## Second Harmonic Generation from Symmetry Breaking

# Stimulated by Organic Cations Mixing in Zero-Dimensional Hybrid Metal Halides

Jindong Cao,<sup>[a]</sup> Kunjie Liu, <sup>[a]</sup> Mingzhen Quan,<sup>[a]</sup> An Hou, <sup>[a]</sup> Xingxing Jiang,\*<sup>[b]</sup>

Zheshuai Lin,\*<sup>[b]</sup> Jing Zhao\*<sup>[a]</sup>, Quanlin Liu<sup>[a]</sup>

[a] Jindong Cao, Kunjie Liu, Mingzhen Quan, An Hou, Dr. Jing Zhao, Dr. Quanlin Liu The Beijing Municipal Key Laboratory of New Energy Materials and Technologies School of Materials Sciences and Engineering, University of Science and Technology Beijing Beijing 100083, China E-mail: jingzhao@ustb.edu.cn
[b] Dr. Xingxing Jiang, Dr. Zheshuai Lin

Functional Crystals Lab Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190, P. R. China E-mail: xxjiang@mail.ipc.ac.cn; zslin@mail.ipc.ac.cn

\*Corresponding Author :

Email: jingzhao@ustb.edu.cn

#### **CONTENTS**

#### 1. Tables

Table S1 Structure information of reported single and mixed cation HOIMH **S-4** *Table S2* (Anisotropic displacement parameters ( $Å^2 \times 10^3$ ) for (PEA)<sub>4</sub>AgInBr<sub>8</sub> at 293(2) K with estimated standard deviations in parentheses.) **S-4** *Table S3* Atomic coordinates  $(\times 10^4)$  and equivalent isotropic displacement parameters  $(Å^2 \times 10^3)$  for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  at 150.0 K with estimated standard deviations in parentheses. **S-5** Table S4 Anisotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for (C<sub>9</sub>N<sub>3</sub>H<sub>15</sub>)(C<sub>9</sub>H<sub>14</sub>SO)BiBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses. S-6 **Table S5** Bond lengths [Å] for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  at 150.0 K with estimated standard deviations in parentheses. S-7 Table S6 Bond angles [°] for (C<sub>9</sub>N<sub>3</sub>H<sub>15</sub>)(C<sub>9</sub>H<sub>14</sub>SO)BiBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses. **S-8** Table S7 Atomic coordinates  $(\times 10^4)$  and equivalent isotropic displacement parameters  $(Å^2 \times 10^3)$  for  $(C_9N_3H_{16})(C_9H_{14}SO)SbBr_6$  at 150.0 K with estimated standard deviations in parentheses. **S-8** *Table S8* Anisotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for(C<sub>9</sub>N<sub>3</sub>H<sub>16</sub>)(C<sub>9</sub>H<sub>14</sub>SO)SbBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses. S-9 **Table S9** Bond lengths [Å] for  $(C_9N_3H_{16})(C_9H_{14}SO)SbBr_6$  at 150.0 K with estimated standard deviations in parentheses. **S-10** *Table S10* Bond angles [°] for (C<sub>9</sub>N<sub>3</sub>H<sub>16</sub>)(C<sub>9</sub>H<sub>14</sub>SO)SbBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses. S-11

#### 2. Figures

*Figure S1* The schematic diagram of the synthesis process of  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_{6.}$ 

S-13

Figure S2 (a) Hydrogen bond network in  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$ , (b) hydrogen bondnetwork in  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$ ..S-13

*Figure S3* (a) Experimental and simulated PXRD patterns of  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$ and  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$ . **S-14** 

*Figure S4* The EDS analysis of M (Bi/Sb), Br and S in (C<sub>9</sub>N<sub>3</sub>H<sub>15</sub>)(C<sub>9</sub>H<sub>13</sub>SO)BiBr<sub>6</sub> (a) and (C<sub>9</sub>N<sub>3</sub>H<sub>15</sub>)(C<sub>9</sub>H<sub>13</sub>SO)SbBr<sub>6</sub> (b) S-14

*Figure S5* (a) PL spectra of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  (b) upon excitation at different wavelengths at RT. S-15 *Figure S6* (a) UV–vis absorption spectra of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  (b), the illustrations are the band gap determined from a Tauc plot. S-15

*Figure* S7 TGA and DSC curves of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (b). S-16

#### 3. Reference

## Tables

| Table S1. Structure information of re | ported single and mixed cat | ion HOIMH. |
|---------------------------------------|-----------------------------|------------|
|---------------------------------------|-----------------------------|------------|

| Compound                                                              | Space group                    | Ref   |
|-----------------------------------------------------------------------|--------------------------------|-------|
| (CH <sub>6</sub> N)SbBr <sub>4</sub>                                  | <i>Pnma</i> (62)               | 1     |
| $(C_3H_{10}N)SbBr_4$                                                  | <i>Pnma</i> (62)               | 1     |
| $(C_3H_{10}N)(CH_6N)SbBr_5$                                           | <i>Pna2</i> <sup>1</sup> (33)  | 1     |
| $(C_2H_8N)_3Sb_2Br_9$                                                 | $P2_{1}/c$ (14)                | 2     |
| $(C_7H_{10}N)_3SbBr_6$                                                | $P2_{1}/c$ (14)                | 3     |
| $(C_2H_8N)(C_7H_{10}N)_2SbBr_6$                                       | <i>Pc</i> (7)                  | 1     |
| (C <sub>2</sub> H <sub>8</sub> N) <sub>2</sub> BiBr <sub>5</sub>      | <i>Acam</i> (64)               | 4     |
| $(C_7H_{10}N)_3BiBr_6$                                                | $P2_{1}/c$ (14)                | 3     |
| $(C_2H_8N)(C_7H_{10}N)_2Bi_2Br_9$                                     | <i>Pna</i> 2 <sub>1</sub> (33) | 1     |
| Cs <sub>2</sub> AgBiBr <sub>6</sub>                                   | Fm3m (225)                     | 5     |
| $(C_4H_9N)_4AgBiBr_8$                                                 | $P2_{1}/c$ (14)                | 6     |
| (C <sub>4</sub> H <sub>9</sub> N) <sub>2</sub> CsAgBiBr <sub>7</sub>  | $P2_{1}(4)$                    | 7     |
| Cs <sub>2</sub> AgBiBr <sub>6</sub>                                   | <i>Fm</i> 3 <i>m</i> (225)     | 5     |
| $(C_3H_{10}N)_4AgBiBr_8$                                              | <i>C</i> 2/ <i>m</i> (12)      | 8     |
| (C <sub>3</sub> H <sub>10</sub> N) <sub>2</sub> CsAgBiBr <sub>7</sub> | $P2_{1}(4)$                    | 9     |
| Cs <sub>2</sub> AgBiBr <sub>6</sub>                                   | Fm3m (225)                     | 5     |
| $(C_4H_{12}N)_4AgBiBr_8$                                              | $P2_{1}/c$ (14) / $Pbca$ (61)  | 9, 10 |
| (C <sub>4</sub> H <sub>12</sub> N) <sub>2</sub> CsAgBiBr <sub>7</sub> | $P2_{1}(4)$                    | 9     |

**Table S2.** Crystal data and structure refinement for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  and  $(C_9N_3H_{15})(C_9H_{14}SO)SbBr_6$  at 150.0 K.

| Compound             | (C <sub>9</sub> N <sub>3</sub> H <sub>15</sub> )(C <sub>9</sub> H <sub>13</sub> SO)BiBr <sub>6</sub> | (C <sub>9</sub> N <sub>3</sub> H <sub>15</sub> )(C <sub>9</sub> H <sub>13</sub> SO)SbBr <sub>6</sub> |
|----------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Empirical formula    | C <sub>18</sub> H <sub>28</sub> BiBr <sub>6</sub> N <sub>3</sub> OS                                  | $C_{18}H_{28}Br_6N_3OSSb$                                                                            |
| Formula weight       | 1022.93                                                                                              | 936.00                                                                                               |
| Temperature          | 150.0 K                                                                                              | 150.0 K                                                                                              |
| Wavelength           | 0.71073 Å                                                                                            | 0.71073 Å                                                                                            |
| Crystal system       | orthorhombic                                                                                         | orthorhombic                                                                                         |
| Space group          | $P2_{1}2_{1}2_{1}$                                                                                   | $P2_{1}2_{1}2_{1}$                                                                                   |
| Unit cell dimensions | a = 9.8987(6)  Å<br>b = 16.3369(12)  Å<br>c = 17.8274(14)  Å                                         | a = 9.9212(3) Å<br>b = 16.2506(5) Å,<br>c = 17.7298(5) Å,                                            |
| Volume               | 2882.9(4) Å <sup>3</sup>                                                                             | 2858.50(15) Å <sup>3</sup>                                                                           |
| Ζ                    | 4                                                                                                    | 4                                                                                                    |

S-4

| Density (calculated)                                                                                                                                                                                                                                                 | 2.357 g/cm <sup>3</sup>                                     | 2.175 g/cm <sup>3</sup>                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Absorption coefficient                                                                                                                                                                                                                                               | 14.520 mm <sup>-1</sup>                                     | 9.441 mm <sup>-1</sup>                                 |  |  |  |
| F (000)                                                                                                                                                                                                                                                              | 1896                                                        | 1769                                                   |  |  |  |
| $\theta$ range for data collection                                                                                                                                                                                                                                   | 2.285 to 24.990°                                            | 2.405 to 24.999°                                       |  |  |  |
| Index ranges                                                                                                                                                                                                                                                         | $-11 \le h \le 11, -19 \le k \le 19,$<br>$-21 \le l \le 21$ | $-11 \le h \le 11, -19 \le k \le 19, -21 \le l \le 21$ |  |  |  |
| Reflections collected                                                                                                                                                                                                                                                | 40191                                                       | 26578                                                  |  |  |  |
| Independent reflections                                                                                                                                                                                                                                              | 5067 [ $R_{\rm int} = 0.0763$ ]                             | 4994 [ $R_{\rm int} = 0.0503$ ]                        |  |  |  |
| Completeness to $\theta = 24.990^{\circ}$                                                                                                                                                                                                                            | 99.7%                                                       | 99.1%                                                  |  |  |  |
| Refinement method                                                                                                                                                                                                                                                    | Full-matrix least-squares on $F^2$                          | Full-matrix least-squares on $F^2$                     |  |  |  |
| Data / restraints / parameters                                                                                                                                                                                                                                       | 5067 / 134 / 222                                            | 4994 / 68 / 227                                        |  |  |  |
| Goodness-of-fit                                                                                                                                                                                                                                                      | 1.034                                                       | 1.052                                                  |  |  |  |
| Final <i>R</i> indices $[I > 2\sigma(I)]$                                                                                                                                                                                                                            | $R_{\rm obs} = 0.0373, wR_{\rm obs} = 0.0832$               | $R_{\rm obs} = 0.0419,  wR_{\rm obs} = 0.1091$         |  |  |  |
| R indices [all data]                                                                                                                                                                                                                                                 | $R_{\rm all} = 0.0508,  wR_{\rm all} = 0.0885$              | $R_{\rm all} = 0.0469,  wR_{\rm all} = 0.1120$         |  |  |  |
| Largest diff. peak and hole                                                                                                                                                                                                                                          | 1.460 and -1.475 e·Å <sup>-3</sup>                          | 1.860 and -1.639 e·Å <sup>-3</sup>                     |  |  |  |
| $\overline{(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6: R = \Sigma   F_o  -  F_c   / \Sigma  F_o , wR} = \{\Sigma [w ( F_o ^2 -  F_c ^2)^2] / \Sigma [w ( F_o ^4)]\}^{1/2} \text{ and } w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 3.8996P] \text{ where } P = (F_o^2 + 2F_c^2)/3$ |                                                             |                                                        |  |  |  |

 $(C_9N_3H_{15})(C_9H_{14}SO)SbBr_6: R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR = \{\Sigma [w (|F_o|^2 - |F_c|^2)^2] / \Sigma [w (|F_o|^4)]\}^{1/2} \text{ and } w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 4.8082P] \text{ where } P = (F_o^2 + 2F_c^2)/3$ 

**Table S3.** Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for (C<sub>9</sub>N<sub>3</sub>H<sub>15</sub>)(C<sub>9</sub>H<sub>14</sub>SO)BiBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses.

| Label | X         | у        | Z        | Occupancy | U <sub>eq</sub> * |
|-------|-----------|----------|----------|-----------|-------------------|
| Bi(1) | -8793(1)  | -3916(1) | -1528(1) | 1         | 36(1)             |
| Br(4) | -8725(2)  | -2258(1) | -874(1)  | 1         | 36(1)             |
| Br(6) | -10897(2) | -4211(1) | -394(1)  | 1         | 41(1)             |
| Br(2) | -10886(2) | -3386(2) | -2475(1) | 1         | 46(1)             |
| Br(5) | -6552(2)  | -4260(1) | -534(1)  | 1         | 46(1)             |
| Br(3) | -6954(2)  | -3440(2) | -2624(1) | 1         | 46(1)             |
| Br(1) | -8852(2)  | -5506(1) | -2073(1) | 1         | 52(1)             |
| S(1)  | -9108(5)  | -8957(3) | -673(3)  | 1         | 70(2)             |
| N(1)  | -7420(12) | -2591(7) | 848(7)   | 1         | 39(3)             |

| N(3)   | -11667(11) | -3610(8)  | 2100(8)   | 1        | 45(3) |
|--------|------------|-----------|-----------|----------|-------|
| N(2)   | -9514(11)  | -3479(7)  | 1615(7)   | 1        | 38(3) |
| C(1)   | -8662(15)  | -2164(8)  | 1150(9)   | 1        | 42(3) |
| C(3)   | -8321(13)  | -3897(9)  | 1296(9)   | 1        | 42(4) |
| C(4)   | -7102(13)  | -3336(9)  | 1298(8)   | 1        | 37(3) |
| C(8)   | -12319(16) | -4594(10) | 2982(10)  | 1        | 49(4) |
| C(7)   | -11043(18) | -4918(10) | 2932(9)   | 1        | 56(4) |
| C(2)   | -9846(13)  | -2738(9)  | 1171(9)   | 1        | 36(3) |
| C(5)   | -10390(13) | -3882(10) | 2035(8)   | 1        | 36(3) |
| C(9)   | -12619(14) | -3931(10) | 2548(9)   | 1        | 47(4) |
| C(6)   | -10058(15) | -4568(10) | 2492(10)  | 1        | 50(4) |
| C(11)  | -9180(20)  | -9974(12) | -1011(12) | 1        | 76(2) |
| C(10)  | -8680(20)  | -9146(12) | 284(11)   | 1        | 76(2) |
| O(1)   | -10814(13) | -8675(8)  | -607(8)   | 1        | 72(2) |
| C(15)  | -10750(20) | -5859(12) | 1181(12)  | 1        | 76(2) |
| C(18B) | -10830(40) | -7810(30) | -105(17)  | 0.500(8) | 76(2) |
| C(18A) | -10950(18) | -7980(8)  | -211(8)   | 0.500(8) | 76(2) |
| C(12)  | -10398(16) | -7253(9)  | -477(6)   | 1        | 76(2) |
| C(13)  | -10310(13) | -6575(7)  | -9(8)     | 1        | 76(2) |
| C(14)  | -10772(14) | -6624(7)  | 726(7)    | 1        | 76(2) |
| C(16)  | -11324(14) | -7350(8)  | 992(6)    | 1        | 76(2) |
| C(17)  | -11413(15) | -8028(7)  | 524(8)    | 1        | 76(2) |

 $^{*}U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

**Table S4.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  at 150.0 K with estimated standard deviations in parentheses.

|       |                 |                 | 1               |                 |                 |                 |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Label | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
| Bi(1) | 32(1)           | 38(1)           | 38(1)           | 0(1)            | 0(1)            | -6(1)           |
| Br(4) | 36(1)           | 37(1)           | 36(1)           | 0(1)            | 0(1)            | 0(1)            |
| Br(6) | 41(1)           | 42(1)           | 41(1)           | -5(1)           | 2(1)            | -2(1)           |
| Br(2) | 42(1)           | 56(1)           | 40(1)           | 8(1)            | -3(1)           | -7(1)           |
| Br(5) | 42(1)           | 50(1)           | 46(1)           | 5(1)            | -4(1)           | 2(1)            |
| Br(3) | 43(1)           | 53(1)           | 43(1)           | -3(1)           | 7(1)            | -6(1)           |
| Br(1) | 45(1)           | 44(1)           | 66(2)           | 0(1)            | 1(1)            | -19(1)          |
| S(1)  | 76(3)           | 67(2)           | 67(3)           | -3(2)           | -8(2)           | 7(2)            |
| N(1)  | 46(7)           | 38(7)           | 34(7)           | -9(5)           | 6(6)            | 2(6)            |
| N(3)  | 44(7)           | 45(7)           | 45(8)           | 2(6)            | 2(6)            | 6(6)            |
| N(2)  | 36(6)           | 28(6)           | 51(8)           | 6(5)            | 2(6)            | 8(6)            |
| C(1)  | 43(8)           | 37(8)           | 46(9)           | -2(8)           | 2(8)            | 13(7)           |
|       |                 |                 | ~ ~             |                 |                 |                 |

| C(3)   | 33(7)  | 36(8)  | 59(11) | 1(6)   | -3(6)  | -9(8) |
|--------|--------|--------|--------|--------|--------|-------|
| C(4)   | 35(7)  | 42(8)  | 35(9)  | -1(6)  | 3(6)   | 4(7)  |
| C(8)   | 47(9)  | 58(11) | 41(10) | -16(8) | -2(8)  | 12(9) |
| C(7)   | 68(11) | 46(9)  | 55(11) | 3(9)   | 2(10)  | 31(8) |
| C(2)   | 33(7)  | 36(8)  | 37(9)  | -1(6)  | -8(6)  | 9(7)  |
| C(5)   | 31(7)  | 50(9)  | 27(8)  | -2(7)  | 1(6)   | -4(7) |
| C(9)   | 39(8)  | 53(10) | 47(10) | -7(7)  | 2(7)   | 6(9)  |
| C(6)   | 35(7)  | 51(10) | 63(12) | 5(7)   | 2(8)   | 18(9) |
| C(11)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(10)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| O(1)   | 78(3)  | 69(3)  | 69(3)  | -4(2)  | -8(2)  | 8(2)  |
| C(15)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(0AA) | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(18A) | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(12)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(13)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(14)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(16)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |
| C(17)  | 81(3)  | 73(3)  | 75(3)  | 0(2)   | -10(2) | 4(2)  |

The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$ .

**Table S5.** Bond lengths [Å] for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  at 150.0 K with estimated standard deviations in parentheses.

| Label       | Distances  | Label        | Distances |
|-------------|------------|--------------|-----------|
| Bi(1)-Br(4) | 2.9493(14) | C(8)-C(9)    | 1.36(2)   |
| Bi(1)-Br(6) | 2.9429(16) | C(7)-C(6)    | 1.38(2)   |
| Bi(1)-Br(2) | 2.8091(16) | C(5)-C(6)    | 1.42(2)   |
| Bi(1)-Br(5) | 2.8943(16) | O(1)-C(0AA)  | 1.68(4)   |
| Bi(1)-Br(3) | 2.7811(17) | O(1)-C(18A)  | 1.344(17) |
| Bi(1)-Br(1) | 2.7741(15) | C(15)-C(14)  | 1.49(2)   |
| S(1)-C(11)  | 1.77(2)    | C(0AA)-C(12) | 1.20(3)   |
| S(1)-C(10)  | 1.787(19)  | C(0AA)-C(17) | 1.31(2)   |
| S(1)-O(1)   | 1.754(14)  | C(18A)-C(12) | 1.3900    |
| N(1)-C(1)   | 1.513(19)  | C(18A)-C(17) | 1.3900    |
| N(1)-C(4)   | 1.491(18)  | C(12)-C(13)  | 1.3900    |
| N(3)-C(5)   | 1.345(17)  | C(13)-C(14)  | 1.3900    |
| N(3)-C(9)   | 1.343(18)  | C(14)-C(16)  | 1.3900    |
| N(2)-C(3)   | 1.478(17)  | C(16)-C(17)  | 1.3900    |

| N(2)-C(2) | 1.482(18) | C(1)-C(2) | 1.501(19) |
|-----------|-----------|-----------|-----------|
| N(2)-C(5) | 1.322(17) | C(3)-C(4) | 1.515(19) |
| C(1)-C(2) | 1.501(19) | C(8)-C(7) | 1.37(2)   |
| C(3)-C(4) | 1.515(19) | C(8)-C(9) | 1.36(2)   |
| C(8)-C(7) | 1.37(2)   | C(7)-C(6) | 1.38(2)   |

**Table S6.** Bond angles [°] for  $(C_9N_3H_{15})(C_9H_{14}SO)BiBr_6$  at 150.0 K with estimated standard deviations in parentheses.

| Label             | Angles    | Label              | Angles    |
|-------------------|-----------|--------------------|-----------|
| Br(6)-Bi(1)-Br(4) | 83.96(4)  | N(2)-C(3)-C(4)     | 110.8(11) |
| Br(2)-Bi(1)-Br(4) | 88.36(5)  | N(1)-C(4)-C(3)     | 108.9(11) |
| Br(2)-Bi(1)-Br(6) | 86.64(5)  | C(9)-C(8)-C(7)     | 118.0(15) |
| Br(2)-Bi(1)-Br(5) | 173.25(5) | C(8)-C(7)-C(6)     | 121.9(15) |
| Br(5)-Bi(1)-Br(4) | 85.36(5)  | N(2)-C(2)-C(1)     | 110.5(11) |
| Br(5)-Bi(1)-Br(6) | 95.14(4)  | N(3)-C(5)-C(6)     | 115.3(13) |
| Br(3)-Bi(1)-Br(4) | 90.35(5)  | N(2)-C(5)-N(3)     | 120.1(14) |
| Br(3)-Bi(1)-Br(6) | 172.64(5) | N(2)-C(5)-C(6)     | 124.4(12) |
| Br(3)-Bi(1)-Br(2) | 88.53(5)  | N(3)-C(9)-C(8)     | 119.7(14) |
| Br(3)-Bi(1)-Br(5) | 89.04(5)  | C(7)-C(6)-C(5)     | 119.4(14) |
| Br(1)-Bi(1)-Br(4) | 177.23(5) | C(0AA)-O(1)-S(1)   | 105.5(16) |
| Br(1)-Bi(1)-Br(6) | 94.15(5)  | C(18A)-O(1)-S(1)   | 110.7(11) |
| Br(1)-Bi(1)-Br(2) | 93.56(5)  | C(12)-C(0AA)-O(1)  | 110(2)    |
| Br(1)-Bi(1)-Br(5) | 92.81(5)  | C(12)-C(0AA)-C(17) | 147(4)    |
| Br(1)-Bi(1)-Br(3) | 91.69(5)  | C(17)-C(0AA)-O(1)  | 103(3)    |
| C(11)-S(1)-C(10)  | 99.9(9)   | O(1)-C(18A)-C(12)  | 120.1(12) |
| O(1)-S(1)-C(11)   | 103.3(8)  | O(1)-C(18A)-C(17)  | 118.7(12) |
| O(1)-S(1)-C(10)   | 102.2(9)  | C(12)-C(18A)-C(17) | 120.0     |
| C(4)-N(1)-C(1)    | 110.9(11) | C(0AA)-C(12)-C(13) | 106.9(19) |
| C(9)-N(3)-C(5)    | 125.5(14) | C(12)-C(13)-C(14)  | 120.0     |
| C(3)-N(2)-C(2)    | 110.5(12) | C(13)-C(14)-C(15)  | 117.4(12) |
| C(5)-N(2)-C(3)    | 120.8(12) | C(13)-C(14)-C(16)  | 120.0     |
| C(5)-N(2)-C(2)    | 124.3(12) | C(16)-C(14)-C(15)  | 122.4(12) |
| C(2)-C(1)-N(1)    | 110.8(11) | C(17)-C(16)-C(14)  | 120.0     |
| N(2)-C(3)-C(4)    | 110.8(11) | C(0AA)-C(17)-C(16) | 105(2)    |
| N(1)-C(4)-C(3)    | 108.9(11) |                    |           |

| Label  | Х         | у          | Z          | Occupancy | U <sub>eq</sub> * |
|--------|-----------|------------|------------|-----------|-------------------|
| Sb(1)  | -1211(1)  | -6100(1)   | -8448(1)   | 1         | 33(1)             |
| Br(1)  | -1278(2)  | -7752(1)   | -9115(1)   | 1         | 35(1)             |
| Br(2)  | 822(2)    | -6623(1)   | -7525(1)   | 1         | 42(1)             |
| Br(3)  | 886(2)    | -5780(1)   | -9596(1)   | 1         | 40(1)             |
| Br(4)  | -1132(2)  | -4563(1)   | -7884(1)   | 1         | 47(1)             |
| Br(5)  | -3458(2)  | -5727(1)   | -9417(1)   | 1         | 44(1)             |
| Br(6)  | -2977(2)  | -6569(1)   | -7376(1)   | 1         | 42(1)             |
| S(1)   | -908(5)   | -11070(3)  | -9369(3)   | 1         | 66(1)             |
| O(1)   | 856(12)   | -11385(7)  | -9475(7)   | 1         | 68(2)             |
| C(10)  | -815(19)  | -10043(10) | -9019(10)  | 1         | 72(1)             |
| C(11)  | -1350(20) | -10884(11) | -10311(10) | 1         | 72(1)             |
| C(16)  | 141(18)   | -13507(12) | -9859(11)  | 1         | 72(1)             |
| C(17A) | 604(17)   | -12869(8)  | -9947(6)   | 0.45(3)   | 72(1)             |
| C(18A) | 592(16)   | -13424(6)  | -10543(8)  | 0.772(4)  | 72(1)             |
| C(15)  | 999(13)   | -13173(6)  | -11257(6)  | 1         | 72(1)             |
| C(14)  | 1418(13)  | -12367(7)  | -11375(5)  | 1         | 72(1)             |
| C(13)  | 1430(13)  | -11812(5)  | -10778(7)  | 1         | 72(1)             |
| C(12)  | 1023(14)  | -12063(7)  | -10064(6)  | 1         | 72(1)             |
| C(17B) | 300(30)   | -12930(20) | -9410(20)  | 0.55(3)   | 72(1)             |
| C(18B) | -120(80)  | -13830(50) | -10650(50) | 0.228(4)  | 72(1)             |
| N(1)   | -7604(10) | -7592(7)   | -9172(6)   | 1         | 40(2)             |
| N(2)   | -5521(10) | -8490(6)   | -8430(6)   | 1         | 36(2)             |
| N(3)   | -3346(10) | -8635(7)   | -7924(6)   | 1         | 43(3)             |
| C(1)   | -7911(12) | -8354(8)   | -8726(7)   | 1         | 39(3)             |
| C(2)   | -6712(12) | -8916(8)   | -8731(8)   | 1         | 39(3)             |
| C(3)   | -5178(12) | -7759(7)   | -8843(7)   | 1         | 36(3)             |
| C(4)   | -6349(13) | -7169(7)   | -8855(7)   | 1         | 37(3)             |
| C(5)   | -4626(12) | -8894(8)   | -7993(7)   | 1         | 36(3)             |
| C(6)   | -4963(14) | -9603(9)   | -7532(9)   | 1         | 50(3)             |
| C(7)   | -4014(14) | -9944(9)   | -7110(8)   | 1         | 50(3)             |
| H(K)   | -4238.65  | -10415.99  | -6820.2    | 1         | 60                |
| C(8)   | -2683(15) | -9639(9)   | -7072(7)   | 1         | 47(3)             |
| C(9)   | -2397(13) | -8977(9)   | -7490(8)   | 1         | 48(3)             |

**Table S7.** Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for (C<sub>9</sub>N<sub>3</sub>H<sub>16</sub>)(C<sub>9</sub>H<sub>14</sub>SO)SbBr<sub>6</sub> at 150.0 K with estimated standard deviations in parentheses.

 $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| Label  | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sb(1)  | 30(1)           | 34(1)           | 36(1)           | 1(1)            | 0(1)            | -5(1)           |
| Br(1)  | 33(1)           | 36(1)           | 37(1)           | 0(1)            | 1(1)            | 0(1)            |
| Br(2)  | 39(1)           | 50(1)           | 38(1)           | 7(1)            | -3(1)           | -6(1)           |
| Br(3)  | 39(1)           | 41(1)           | 41(1)           | -5(1)           | 0(1)            | -1(1)           |
| Br(4)  | 40(1)           | 41(1)           | 59(1)           | 0(1)            | 0(1)            | -15(1)          |
| Br(5)  | 41(1)           | 47(1)           | 44(1)           | 6(1)            | -4(1)           | 2(1)            |
| Br(6)  | 38(1)           | 48(1)           | 41(1)           | -1(1)           | 6(1)            | -4(1)           |
| S(1)   | 67(2)           | 62(2)           | 68(2)           | -2(2)           | -5(2)           | 11(2)           |
| O(1)   | 68(2)           | 66(2)           | 71(2)           | -1(2)           | -5(2)           | 11(2)           |
| C(10)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(11)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(16)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(17A) | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(18A) | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(15)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(14)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(13)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(12)  | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(17B) | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| C(18B) | 75(2)           | 68(2)           | 74(2)           | 3(2)            | -11(2)          | 5(2)            |
| N(1)   | 33(5)           | 51(6)           | 37(6)           | 10(5)           | 0(5)            | -4(5)           |
| N(2)   | 29(5)           | 39(5)           | 41(5)           | -3(4)           | -3(4)           | 10(5)           |
| N(3)   | 35(6)           | 46(6)           | 50(6)           | -4(5)           | -1(5)           | 12(5)           |
| C(1)   | 30(6)           | 47(7)           | 40(6)           | 3(6)            | 1(5)            | -5(6)           |
| C(2)   | 37(6)           | 38(6)           | 43(7)           | -2(5)           | -8(5)           | 6(6)            |
| C(3)   | 34(6)           | 29(6)           | 44(7)           | -5(5)           | 0(5)            | 0(5)            |
| C(4)   | 39(7)           | 36(6)           | 35(6)           | 2(6)            | 4(5)            | 6(5)            |
| C(5)   | 32(6)           | 36(6)           | 38(7)           | 5(5)            | 5(5)            | 3(5)            |
| C(6)   | 39(7)           | 45(7)           | 66(9)           | 2(6)            | 13(7)           | 20(7)           |
| C(7)   | 44(8)           | 52(8)           | 54(8)           | 1(7)            | 6(7)            | 20(7)           |
| C(8)   | 54(8)           | 54(8)           | 33(7)           | 7(7)            | -8(6)           | 2(6)            |
| C(9)   | 37(6)           | 66(9)           | 41(7)           | 6(6)            | 0(6)            | 7(7)            |

**Table S8.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for  $(C_9N_3H_{16})(C_9H_{14}SO)SbBr_6$  at 150.0 K with estimated standard deviations in parentheses.

The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$ .

| Label         | Distances  | Label        | Distances |
|---------------|------------|--------------|-----------|
| Sb(1)-Br(1)   | 2.9335(13) | C(15)-C(14)  | 1.3900    |
| Sb(1)-Br(2)   | 2.7322(15) | C(15)-C(18B) | 1.88(9)   |
| Sb(1)-Br(3)   | 2.9563(15) | C(14)-C(13)  | 1.3900    |
| Sb(1)-Br(4)   | 2.6910(14) | C(13)-C(12)  | 1.3900    |
| Sb(1)-Br(5)   | 2.8795(15) | C(12)-C(17B) | 1.97(4)   |
| Sb(1)-Br(6)   | 2.6945(15) | N(1)-C(1)    | 1.501(17) |
| S(1)-O(1)     | 1.833(13)  | N(1)-C(4)    | 1.529(16) |
| S(1)-C(10)    | 1.782(18)  | N(2)-C(2)    | 1.471(15) |
| S(1)-C(11)    | 1.751(17)  | N(2)-C(3)    | 1.436(15) |
| O(1)-C(12)    | 1.527(15)  | N(2)-C(5)    | 1.349(15) |
| C(16)-C(17A)  | 1.14(2)    | N(3)-C(5)    | 1.343(16) |
| C(16)-C(18A)  | 1.30(2)    | N(3)-C(9)    | 1.336(17) |
| C(16)-C(17B)  | 1.24(4)    | C(1)-C(2)    | 1.500(17) |
| C(16)-C(18B)  | 1.52(8)    | C(3)-C(4)    | 1.507(16) |
| C(17A)-C(18A) | 1.3900     | C(5)-C(6)    | 1.451(18) |
| C(17A)-C(12)  | 1.3900     | C(6)-C(7)    | 1.32(2)   |
| C(17A)-C(17B) | 1.01(4)    | C(7)-C(8)    | 1.412(19) |
| C(18A)-C(15)  | 1.3900     | C(8)-C(9)    | 1.34(2)   |
| C(18A)-C(18B) | 0.99(9)    | C(15)-C(14)  | 1.3900    |
| C(15)-C(18B)  | 1.88(9)    |              |           |

**Table S9.** Bond lengths [Å] for  $(C_9N_3H_{16})(C_9H_{14}SO)SbBr_6$  at 150.0 K with estimated standard deviations in parentheses.

**Table S10.** Bond angles [°] for  $(C_9N_3H_{16})(C_9H_{14}SO)SbBr_6$  at 150.0 K with estimated standard deviations in parentheses.

| Label             | Angles    | Label                | Angles   |
|-------------------|-----------|----------------------|----------|
| Br(1)-Sb(1)-Br(3) | 84.23(4)  | C(18B)-C(18A)-C(17A) | 126(5)   |
| Br(2)-Sb(1)-Br(1) | 88.50(4)  | C(18B)-C(18A)-C(15)  | 103(5)   |
| Br(2)-Sb(1)-Br(3) | 87.01(4)  | C(18A)-C(15)-C(14)   | 120.0    |
| Br(2)-Sb(1)-Br(5) | 173.91(5) | C(18A)-C(15)-C(18B)  | 31(3)    |
| Br(4)-Sb(1)-Br(1) | 177.98(5) | C(14)-C(15)-C(18B)   | 143(3)   |
| Br(4)-Sb(1)-Br(2) | 92.57(5)  | C(13)-C(14)-C(15)    | 120.0    |
| Br(4)-Sb(1)-Br(3) | 94.12(4)  | C(12)-C(13)-C(14)    | 120.0    |
| Br(4)-Sb(1)-Br(5) | 92.76(5)  | O(1)-C(12)-C(17B)    | 94.3(12) |
| Br(4)-Sb(1)-Br(6) | 91.13(5)  | C(17A)-C(12)-O(1)    | 123.0(9) |
| Br(5)-Sb(1)-Br(1) | 86.26(4)  | C(17A)-C(12)-C(17B)  | 28.9(12) |
| Br(5)-Sb(1)-Br(3) | 95.54(4)  | C(13)-C(12)-O(1)     | 116.3(9) |
| Br(6)-Sb(1)-Br(1) | 90.61(4)  | C(13)-C(12)-C(17A)   | 120.0    |

| Br(6)-Sb(1)-Br(2)    | 88.27(4)  | C(13)-C(12)-C(17B)   | 148.8(12) |
|----------------------|-----------|----------------------|-----------|
| Br(6)-Sb(1)-Br(3)    | 173.09(5) | C(16)-C(17B)-C(12)   | 102(2)    |
| Br(6)-Sb(1)-Br(5)    | 88.68(5)  | C(17A)-C(17B)-C(16)  | 60(2)     |
| C(10)-S(1)-O(1)      | 104.4(8)  | C(17A)-C(17B)-C(12)  | 41.9(16)  |
| C(11)-S(1)-O(1)      | 100.9(8)  | C(16)-C(18B)-C(15)   | 103(5)    |
| C(11)-S(1)-C(10)     | 100.6(8)  | C(18A)-C(18B)-C(16)  | 58(4)     |
| C(12)-O(1)-S(1)      | 112.1(9)  | C(18A)-C(18B)-C(15)  | 46(4)     |
| S(1)-C(10)-H(R)      | 109.5     | C(1)-N(1)-C(4)       | 110.1(9)  |
| C(17A)-C(16)-H(3AA)  | 142.0     | C(4)-N(1)-H(A)       | 109.6     |
| C(17A)-C(16)-C(18A)  | 69.0(11)  | C(4)-N(1)-H(B)       | 109.6     |
| C(17A)-C(16)-C(17B)  | 49.7(19)  | C(3)-N(2)-C(2)       | 113.2(10) |
| C(17A)-C(16)-C(18B)  | 105(3)    | C(5)-N(2)-C(2)       | 120.6(10) |
| C(18A)-C(16)-H(3AA)  | 125.6     | C(5)-N(2)-C(3)       | 122.7(10) |
| C(18A)-C(16)-C(18B)  | 40(3)     | C(9)-N(3)-C(5)       | 126.0(12) |
| C(17B)-C(16)-H(3AA)  | 104.2     | C(2)-C(1)-N(1)       | 109.7(10) |
| C(17B)-C(16)-C(18A)  | 119(2)    | N(2)-C(2)-C(1)       | 110.4(10) |
| C(17B)-C(16)-C(18B)  | 152(4)    | N(2)-C(3)-C(4)       | 110.6(10) |
| C(16)-C(17A)-C(18A)  | 60.8(12)  | C(3)-C(4)-N(1)       | 110.3(9)  |
| C(16)-C(17A)-C(12)   | 173.7(16) | N(2)-C(5)-C(6)       | 123.9(11) |
| C(18A)-C(17A)-C(12)  | 120.0     | N(3)-C(5)-N(2)       | 121.5(11) |
| C(17B)-C(17A)-C(16)  | 70(2)     | N(3)-C(5)-C(6)       | 114.5(11) |
| C(17B)-C(17A)-C(18A) | 131(2)    | C(7)-C(6)-C(5)       | 119.1(13) |
| C(17B)-C(17A)-C(12)  | 109(2)    | C(6)-C(7)-C(8)       | 123.0(13) |
| C(16)-C(18A)-C(17A)  | 50.2(11)  | C(9)-C(8)-C(7)       | 117.0(13) |
| C(16)-C(18A)-C(15)   | 168.6(12) | N(3)-C(9)-C(8)       | 120.3(13) |
| C(17A)-C(18A)-C(15)  | 120.0     | C(18B)-C(18A)-C(17A) | 126(5)    |
| C(18B)-C(18A)-C(16)  | 82(5)     | C(18B)-C(18A)-C(15)  | 103(5)    |
| O(1)-C(12)-C(17B)    | 94.3(12)  | C(18A)-C(15)-C(14)   | 120.0     |
| C(17A)-C(12)-O(1)    | 123.0(9)  | C(18A)-C(15)-C(18B)  | 31(3)     |
| C(17A)-C(12)-C(17B)  | 28.9(12)  | C(14)-C(15)-C(18B)   | 143(3)    |
| C(13)-C(12)-O(1)     | 116.3(9)  | C(13)-C(14)-C(15)    | 120.0     |
| C(13)-C(12)-C(17A)   | 120.0     | C(12)-C(13)-C(14)    | 120.0     |
| C(13)-C(12)-C(17B)   | 148.8(12) | C(16)-C(17B)-C(12)   | 102(2)    |

## 2. Figures



Figure S1. The schematic diagram of the synthesis process of  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_{6.}$ 



**Figure S2.** (a) Hydrogen bond network in  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$ , (b) hydrogen bond network in  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$ .



**Figure S3.** Experimental and simulated PXRD patterns of  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  and  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$ .



**Figure S4.** The EDS analysis of M (Bi/Sb), Br and S in  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  (b).



**Figure S5.** PL spectra of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  (b) upon excitation at different wavelengths at RT.



**Figure S6.** UV–vis absorption spectra of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)SbBr_6$  (b), the illustrations are the band gap determined from a Tauc plot.



**Figure S7.** TGA and DSC curves of  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (a) and  $(C_9N_3H_{15})(C_9H_{13}SO)BiBr_6$  (b).

#### 3. References

- W. C. Zhang, M. C. Hong and J. H. Luo, J. Am. Chem. Soc., 2021, 143, 16758-16767.
- 2. R. Jakubas, L. Sobczyk and J. Matuszewski, *Ferroelectrics*, 2011, 74, 339-345.
- D. Chen, F. L. Dai, S. Q. Hao, G. Zhou, Q. Liu, C. Wolverton, J. Zhao and Z. Xia, J. Mater. Chem. C, 2020, 8, 7322-7329.
- 4. R. Jakubas, A. Gagor, M. J. Winiarski, M. Ptak and A. Ciman, *Inorg. Chem.*, 2019, **59**, 3417-3427.
- W. H. Ning, X. G. Zhao, J. Klarbring, S. Bai, F. Ji, F. Wang, S. I. Simak, Y. Tao, X. M. Ren, L. Zhang, W. Huang, I. A. Abrikosov and F. Gao, *Adv. Funct. Mater.*, 2019, 29.
- X. T. Liu, Z. Y. Xu, P. Q. Long, Y. Yao, C. Ji, L. Li, Z. Sun, M. Hong and J. Luo, *Chem. Mater.*, 2020, **32**, 8965-8970.
- 7. C. Z. Wei, c. H. Mao and h. L. Jun, *Angew. Chem. Int. Ed.*, 2020, **132**, 9305-9308.
- L. L. Mao, S. M. L. Teicher, C. C. Stoumpos, R. M. Kennard, R. A. DeCrescent, G. Wu, J. A. Schuller, M. L. Chabinyc, A. K. Cheetham and R. Seshadri, *J. Am. Chem. Soc.*, 2019, 141, 19099-19109.
- 9. B. A. Connor, L. Leppert, M. D. Smith, J. B. Neaton and H. I. Karunadasa, J. *Am. Chem. Soc.*, 2018, **140**, 5235-5240.
- 10. E. T. Mcclure, A. P. Mccormick and P. M. Woodward, *Inorg. Chem.*, 2020, **59**, 6010-6017.