = 0.27 \text{ V}$)
C ₅ F ₅ -NS	1.0 M KOH	146	21.79 ($\eta = 0.27$ V)
C_8F_2 -NS	1.0 M KOH	216	8.61 (η = 0.27 V)
C-NS	1.0 M KOH	257	$4.92 (\eta = 0.27 V)$

Table S5. The mass activities of the as-obtained electrocatalysts for OER.

References

- 1. M. B. Z. Hegazy, M. R. Berber, Y. Yamauchi, A. Pakdel, R. Cao and U. P. Apfel, *ACS Appl. Mater. Interfaces*, 2021, **13**, 34043-34052.
- 2. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977-16987.
- W. Gao, M. Yan, H. Y. Cheung, Z. Xia, X. Zhou, Y. Qin, C. Y. Wong, J. C. Ho, C. R. Chang and Y. Qu, *Nano Energy*, 2017, 38, 290-296.
- 4. Z. Yin, R. He, Y. Zhang, L. Feng, X. Wu, T. Wågberg and G. Hu, *J. Energy Chem.*, 2022, **69**, 585-592.
- W. Cheng, Z. P. Wu, D. Luan, S. Q. Zang and X. W. D. Lou, *Angew Chem. Int. Edit.*, 2021, 60, 26397-26402.
- 6. J. Li, P. Liu, J. Mao, J. Yan and W. Song, J. Mater. Chem. A, 2021, 9, 11248-11254.
- 7. Z. Zou, M. Cai, X. Zhao, J. Huang, J. Du and C. Xu, *J. Mater. Chem. A*, 2019, 7, 14011-14018.
- Z. Wang, J. Zhang, Q. Yu, H. Yang, X. Chen, X. Yuan, K. Huang and X. Xiong, *Chem. Eng. J.*, 2021, 410, 128366.
- 9. A. C. Pebley, E. Decolvenaere, T. M. Pollock and M. J. Gordon, *Nanoscale*, 2017, 9, 15070-15082.
- Z. Gao, Z. Yu, Y. Huang, X. He, X. Su, L. Xiao, Y. Yu, X. Huang and F. Luo, J. Mater. Chem. A, 2020, 8, 5907-5912.
- J. Xu, Y. Liu, J. Li, I. Amorim, B. Zhang, D. Xiong, N. Zhang, S. M. Thalluri, J. P. S. Sousa and L. Liu, *J. Mater. Chem. A*, 2018, 6, 20646-20652.
- 12. J. Wang, J. Liu, B. Zhang, H. Wan, Z. Li, X. Ji, K. Xu, C. Chen, D. Zha, L. Miao and J. Jiang, *Nano Energy*, 2017, **42**, 98-105.
- J. Jia, L. Li, X. Lian, M. Wu, F. Zheng, L. Song, G. Hu and H. Niu, *Nanoscale*, 2021, 13, 11120-11127.
- K. L. Nardi, N. Yang, C. F. Dickens, A. L. Strickler and S. F. Bent, *Adv. Energy Mater.*, 2015, 5, 1500412.

- H. Jin, S. Mao, G. Zhan, F. Xu, X. Bao and Y. Wang, *J. Mater. Chem. A*, 2017, 5, 1078-1084.
- 16. T. Bhowmik, M. K. Kundu and S. Barman, *ACS Appl. Energy Mater.*, 2018, 1, 1200-1209.
- 17. K. S. Joya, M. A. Ehsan, N. U. A. Babar, M. Sohail and Z. H. Yamani, *J. Mater. Chem. A*, 2019, **7**, 9137-9144.
- J. Xie, X. Zhang, H. Zhang, J. Zhang, S. Li, R. Wang, B. Pan and Y. Xie, *Adv. Mater.*, 2017, **29**, 1604765.
- S. Battiato, M. Urso, S. Cosentino, A. L. Pellegrino, S. Mirabella and A. Terrasi, *Nanomaterials-Basel*, 2021, **11**, 3010.
- Q. Xu, M. Chu, M. Liu, J. Zhang, H. Jiang and C. Li, *Chem. Eng. J.*, 2021, 411, 128488.
- 21. A. Goswami, D. Ghosh, V. V. Chernyshev, A. Dey, D. Pradhan and K. Biradha, *ACS Appl. Mater. Interfaces*, 2020, **12**, 33679-33689.
- 22. J. Wu, P. Li, A. Parra-Puerto, S. Wu, X. Lin, D. Kramer, S. Chen and A. Kucernak, *ACS Appl. Mater. Interfaces*, 2020, **12**, 47397-47407.
- 23. M. Govindhan, B. Mao and A. Chen, *Nanoscale*, 2016, **8**, 1485-1492.
- 24. K. He, Z. Cao, R. Liu, Y. Miao, H. Ma and Y. Ding, *Nano Research*, 2016, **9**, 1856-1865.
- 25. Z. Y. Wu, Q. X. Zhang, L. J. Huang, Y. J. Xu and D. L. Tang, *J. Power Sources*, 2021, **488**, 229448.
- H. Zeng, M. h. Oubla, X. Zhong, N. Alonso Vante, F. Du, Y. Xie, Y. Huang and J. Ma, *Appl. Catal. B Environ.*, 2021, 281, 119535.
- 27. E. Saha, K. Karthick, S. Kundu and J. Mitra, *J. Mater. Chem. A*, 2021, **9**, 26800-26809.
- D. Zhang, H. Mou, F. Lu, C. Song and D. Wang, *Appl. Catal. B Environ.*, 2019, 254, 471-478.
- 29. K. Pan, Y. Zhai, J. Zhang and K. Yu, *Materials*, 2019, **12**, 3364.
- 30. K. Hu, M. Wu, S. Hinokuma, T. Ohto, M. Wakisaka, J. Fujita and Y. Ito, *J. Mater. Chem. A*, 2019, **7**, 2156-2164.
- S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, *Adv. Funct. Mater.*, 2017, 27, 1606585.
- 32. T. L. Luyen Doan, D. T. Tran, D. C. Nguyen, H. Tuan Le, N. H. Kim and J. H. Lee, *Appl. Catal. B Environ.*, 2020, **261**, 118268.
- B. Wu, H. Qian, Z. Nie, Z. Luo, Z. Wu, P. Liu, H. He, J. Wu, S. Chen and F. Zhang, J. Energy Chem., 2020, 46, 178-186.
- 34. T. A. Ho, C. Bae, H. Nam, E. Kim, S. Y. Lee, J. H. Park and H. Shin, *ACS Appl. Mater. Interfaces*, 2018, **10**, 12807-12815.
- L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li and F. Pan, J. Mater. Chem. A, 2019, 7, 18003-18011.
- 36. H. Sun, Z. Ma, Y. Qiu, H. Liu and G. G. Gao, Small, 2018, 14, 1800294.
- J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, *Adv. Sci.*, 2019, 6, 1900246.
- 38. G. Song, Z. Wang, J. Sun, J. Sun, D. Yuan and L. Zhang, Electrochem.

Commun., 2019, 105, 106487.

- 39. Q. Qin, L. Chen, T. Wei and X. Liu, *Small*, 2019, **15**, 1803639.
- 40. Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He and S. Mu, *Nano Energy*, 2019, **57**, 746-752.
- 41. J. Chang, Q. Lv, G. Li, J. Ge, C. Liu and W. Xing, *Appl. Catal. B Environ.*, 2017, **204**, 486-496.
- 42. S. Chen, Z. Kang, X. Zhang, J. Xie, H. Wang, W. Shao, X. Zheng, W. Yan, B. Pan and Y. Xie, *ACS Cent. Sci.*, 2017, **3**, 1221-1227.
- 43. M. Arif, G. Yasin, M. Shakeel, M. A. Mushtaq, W. Ye, X. Fang, S. Ji and D. Yan, *J. Energy. Chem.*, 2021, **58**, 237-246.
- C. Liu, A. M. Geer, C. Webber, C. B. Musgrave, S. Gu, G. Johnson, D. A. Dickie, S. Chabbra, A. Schnegg, H. Zhou, C.-J. Sun, S. Hwang, W. A. Goddard, S. Zhang and T. B. Gunnoe, *ACS Catal.*, 2021, 11, 15068-15082.
- L. Yao, N. Zhang, Y. Wang, Y. Ni, D. Yan and C. Hu, J. Power Sources, 2018, 374, 142-148.