Supporting Information

Structural and functional biomimetics of [Fe]-hydrogenase featuring a mono-, di- or tetrasubstituted pyridine ligand with a *fac*-C, N, S ligation

Li-Cheng Song,* Zhen-Qing Zhang and Bei-Bei Liu

Contents:

- 1. IR and ¹H (¹³C) NMR spectra of model **1** (Fig. S1–S3)
- 2. IR and ¹H (¹³C) NMR spectra of model **2** (Fig. S4–S6)
- 3. IR and ¹H (¹³C) NMR spectra of model **3** (Fig. S7–S9)
- 4. IR and ¹H (¹³C) NMR spectra of model 4 (Fig. S10–S12)
- 5. IR and ${}^{1}H$ (${}^{13}C$) NMR spectra of model 5 (Fig. S13–S15)
- 6. IR and ¹H (¹³C) NMR spectra of model **6** (Fig. S16–S18)
- 7. IR and ¹H (¹³C) NMR spectra of complex 7 (Fig. S19–S21)
- 8. IR and ¹H (¹³C) NMR spectra of complex **8** (Fig. S22–S24)
- Product Im-H isolated from reactions of ImBF₄ with H₂ in the presence of AgBF₄ and Et₃N catalyzed by models 1–6 in a synthetic scale
- 10. Reactions of $ImBF_4$ with H_2 in the presence of $AgBF_4$ and Et_3N catalyzed by models **1–6** and their *in situ* ¹H NMR spectra of the resulting reaction solutions (Fig. S25–S30)

1. IR and ¹H (¹³C) NMR spectra of model **1** (Fig. S1–S3)

Fig. S3 ¹³C NMR spectrum of model 1 in CDCl₃.

2. IR and ¹H (¹³C) NMR spectra of model **2** (Fig. S4–S6)

3. IR and ¹H (¹³C) NMR spectra of model **3** (Fig. S7–S9)

Fig. S8 ¹H NMR spectrum of model 3 in CDCl₃.

4. IR and ¹H (¹³C) NMR spectra of model 4 (Fig. S10–S12)

Fig. S11 ¹H NMR spectrum of model 4 in CDCl₃.

Fig. S12 13 C NMR spectrum of model 4 in acetone- d_6

Fig. S14 ¹H NMR spectrum of model 5 in CDCl₃.

Fig. S15 ¹³C NMR spectrum of model 5 in CDCl₃.

6. IR and ¹H (¹³C) NMR spectra of model 6 (Fig. S16–S18)

Fig. S17 ¹H NMR spectrum of model 6 in acetone- d_6 .

Fig. S18 ¹³C NMR spectrum of model 6 in acetone- d_6 .

7. IR and ¹H (¹³C) NMR spectra of complex 7 (Fig. S19–S21)

Fig. S21 ¹³C NMR spectrum of complex 7 in acetonitril- d_3 .

8. IR and ¹H (¹³C) NMR spectra of complex 8 (Fig. S22–S24)

7,838 7,626 7,626 7,626 7,420 7,440 7,440 7,440 7,731 7,731 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,733 7,702 7,702 7,702 7,702 7,702 7,702 7,702 7,702 7,702 7,703 7,702 7,703 7,702 7,703 7,703 7,703 7,703 7,703 7,703 7,703 7,703 7,703 7,707 7,360 7,703 7,707 7,360 7,703 7,707 7,360 7,703 7,707 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705 7,360 7,705

Fig. S23 ¹H NMR spectrum of complex 8 in CDCl₃.

Fig. S24 13 C NMR spectrum of complex 8 in CD₂Cl₂.

- Product Im-H isolated from reactions of ImBF₄ with H₂ in the presence of AgBF₄ and Et₃N catalyzed by models 1–6 in a synthetic scale
- (i) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 1

In an argon-filled glove box, a mixture of model **1** (12 mg, 25 μ mol), AgBF₄ (5 mg, 25 μ mol), ImBF₄ (77.5 mg, 250 μ mol), Et₃N (35 μ L, 250 μ mol) and CHCl₃ (3.0 mL) was added to a 30 mL autoclave's inner sleeve (made of PTFE) containing a magnetic stir-bar. The inner sleeve was put to the autoclave and then the autoclave was sealed. After 1.0 MPa of H₂ was filled and released three times, the mixture was stirred under 1.0 MPa H₂ at room temperature for 8. Solvent was removed at reduced pressure to give a residue, which was subjected to silica gel column chromatography. Elution with CH₂Cl₂/hexane (v/v = 4:1) developed a colorless band, from which product Im-H (51 mg, 91%) was obtained as a white solid (note that Im-H was separated by column chromatography and monitored by thin layer chromatography (TLC) using the fluorescent TLC plates covered with silica gel GF 254 under UV irradiation).

(ii) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 2

The same procedure as that described in (i) was followed, but model 2 (11 mg, 25 μ mol) was used instead of model 1. Product Im-H (49 mg, 87%) was obtained as a white solid.

(iii) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model **3**

The same procedure as that described in (i) was followed, but model **3** (15 mg, 25 μ mol) was used instead of model **1**. Product Im-H (36 mg, 64%) was obtained as a white solid.

(iv) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 4

The same procedure as that described in (i) was followed, but model 4 (14.5 mg, 25 μ mol) was used instead of model 1. Product Im-H (53 mg, 95%) was obtained as a white solid.

(v) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 5

The same procedure as that described in (i) was followed, but model 5 (13.5 mg, 25 μ mol) was used instead of model 1. Product Im-H (38 mg, 68%) was obtained as a white solid.

(vi) Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 6

The same procedure as that described in (i) was followed, but model **6** (13 mg, 25 μ mol) was used instead of model **1**. Product Im-H (50 mg, 89%) was obtained as a white solid.

- Reactions of ImBF₄ with H₂ in the presence of AgBF₄ and Et₃N catalyzed by models 1–6 and their *in situ* ¹H NMR spectra of the resulting reaction solutions (Fig. S25–S30)
- (i) Reaction of ImBF₄ with H₂ catalyzed by model **1** and its *in situ* ¹H NMR spectrum of the resulting reaction solution

In an argon-filled glove box, a mixture of model **1** (2.4 mg, 5 μ mol), AgBF₄ (1.0 mg, 5 μ mol), ImBF₄ (15.5 mg, 50 μ mol), Et₃N (7.0 μ L, 50 μ mol) and 0.6 mL of CDCl₃ was added to a 5 mL test tube containing a magnetic stir-bar. The test tube was put to a 30 mL inner sleeve of the autoclave and then the autoclave was sealed. After 1.0 MPa H₂ was filled and released three times, the mixture was stirred under 1.0 MPa H₂ at room temperature for 8 h and then an equimolar Ph₃CH (12.2 mg, 50 μ mol) was added as internal standard. The resulting grey-black suspensions was filtered through a microfilter to give a yellowish solution, which was determined *in situ* by ¹H NMR spectroscopy to calculate its ¹H NMR yield (Fig. S25).

Fig. S25 ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **1** in the presence of $AgBF_4$ and Et_3N .

The ¹H NMR yield of product Im-H :

$$\frac{\text{integrated value of NCH}_2\text{N group in Im-H}}{2} = \frac{1.87}{2} \times 100\% = 94\%$$

(ii) Reaction of ImBF₄ with H₂ catalyzed by model **2** (2.3 mg, 5 μ mol) and its *in situ* ¹H NMR spectrum of the resulting reaction solution.

Fig. S26 ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model 2 in the presence of $AgBF_4$ and Et_3N .

The ¹H NMR yield of product Im-H = $\frac{1.76}{2}$ x 100% = 88%

(iii) Reaction of ImBF₄ with H₂ catalyzed by model **3** (3.0 mg, 5 μ mol) and its *in situ* ¹H NMR spectrum of the resulting reaction solution.

Fig. S27 ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **3** in the presence of $AgBF_4$ and Et_3N .

The ¹H NMR yield of product Im-H = $\frac{1.34}{2}$ x 100% = 67%

(iv) Reaction of $ImBF_4$ with H_2 catalyzed by model 4 (2.8 mg, 5 µmol) and its *in situ* ¹H NMR spectrum of the resulting reaction solution

Fig. S28. ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **4** in the presence of $AgBF_4$ and Et_3N .

The ¹H NMR yield of product Im-H = $\frac{1.90}{2}$ x 100% = 95%

(v) Reaction of ImBF₄ with H₂ catalyzed by model 5 (2.7 mg, 5 μmol) and its *in situ* ¹H
NMR spectrum of the resulting reaction solution.

Fig. S29 ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **5** in the presence of $AgBF_4$ and Et_3N .

The ¹H NMR yield of product Im-H = $\frac{1.46}{2}$ x 100% = 73%

Fig. S30. ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **6** in the presence of AgBF₄ and Et₃N.

The ¹H NMR yield of product Im-H = $\frac{1.82}{2}$ x 100% = 91%