The synthesis of W-Ni₃S₂/NiS nanosheets with heterostructure as high efficiency catalyst for urea oxidation

Han Zhao^a, Min Liu^a, Xiaoqiang Du^{a*}and Xiaoshuang Zhang^b

^a School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China. E-mail: duxq16@nuc.edu.cn

^b School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.

Chemicals and reagents

The nickel foam (NF, thickness 1.0 mm) was obtained by Kunshan Guangjiayuan New Material Co., Ltd; The thioacetamide (TAA,CH₃CSNH₂) from Sarn Chemical Technology (Shanghai) Co., Ltd; The sodium tungstate (Na₂WO₄) from Tianjin Sinopharm Chemical Reagent Factory.; Polyvinylpyrrolidone (PVP) from Tianjin Guangfu Fine Chemical Research Institute; potassium hydroxide (KOH) from Tianjin Damao Chemical Reagent Factory; Urea (CO(NH₂)₂ from Tianjin Damao Chemical Reagent Factory; Urea (HCl, 12 mol/L) was bought from Chengdu Cologne Chemical Co., LTD.

DFT computation details:

The DFT calculations were performed using the Cambridge Sequential Total Energy Package (CASTEP) with the plane-wave pseudo-potential method. The geometrical structures of the (220) plane of W-Ni₃S₂, and the (110) plane of NiS was optimized by the generalized gradient approximation (GGA) methods. The Revised Perdew-Burke-Ernzerh of (RPBE) functional was used to treat the electron exchange correlation interactions. A Monkhorst Pack grid k-points of 6*8*1 and 5*6*1 of W-Ni₃S₂ and NiS, a plane-wave basis set cut-off energy of 500 eV were used for integration of the Brillouin zone. The structures were optimized for energy and force convergence set at 0.05 eV/A and 2.0×10^{-5} eV, respectively.

Fig.S1 SEM images of W-Ni $_3S_2$.

Fig.S2 SEM images of Ni₃S₂.

Fig.S3 Survey of a) W-Ni₃S₂/NiS, b) Ni₃S₂.

Fig.S4 CV plots of a) W-Ni₃S₂/NiS, b) W-Ni₃S₂, c) Ni₃S₂, d) NF at different scan rates.

Fig.S5 SEM images of W-Ni₃S₂/NiS before(a-b)and after(c-d)stability test.

Fig.S6 XRD patterns of W-Ni $_3S_2$ /NiS before and after stability test.

Fig.S7 XPS of W-Ni₃S₂/NiS before and after stability test.

Fig. S8 XRD (a) and UOR (b) performance of as prepared materials.

Fig. S9 Density of states for W-Ni $_3S_2$, (a) Ni, (b) S and (c) W.

Fig. S10 Density of states for NiS, (a) Ni and (b) S.

Fig. S11 The ball-and-stick model of urea adsorbed on (a) W-Ni₃S₂/NiS and (b) Urea adsorption energy; the ball-and-stick model of H_2O adsorbed on (c) W-Ni₃S₂/NiS and (d) H_2O adsorption energy.

R2(Ω)
0.895
1.088
1.304
$5.584*10^{16}$

 Table S1 Comparison of charge transfer resistance (R2) values of all samples in alkaline solution (UOR).

catalysts	Electrolytes	Potential(V)	Reference
W-Ni ₃ S ₂ /NiS	1M KOH+0.5M urea	1.309 V	This work
Ni ₃ S ₂ @MoS ₂ CS	1M KOH+0.5M urea	1.336 V	1
Mn-NiS _x /NiO/Ni ₃ N	1M KOH+0.5M urea	1.35 V	2
FeCo-LDH	1M KOH+0.5M urea	1.328 V	3
Ce-Ni ₃ N@CC	1M KOH+0.5M urea	1.31 V	4
FeMn-PS	1M KOH+0.33M urea	1.33 V	5
O-NiMoP/NF	1M KOH+0.5M urea	1.31 V	6
Mn-Ni ₃ S ₂ /NF	1M KOH+0.5M urea	1.30 V	7
Mo-doped Ni_3S_2	1M KOH+0.3M urea	1.33 V	8
MOF-Ni@MOF-Fe-S	1M KOH+0.5M urea	1.347 V	9
VOOH-Ni	1M KOH+0.33M urea	1.356 V	10

Table S2 Comparisons of UOR activity of non-noble-metal electrocatalysts.

References

1. Qun, L.; Botao, Y.; Bowen, Z.; Yuanpeng, J.; Haodong, X.; Yongshuai, X.; Yunfa, D.; Zhezhi, L.; Yuanpeng, L.; Liang, Q.; Rui, K.; Chunhui, Y.; Jiecai, H.; Weidong, H., Bi-functional Ni₃S₂@MoS₂ heterostructure with strong built-in field as highly-efficient electrolytic catalyst. *J. Electroanal. Chem.* **2023**, *931*, 117185.

2. Peng, Y.; Yanyan, S.; Caiyun, L.; Rongzhan, L.; Jiankun, S., Heterostructured Mn-doped NiS_x/NiO/Ni₃N nanoplate arrays as bifunctional electrocatalysts for energy-saving hydrogen production and urea degradation. *Appl. Surf. Sci.* **2023**, *619*, 156789.

3. Gong, Y.; Zhao, H.; Ye, D.; Duan, H.; Tang, Y.; He, T.; Shah, L. A.; Zhang, J., High efficiency UOR electrocatalyst based on crossed nanosheet structured FeCo-LDH for hydrogen production. *Appl. Catal.*, *A.* **2022**, *643*, 118745.

4. Li, M.; Wu, X.; Liu, K.; Zhang, Y.; Jiang, X.; Sun, D.; Tang, Y.; Huang, K.; Fu, G., Nitrogen vacancies enriched Ce-doped Ni₃N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. *J. Energy Chem.* **2022**, *69*, 506-515.

5. Meng, X.-y.; Wang, M.; Zhang, Y.; Li, Z.; Ding, X.; Zhang, W.; Li, C.; Li, Z., Superimposed OER and UOR performances by the interaction of each component in an Fe-Mn electrocatalyst. *Dalton Trans.* **2022**, *51* (43), 16605-16611.

6. Jiang, H.; Sun, M.; Wu, S.; Huang, B.; Lee, C.-S.; Zhang, W., Oxygen-Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Urea-Assisted Energy-Saving Hydrogen Production in Alkaline Electrolyte. *Adv. Funct. Mater.* **2021**, *31* (43), 2104951.

 Yang, H.; Yuan, M.; Sun, Z.; Wang, D.; Lin, L.; Li, H.; Sun, G., In Situ Construction of a Mn²⁺-Doped Ni₃S₂ Electrode with Highly Enhanced Urea Oxidation Reaction Performance. ACS Sustainable Chem. Eng. 2020, 8348–8355.

8. Xu, H.; Liao, Y.; Gao, Z.; Qing, Y.; Wu, Y.; Xia, L., A branch-like Mo-doped Ni_3S_2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. *J. Mater. Chem. A* **2021**, *9* (6), 3418-3426.

9. Xu, H.; Ye, K.; Zhu, K.; Yin, J.; Yan, J.; Wang, G.; Cao, D., Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis. *Dalton Trans.* **2020**, *49* (17), 5646-5652.

10. Wei, D.; Tang, W.; Ma, N.; Wang, Y., Ni-doped VOOH as an efficient electrocatalyst for urea oxidation. *Mater. Lett.* **2021**, *291*, 129593.