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Copies of DOSY spectra 

 

Supporting Figure S1. Overlaid 1H DOSY spectra of 3b and (S)-1 in methanol-d4 

 

Supporting Figure S2. Overlaid 1H DOSY spectra of 3c and (S)-1 in methanol-d4 
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Supporting Figure S3. Overlaid 1H DOSY spectra of 3d and (S)-1 in methanol-d4 

 

Supporting Figure S4. Overlaid 1H DOSY spectra of 3e and (S)-1 in methanol-d4 
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Supporting Figure S5. Overlaid 1H DOSY spectra of 3a, 4a and (S)-1 in methanol-d4 
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LC-MS Analysis 

 

Supporting Figure S6. HPLC-MS analysis of 3a  
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Supporting Figure S7. HPLC-MS analysis of 3b. A) mobile phase 27.5% of MeOH and 27.5% 

MeCN in water + 0.01% of HCOOH as eluent with flow rate of 0.3 mL.min-1; B) mobile phase 

65% of MeOH in water + 0.01% of HCOOH as eluent with flow rate of 0.4 mL.min-1; 
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Supporting Figure S8. HPLC-MS analysis of 3c  
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Supporting Figure S9. HPLC-MS analysis of 3d  
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Supporting Figure S10. HPLC-MS analysis of 3e  
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Supporting Figure S11. HPLC-MS analysis of 4a  
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Supporting Figure S12 HPLC-MS analysis of 4b A) mobile phase 27.5% of MeOH and 27.5% 

MeCN in water + 0.01% of HCOOH as eluent with flow rate of 0.3 mL.min-1; B) mobile phase 

65% of MeOH in water + 0.01% of HCOOH as eluent with flow rate of 0.4 mL.min-1; 
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Supporting Figure S13. HPLC-MS analysis of 4c  
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Supporting Figure S14. HPLC-MS analysis of 4d  
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Supporting Figure S15. HPLC-MS analysis of 4e  
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Table S1. Summary of the most important data and structure for 3eS,RIr∙CH2Cl2. 
Compound 3eS,RIr 

Empirical formula C46H51Cl2IrN5O2F6P∙CH2Cl2 

CCDC number 2207901 

Formula weight 1198.91 

Crystal system monoclinic 

Space group P21 

a/Å 8.6827(2) 

b/Å 11.6490(3) 

c/Å 25.0534(7) 

α/° 90 

β/° 89.971(2) 

γ/° 90 

Volume/Å3 2534.02(11) 

Z 2 

ρcalcmg/mm3 1.571 

F(000) 1200 

μ/mm-1 7.890 

Max. transmission 0.901 

Min. transmission 0.420 

Absorption corr. Gaussian 

Crystal color clear light  yellow 

Crystal habit plate 
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Crystal size/mm 0.157 × 0.121 × 0.015 

Rint 0.0432 

Rsigma 0.0384 

Index ranges:   h 10 -10 

k 14 -14 

l 31 -31 

Reflections collected 37198 

2Θ range :  max 77.034 

min 1.763 

Temperature/K 100.0(1) 

X-ray wavelength/Å 1.54184 

Independent refl. I > 2 σ(I) 10259 

Independent refl. 10400 

Largest diff.: 

 peak /e Å-3 
5.482 

hole /e Å-3 -2.099 

Goodness-of-fit on F2 1.061 

Parameters 604 

Data 15726 

Restraints 130 

R1 all data 0.0489 

R1 [I>=2σ (I)] 0.0481 

wR2 all data 0.1125 
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wR2 [I>=2σ (I)] 0.1129 

Flack parameter -0.018(4) 
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Supporting Figure S16. 1H NMR spectra of 3a in DMSO-d6 - comparing fresh solution (blue) 

and solution after 54 h (red) at room temperature 

 

Supporting Figure S17. 1H NMR spectra of 4a in DMSO-d6 - comparing fresh solution (blue) 

and solution after 36 h (red) at room temperature 
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ESI-MS analysis of the complexes in DMSO solution 

 

Supporting Figure S18. ESI-MS analysis of 3a in DMSO solution after 0 and 24 h. 

 

Supporting Figure S19. ESI-MS analysis of 3b in DMSO solution after 0 and 24 h. 
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Supporting Figure S20. ESI-MS analysis of 3c in DMSO solution after 0 and 24 h. 

 

 

Supporting Figure S21. ESI-MS analysis of 3d in DMSO solution after 0 and 48 h. 
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Supporting Figure S22. ESI-MS analysis of 3e in DMSO solution after 0 and 48 h. 
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Stability in DMEM – UV-VIS analysis  

 

Supporting Figure S23. UV-VIS spectra of compounds 3a (A), 3b (B), 3c (C), 3d (D) and 3e 

(E) in DMEM at c = 10 µM. 
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Supporting Figure S24. Normalized UV-VIS spectra of compounds 3a (A), 3b (B), 3c (C), 3d 

(D) and 3e (E) in DMEM, DCM and DMSO. 
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Supporting Figure S25. Graphical presentation of IC50 values of (S)-1 and (R)-1 derivatives 

obtained for investigated cancer cell lines. IC50 values are presented along with the 

corresponding 95% confidence intervals, n = 3; 
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Supporting Figure S26. MRC-5 cells viability in the presence of compounds (S)- and (R)-1 

and 3a-4e at concentrations equal to IC50 values determined for MCF-7 cells. Values are 

presented as mean ± SEM, n = 3; 
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Figure S27. Cell cycle phase distribution for SW620 (top) and SW620E (bottom) cells exposed 

for 24 h and 72 h to (S)-1 and (R)-1 and the corresponding synthesized metal complexes 3a-4e 

at concentrations equal to IC75 of (S)- and (R)-1, respectively. Data are presented as mean ± 

SEM, n = 3. 
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Molecular Modelling 

The compounds were docked to the crystal structure of human kinesin KSP (PDB ID: 4AP0, 

resolution 2.59 Å)1 which was obtained from the Protein Data Bank (PDB).2, 3 Scigress version 

FJ 2.64 was used to prepare the crystal structure for docking, i.e., hydrogen atoms were added 

and the co-crystallized ispinesib and adenosine-5’-diphosphate (ADP) were removed. The 

center of the binding pocket was defined as the nitrogen in the ring close to the carbonyl group. 

(x = 41.663, y = 0.113, z = 11.931) with a radius of 10 Å.  The GoldScore (GS),5 ChemScore 

(CS)6, 7, ChemPLP8 and Astex statistical potential (ASP)9 scoring functions were implemented 

to validate the predicted binding modes and relative energies of the compounds using the GOLD 

v5.4 software suite. The co-crystallized molecule ispinesib was first docked and root mean 

square deviation (RMSD) values were calculated for the heavy atoms. ASP obtained an average 

RMSD of 0.9255, the score for PLP was 0.7299, for CS 0.7265 and GS gave a RMSD of 0.8090 

which show the strong prediction power of the scoring functions (Supporting Tables S2 and 

S3).  

Supporting Table S2. RMSD values for heavy atoms between the co-crystallized ispinesib and 

the docked molecule. 

Poses ASP ChemPLP CS GS 

1 0.9569 0.5933 0.6412 1.0677 

2 0.8536 0.8291 0.6083 0.4090 

3 0.9660 0.7674 0.9299 0.9503 

Mean 0.9255 0.7299 0.7265 0.8090 
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Supporting Table S3. Results of the scoring function for the docking of the compounds to 

KSP. 

Compound ASP ChemPLP ChemScore GoldScore 

ispinesib 48.7 109.6 42.6 83.4 

(R)-1a 49.0 111.3 43.9 79.7 

(S)-1a 40.0 87.3 37.1 70.8 

3aS,RRu  33.0 89.5 38.0 63.2 

3aS,SRu  35.1 84.9 34.3 74.3 

3cS,ROs 38.3 92.9 38.8 62.8 

3cS,SOs 35.7 89.4 34.3 59.4 

3dS,SRh 39.8 90.6 35.2 73.8 

3dS,RRh 40.1 83.1 35.6 56.1 

3eS,SIr 38.8 90.6 36.6 75.4 

3eS,RIr  40.5 88.3 38.8 54.8 

4aR,SRu 41.4 90.4 35.5 79.3 

4aR,RRu  39.6 91.0 36.9 75.6 

4cR,SOs 40.2 95.2 37.0 67.7 

4cR,ROs 39.7 93.4 37.9 65.0 

4dR,RRh 36.3 81.9 36.1 68.1 

4dR,SRh 37.5 87.2 35.7 64.4 

4eR,RIr 38.5 84.8 34.6 68.2 

4eR,SIr 38.8 87.5 34.3 64.9 
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Copies of NMR spectra 

 

Supporting Figure S28. 1H NMR of 3a in DMSO-d6 

 

Supporting Figure S29. 13C{1H} NMR of 3a in DMSO-d6 
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Supporting Figure S30. 1H-13C HSQC NMR of 3a in DMSO-d6 

 

Supporting Figure S31. 1H NMR of 3b in DMSO-d6 
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Supporting Figure S32. 13C{1H} NMR of 3b in DMSO-d6 

 

Supporting Figure S33. 1H-13C HSQC NMR of 3b in CD2Cl2 
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Supporting Figure S34. 1H NMR of 3c in DMSO-d6 

 

Supporting Figure S35. 13C{1H} NMR of 3c in DMSO-d6 
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Supporting Figure S36. 1H-13C HSQC NMR of 3c in DMSO-d6 

 

Supporting Figure S37. 1H NMR of 3d in DMSO-d6 
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Supporting Figure S38. 13C{1H} NMR of 3d in DMSO-d6 

 

Supporting Figure S39. 1H-13C HSQC NMR of 3d in DMSO-d6 
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Supporting Figure S40. 1H NMR of 3e in DMSO-d6 

 

Supporting Figure S41. 13C{1H} NMR of 3e in DMSO-d6 
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Supporting Figure S42. 1H-13C HSQC NMR of 3e in DMSO-d6 

 

Supporting Figure S43. 1H NMR of 4a in DMSO-d6  
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Supporting Figure S44. 13C{1H} NMR of 4a in DMSO-d6 

 

Supporting Figure S45. 1H-13C HSQC NMR of 4a in DMSO-d6 
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Supporting Figure S46. 1H NMR of 4b in DMSO-d6 

 

Supporting Figure S47. 13C{1H} NMR of 4b in DMSO-d6 
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Supporting Figure S48. 1H-13C HSQC NMR of 4b in DMSO-d6 

 

Supporting Figure S49. 1H NMR of 4c in DMSO-d6 
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Supporting Figure S50. 13C{1H} NMR of 4c in DMSO-d6 

 

Supporting Figure S51. 1H-13C HSQC NMR of 4c in DMSO-d6 
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Supporting Figure S52. 1H NMR of 4d in DMSO-d6  

 

Supporting Figure S53. 13C{1H} NMR of 4d in DMSO-d6 
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Supporting Figure S54. 1H-13C HSQC NMR of 4d in DMSO-d6 

 

Supporting Figure S55. 1H NMR of 4e in DMSO-d6 
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Supporting Figure S56. 13C{1H} NMR of 4e in DMSO-d6 

 

Supporting Figure S57. 1H-13C HSQC NMR of 4e in DMSO-d6 
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