Surfactant-Assisted Mesopores in Hierarchical Metal-Organic Frameworks for Immobilization of model protein Cyt *c*

Xiaodong Feng,^a Lihui Liu,^a Yeming Wang,^a Chaoqun Zhang,^a Gang Liu,^{a*} Yuyang Tian^{b*} and

Guangshan Zhu^b

^{*a*}.Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.

^b·Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry,

Northeast Normal University, Changchun 130000, China.

E-mail for correspondence: lg2010919@163.com, tianyy100@nenu.edu.cn

Table of Contents

1. N_2 sorption isotherm and micropore diameter distributions.	.3	
2. Calibration curves of Cyt c	.3	
3. The UV–vis spectra of Cyt <i>c</i> supernatants after loading	.4	
4. Double reciprocal plots of H_2O_2 concentrations with activities for free Cyt <i>c</i> and Cyt <i>c</i> @H-mN	10F-1 4	
5. Recycling catalytic relative activity of Cyt c@H-mMOF-1	.5	
6. Loading capacity of H-mMOF-1-H1, H2 and H3 for Cyt c	.5	
7. Kinetic Parameters of free Cyt c and Cyt c @H-mMOF-1	.5	

1. N₂ sorption isotherm and micropore diameter distributions.

Fig. S1 N₂ sorption isotherm of medi-MOF-1 and micropore diameter distributions.

2. Calibration curves of Cyt c

Fig. S2 Calibration curves of Cyt c.

3. The UV–vis spectra of Cyt c supernatants after loading

Fig. S3 UV-vis spectra of Cyt c supernatants after loading.

4. Double reciprocal plots of H_2O_2 concentrations with activities for free Cyt *c* and Cyt *c* @H-mMOF-1

Fig. S4 Double reciprocal plots of H₂O₂ concentrations with activities for free Cyt *c* and Cyt *c* @H-mMOF-1.

5. Recycling catalytic relative activity of Cyt c@H-mMOF-1.

Fig. S5 Recycling catalytic relative activity of Cyt *c*@H-mMOF-1.

6. Loading capacity of H-mMOF-1-H1, H2 and H3 for Cyt c

Samples	Mesopore size (nm)	loading capacity (mg/g)
H1	2.5, 3.6	36.15
H2	3.7, 5.0	42.34
Н3	3.9, 5.0, 8.9	160.65

Table S1 Loading capacity of H-mMOF-1-H1, H2 and H3 for Cyt \boldsymbol{c}

7. Kinetic Parameters of free Cyt c and Cyt c @H-mMOF-1

Table S2 Kinetic Parameters of free Cyt <i>c</i> and Cyt <i>c</i> @H-mMOF-1.			
Samples	K _m (mmol/L)	V _{max} (μmol/(L @ min))	
Free Cyt c	0.96	27.86	
Cyt <i>c</i> @H-mMOF-1	0.39	54.35	