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Chemicals and reagents

The nickel foam (NF, thickness 1.0 mm) was obtained by Kunshan Guangjiayuan New 

Material Co., Ltd; The thioacetamide (TAA,CH3CSNH2) from Sarn Chemical Technology 

(Shanghai) Co., Ltd; The sodium tungstate (Na2WO4) from Tianjin Sinopharm Chemical Reagent 

Factory.；Polyvinylpyrrolidone (PVP) from Tianjin Guangfu Fine Chemical Research Institute; 

potassium hydroxide (KOH) from Tianjin Damao Chemical Reagent Factory; Urea (CO(NH2)2 

from Tianjin Damao Chemical Reagent Factory; Concentrated hydrochloric acid (HCl, 12 mol/L) 

was bought from Chengdu Cologne Chemical Co., LTD. 

DFT computation details: 

The DFT calculations were performed using the Cambridge Sequential Total Energy Package 

(CASTEP) with the plane-wave pseudo-potential method. The geometrical structures of the (220) 

plane of W-Ni3S2, and the (110) plane of NiS was optimized by the generalized gradient 

approximation (GGA) methods. The Revised Perdew-Burke-Ernzerh of (RPBE) functional was 

used to treat the electron exchange correlation interactions. A Monkhorst Pack grid k-points of 

6*8*1 and 5*6*1 of W-Ni3S2 and NiS, a plane-wave basis set cut-off energy of 500 eV were used 

for integration of the Brillouin zone. The structures were optimized for energy and force 

convergence set at 0.05 eV/A and 2.0×10−5 eV, respectively.
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Fig.S1 SEM images of W-Ni3S2.

 

Fig.S2 SEM images of Ni3S2.

Fig.S3 Survey of a) W-Ni3S2/NiS, b) Ni3S2.



Fig.S4 CV plots of a) W-Ni3S2/NiS, b) W-Ni3S2, c) Ni3S2, d) NF at different scan rates.

Fig.S5 SEM images of W-Ni3S2/NiS before(a-b)and after(c-d)stability test.



Fig.S6 XRD patterns of W-Ni3S2/NiS before and after stability test.

Fig.S7 XPS of W-Ni3S2/NiS before and after stability test.



Fig. S8 XRD (a) and UOR (b) performance of as prepared materials.

Fig. S9 Density of states for W-Ni3S2, (a) Ni, (b) S and (c) W.

Fig. S10 Density of states for NiS, (a) Ni and (b) S.



Fig. S11 The ball-and-stick model of urea adsorbed on (a) W-Ni3S2/NiS and (b) Urea adsorption 

energy; the ball-and-stick model of H2O adsorbed on (c) W-Ni3S2/NiS and (d) H2O adsorption 

energy.

Table S1 Comparison of charge transfer resistance (R2) values of all samples in 

alkaline solution (UOR).

catalyst R2(Ω)

W-Ni3S2/NiS 0.895

W-Ni3S2 1.088

Ni3S2 1.304

NF 5.584*1016



Table S2 Comparisons of UOR activity of non-noble-metal electrocatalysts.

catalysts Electrolytes Potential(V) Reference

W-Ni3S2/NiS 1M KOH+0.5M urea 1.309 V This work

Ni3S2@MoS2 CS 1M KOH+0.5M urea 1.336 V 1

Mn-NiSx/NiO/Ni3N 1M KOH+0.5M urea 1.35 V 2

FeCo-LDH 1M KOH+0.5M urea 1.328 V 3

Ce-Ni3N@CC 1M KOH+0.5M urea 1.31 V 4

FeMn-PS 1M KOH+0.33M urea 1.33 V 5

O-NiMoP/NF 1M KOH+0.5M urea 1.31 V 6

Mn-Ni3S2/NF 1M KOH+0.5M urea 1.30 V 7

 Mo-doped Ni3S2 1M KOH+0.3M urea 1.33 V 8

MOF-Ni@MOF-Fe–S 1M KOH+0.5M urea  1.347 V 9

VOOH-Ni 1M KOH+0.33M urea 1.356 V 10
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