Organometallic Ru, Os, Rh and Ir Half-Sandwich Conjugates of Ispinesib - Impact of the Organometallic Group on the Antimitotic Activity

Michał Łomzik^a, Andrzej Błauż^b, Marta Głodek^a, Anna Makal^c, Daniel Tchoń^{c,f}, Daniel Moscoh Ayine-Tora^d, Christian Hartinger^e, Błażej Rychlik^b, Damian Plażuk^{a*}

^a Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland

^b Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, University of Lodz, ul. Pomorska 141/143, W24, 90-236 Łódź, Poland

^c Laboratory for Structural and Biochemical Research (LBSBio), Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warszawa, Poland

^d Department of Chemistry, University of Ghana, LG 56, Legon-Accra, Ghana

^e School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

^f Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Table of Contents

COPIES OF DOSY SPECTRA	3
LC-MS ANALYSIS	6
TABLE S1. SUMMARY OF THE MOST IMPORTANT DATA AND STRUCTURE FOR 3E ^{S,RIR} ·CH ₂ CL ₂	16
ESI-MS ANALYSIS OF THE COMPLEXES IN DMSO SOLUTION	20
STABILITY IN DMEM – UV-VIS ANALYSIS	23
MOLECULAR MODELLING	28
COPIES OF NMR SPECTRA	30

Copies of DOSY spectra

Supporting Figure S1. Overlaid ¹H DOSY spectra of 3b and (S)-1 in methanol-d₄

Supporting Figure S2. Overlaid ¹H DOSY spectra of 3c and (S)-1 in methanol-d₄

Supporting Figure S3. Overlaid ¹H DOSY spectra of 3d and (S)-1 in methanol-d₄

Supporting Figure S4. Overlaid ¹H DOSY spectra of 3e and (S)-1 in methanol-d₄

Supporting Figure S5. Overlaid ¹H DOSY spectra of 3a, 4a and (S)-1 in methanol-d₄

LC-MS Analysis

Supporting Figure S6. HPLC-MS analysis of 3a

Supporting Figure S7. HPLC-MS analysis of 3b. A) mobile phase 27.5% of MeOH and 27.5% MeCN in water + 0.01% of HCOOH as eluent with flow rate of 0.3 mL \cdot min⁻¹; B) mobile phase 65% of MeOH in water + 0.01% of HCOOH as eluent with flow rate of 0.4 mL \cdot min⁻¹;

Supporting Figure S8. HPLC-MS analysis of 3c

Supporting Figure S9. HPLC-MS analysis of 3d

Supporting Figure S10. HPLC-MS analysis of 3e

Supporting Figure S11. HPLC-MS analysis of 4a

65% MeOH in Water

Supporting Figure S12 HPLC-MS analysis of **4b** A) mobile phase 27.5% of MeOH and 27.5% MeCN in water + 0.01% of HCOOH as eluent with flow rate of 0.3 mL^{-min⁻¹}; B) mobile phase 65% of MeOH in water + 0.01% of HCOOH as eluent with flow rate of 0.4 mL^{-min⁻¹};

Supporting Figure S13. HPLC-MS analysis of 4c

Supporting Figure S14. HPLC-MS analysis of 4d

Supporting Figure S15. HPLC-MS analysis of 4e

Compound	Je		
Empirical formula	$C_{46}H_{51}Cl_2IrN_5O_2F_6P\cdot CH_2Cl_2$		
CCDC number	2207901		
Formula weight	1198.91		
Crystal system	monoclinic		
Space group	P2 ₁		
a/Å	8.6827(2)		
b/Å	11.6490(3)		
c/Å	25.0534(7)		
α/°	90		
β/°	89.971(2)		
γ/°	90		
Volume/Å ³	2534.02(11)		
Z	2		
ρ_{calc} mg/mm ³	1.571		
F(000)	1200		
µ/mm ⁻¹	7.890		
Max. transmission	0.901		
Min. transmission	0.420		
Absorption corr.	Gaussian		
Crystal color	clear light yellow		
Crystal habit	plate		

Table S1. Summary of the most important data and structure for $3e^{S,RIr}$. CH2Cl2.Compound $3e^{S,RIr}$

Crystal size/mm	$0.157 \times 0.121 \times 0.015$
R _{int}	0.0432
R _{sigma}	0.0384
Index ranges: h	10 -10
k	14 -14
1	31 -31
Reflections collected	37198
2Θ range : max	77.034
min	1.763
Temperature/K	100.0(1)
X-ray wavelength/Å	1.54184
Independent refl. $I > 2 \sigma(I)$	10259
Independent refl.	10400
Largest diff.: peak /e Å ⁻³	5.482
hole /e Å ⁻³	-2.099
Goodness-of-fit on F ²	1.061
Parameters	604
Data	15726
Restraints	130
R1 all data	0.0489
R1 [I>=2σ (I)]	0.0481
wR2 all data	0.1125

wR2 [I>=2σ (I)]	0.1129
Flack parameter	-0.018(4)

Supporting Figure S16. ¹H NMR spectra of 3a in DMSO-d₆ - comparing fresh solution (blue)

and solution after 54 h (red) at room temperature

Supporting Figure S17. ¹H NMR spectra of 4a in DMSO-d₆ - comparing fresh solution (blue)

and solution after 36 h (red) at room temperature

ESI-MS analysis of the complexes in DMSO solution

Supporting Figure S18. ESI-MS analysis of 3a in DMSO solution after 0 and 24 h.

Supporting Figure S19. ESI-MS analysis of 3b in DMSO solution after 0 and 24 h.

Supporting Figure S20. ESI-MS analysis of 3c in DMSO solution after 0 and 24 h.

Supporting Figure S21. ESI-MS analysis of 3d in DMSO solution after 0 and 48 h.

Supporting Figure S22. ESI-MS analysis of 3e in DMSO solution after 0 and 48 h.

Supporting Figure S23. UV-VIS spectra of compounds 3a (A), 3b (B), 3c (C), 3d (D) and 3e (E) in DMEM at $c = 10 \mu$ M.

Supporting Figure S24. Normalized UV-VIS spectra of compounds 3a (A), 3b (B), 3c (C), 3d (D) and 3e (E) in DMEM, DCM and DMSO.

Supporting Figure S25. Graphical presentation of IC₅₀ values of (S)-1 and (*R*)-1 derivatives obtained for investigated cancer cell lines. IC₅₀ values are presented along with the corresponding 95% confidence intervals, n = 3;

Supporting Figure S26. MRC-5 cells viability in the presence of compounds (*S*)- and (*R*)-1 and **3a-4e** at concentrations equal to IC_{50} values determined for MCF-7 cells. Values are presented as mean \pm SEM, n = 3;

Figure S27. Cell cycle phase distribution for SW620 (top) and SW620E (bottom) cells exposed for 24 h and 72 h to (*S*)-1 and (*R*)-1 and the corresponding synthesized metal complexes **3a-4e** at concentrations equal to IC₇₅ of (*S*)- and (*R*)-1, respectively. Data are presented as mean \pm SEM, n = 3.

Molecular Modelling

The compounds were docked to the crystal structure of human kinesin KSP (PDB ID: 4AP0, resolution 2.59 Å)¹ which was obtained from the Protein Data Bank (PDB).^{2.3} Scigress version FJ 2.6⁴ was used to prepare the crystal structure for docking, i.e., hydrogen atoms were added and the co-crystallized ispinesib and adenosine-5'-diphosphate (ADP) were removed. The center of the binding pocket was defined as the nitrogen in the ring close to the carbonyl group. (x = 41.663, y = 0.113, z = 11.931) with a radius of 10 Å. The GoldScore (GS),⁵ ChemScore (CS)^{6, 7}, ChemPLP⁸ and Astex statistical potential (ASP)⁹ scoring functions were implemented to validate the predicted binding modes and relative energies of the compounds using the GOLD v5.4 software suite. The co-crystallized molecule ispinesib was first docked and root mean square deviation (RMSD) values were calculated for the heavy atoms. ASP obtained an average RMSD of 0.9255, the score for PLP was 0.7299, for CS 0.7265 and GS gave a RMSD of 0.8090 which show the strong prediction power of the scoring functions (Supporting Tables S2 and S3).

Supporting Table S2. RMSD values for heavy atoms between the co-crystallized ispinesib and the docked molecule.

Poses	ASP	ChemPLP	CS	GS
1	0.9569	0.5933	0.6412	1.0677
2	0.8536	0.8291	0.6083	0.4090
3	0.9660	0.7674	0.9299	0.9503
Mean	0.9255	0.7299	0.7265	0.8090

Supporting Table S3. Results of the scoring function for the docking of the compounds to KSP.

Compound	ASP	ChemPLP	ChemScore	GoldScore
ispinesib	48.7	109.6	42.6	83.4
(<i>R</i>)-1a	49.0	111.3	43.9	79.7
(S)- 1a	40.0	87.3	37.1	70.8
3a ^{S,RRu}	33.0	89.5	38.0	63.2
3a ^{S,SRu}	35.1	84.9	34.3	74.3
3c ^{S,Ros}	38.3	92.9	38.8	62.8
3c ^{S,Sos}	35.7	89.4	34.3	59.4
3d ^{S,SRh}	39.8	90.6	35.2	73.8
3d ^{S,R_{Rh}}	40.1	83.1	35.6	56.1
3e ^{S,Str}	38.8	90.6	36.6	75.4
3e ^{S,R} /r	40.5	88.3	38.8	54.8
4a ^{R,SRu}	41.4	90.4	35.5	79.3
4a ^{R,R_R}	39.6	91.0	36.9	75.6
4c ^{R,Sos}	40.2	95.2	37.0	67.7
4c ^{R,Ros}	39.7	93.4	37.9	65.0
4d ^{R,R_{Rh}}	36.3	81.9	36.1	68.1
4d ^{R,S_{Rh}}	37.5	87.2	35.7	64.4
4e ^{R,R} /r	38.5	84.8	34.6	68.2
4e ^{R,S_{Ir}}	38.8	87.5	34.3	64.9

Supporting Figure S28. ¹H NMR of 3a in DMSO-d₆

Supporting Figure S29. ¹³C{¹H} NMR of 3a in DMSO-d₆

Supporting Figure S30. ¹H-¹³C HSQC NMR of 3a in DMSO-d₆

Supporting Figure S31. ¹H NMR of 3b in DMSO-d₆

Supporting Figure S32. ¹³C{¹H} NMR of **3b** in DMSO-d₆

Supporting Figure S33. ¹H-¹³C HSQC NMR of 3b in CD₂Cl₂

Supporting Figure S34. ¹H NMR of 3c in DMSO-d₆

Supporting Figure S35. ¹³C{¹H} NMR of 3c in DMSO-d₆

Supporting Figure S36. ¹H-¹³C HSQC NMR of 3c in DMSO-d₆

Supporting Figure S37. ¹H NMR of 3d in DMSO-d₆

Supporting Figure S38. ¹³C{¹H} NMR of **3d** in DMSO-d₆

Supporting Figure S39. ¹H-¹³C HSQC NMR of 3d in DMSO-d₆

Supporting Figure S40. ¹H NMR of 3e in DMSO-d₆

Supporting Figure S41. ${}^{13}C{}^{1}H$ NMR of 3e in DMSO-d₆

Supporting Figure S42. ¹H-¹³C HSQC NMR of 3e in DMSO-d₆

Supporting Figure S43. ¹H NMR of 4a in DMSO-d₆

Supporting Figure S44. ¹³C{¹H} NMR of 4a in DMSO-d₆

Supporting Figure S45. ¹H-¹³C HSQC NMR of 4a in DMSO-d₆

Supporting Figure S46. ¹H NMR of 4b in DMSO-d₆

Supporting Figure S47. ¹³C{¹H} NMR of 4b in DMSO-d₆

Supporting Figure S48. ¹H-¹³C HSQC NMR of 4b in DMSO-d₆

Supporting Figure S49. ¹H NMR of 4c in DMSO-d₆

Supporting Figure S50. ¹³C{¹H} NMR of 4c in DMSO-d₆

Supporting Figure S51. ¹H-¹³C HSQC NMR of 4c in DMSO-d₆

Supporting Figure S52. ¹H NMR of 4d in DMSO-d₆

Supporting Figure S53. ¹³C{¹H} NMR of 4d in DMSO-d₆

Supporting Figure S54. ¹H-¹³C HSQC NMR of 4d in DMSO-d₆

Supporting Figure S55. ¹H NMR of 4e in DMSO-d₆

Supporting Figure S56. ¹³C{¹H} NMR of 4e in DMSO-d₆

Supporting Figure S57. ¹H-¹³C HSQC NMR of 4e in DMSO-d₆

References

- (1) Lowe, J.; Li, H.; Downing, K. H.; Nogales, E. "*Refined structure of alpha beta-tubulin at 3.5 A resolution*" *J. Mol. Biol.* **2001**, *313* (5), 1045-1057. DOI: 10.1006/jmbi.2001.5077.
- (2) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov,
- I. N.; Bourne, P. E. "The protein data bank" Nucleic Acids Res. 2000, 28 (1), 235-242.
- (3) Berman, H.; Henrick, K.; Nakamura, H. "Announcing the worldwide protein data bank" Nat. Struct. Mol. Biol. 2003, 10 (12), 980-980.
- (4) "Scigress: Version FJ 2.6 (EU 3.1.7)" Scigress: Version FJ 2.6 (EU 3.1.7) Fujitsu Limited **2008-2016**.

(5) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. "*Development and validation of a genetic algorithm for flexible docking*" *J. Mol. biol.* **1997**, *267* (3), 727-748.

(6) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. "*Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes*" J. Comput. Aided Mol. Des. **1997**, 11 (5), 425-445.

(7) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. "Improved protein-ligand docking using GOLD" Proteins 2003, 52 (4), 609-623. DOI: 10.1002/prot.10465.

(8) Korb, O.; Stutzle, T.; Exner, T. E. "*Empirical scoring functions for advanced protein-ligand docking with PLANTS*" J. Chem. Inf. Model **2009**, 49 (1), 84-96. DOI: 10.1021/ci800298z.

(9) Mooij, W. T.; Verdonk, M. L. "General and targeted statistical potentials for protein-ligand interactions" Proteins **2005**, *61* (2), 272-287. DOI: 10.1002/prot.20588.