Supplementary Information

Co₂P nanowire arrays anchored on 3D porous reduced graphene oxide

matrix embedded in nickel foam for high-efficiency hydrogen evolution

reaction

Yuanqiang Wang*, Ting Wang, Mengru Yang, Yichuan Rui, Zhili Xue, Haozhen Zhu,

Chengjie Wang, Jing Li, Binling Chen

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

*Corresponding author.

E-mail: yuanqiangw@sues.edu.cn (Y. Q. Wang).

Fig. S1. Digital photographs of the samples during the preparation of Co_2P/NF and $Co_2P@3D-rGO/NF$.

Fig. S2. FT-IR spectra of the samples: (1) 3D-GO obtained from 3D-GO/NF, (2) rGO powder prepared by the reduction of GO in HI acid, (3) Co_2P powder obtained from Co_2P/NF , and (4) $Co_2P@3D$ -rGO powder obtained from $Co_2P@3D$ -rGO/NF.

Fig. S3. Raman spectra of GO/NF and Co₂P@3D-rGO/NF.

Fig. S4. FESEM image of $Co(CO_3)_{0.5}(OH)_{0.11}$ ·H₂O@3D-GO/NF.

Fig. S5. FESEM image of CoO@3D-GO/NF.

Fig. S6. N_2 adsorption-desorption isotherms of 3D-GO, Co_2P , and $Co_2P@3D-rGO$ powders scraped from 3D-GO/NF, Co_2P/NF and $Co_2P@3D-rGO/NF$, respectively.

Fig. S7. XPS full survey spectra of Co₂P/NF and Co₂P@3D-rGO/NF.

Fig. S8. HER overpotentials of the electrodes.

Fig. S9. FESEM image of Co₂P@3D-rGO/NF after the LSV test.

Fig. S10. Cyclic voltammetry curves of the electrodes: (a) Pt/C/NF, (b) $Co_2P@3D$ -rGO/NF, (c) Co_2P/NF , (d) 3D-GO/NF, and (e) NF in a potential window (0.10 - 0.30 V vs. RHE) at various scan rates in 1.0 M KOH solution.

Fig. S11. Bode-phase plots of the electrodes.

Fig. S12. FESEM image of Co₂P@3D-rGO/NF after 2000 CV sweeps.

Fig. S13. FESEM image of Co₂P@3D-rGO/NF after 20 h of chronoamperometry test.

Fig. S14. XRD pattern of Co₂P@3D-rGO/NF after 20 h of chronoamperometry test.

Pore properties	3D-GO	Co ₂ P	Co ₂ P@3D-rGO
BET surface area (m ² g ⁻¹)	15.7	3.6	6.0
BJH Adsorption Pore volume (cm ³ g ⁻¹)	0.0096	0.0088	0.0255
BJH Desorption Pore volume (cm ³ g ⁻¹)	0.0097	0.0087	0.0247
BJH Adsorption pore size (nm)	7.5	10.2	16.8
BJH Desorption pore size (nm)	6.2	10.6	15.9

Table S1 The pore properties of 3D-GO, Co₂P, and Co₂P@3D-rGO powders scraped from 3D-GO/NF, Co₂P/NF, and Co₂P@3D-rGO/NF, respectively.

Electrocatalysts	Electrolyte	η(mV)@j (mA·cm ⁻²)	Tafel Slope (mV·dec ⁻¹)	Reference
CoP/Co ₉ S ₈ -Cu	1 M KOH	118@10	66.75	Ref ¹
CoP@FeCoP/NC YSMPs	1 M KOH	141@10	56.34	Ref ²
Co ₂ P/CoWO ₄ /NF	1 M KOH	81@10	79	Ref ³
Co ₂ P/NPSC-800	1 M KOH	173@10	106.52	Ref ⁴
Co ₂ P NRs	1 M KOH	151@10		Ref ⁵
Co ₂ P/NPSC-800	1 M KOH	173@20	106.52	Ref ⁶
Co/CoN/Co ₂ P-NPC	1 M KOH	99@10	51	Ref ⁷
CoP/Co ₂ P hybrids	1 M KOH	103@10	61.2	Ref ⁸
Co ₂ P NPs	1 M KOH	131@10	36	Ref ⁹
Co ₂ P/CoP branched	1 M KOH	87@10	76.8	Ref ¹⁰
Co ₂ P/CNTs	1 M KOH	132@10	103	Ref ¹¹
Fe-Co ₂ P BNRs	1 M KOH	156@10	90	Ref ¹²
Co ₂ P@3D-rGO/NF	1 М КОН	36.5@10	55.5	This work

Table S2 HER activities of nanocomposite electrocatalysts associated with Co₂P.

References:

- Y. Pan, Y. Q. Liu, Y. Lin and C. G. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 13890-13901.
- 2. J. H. Shi, F. Qiu, W. B. Yuan, M. M. Guo and Z. H. Lu, Chem Eng J, 2021, 403, 126312.
- 3. K. Y. Tao, H. M. Dan, Y. Hai, L. Liu and Y. Gong, *Electrochim Acta*, 2019, 328, 135123.
- X. W. Sun, H. Liu, G. R. Xu, J. Bai and C. P. Li, *Int J Hydrogen Energ*, 2021, 46, 1560-1568.
- 5. Z. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, **9**, 373-382.
- Y. Li, M. N. Cui, T. J. Li, Y. Shen, Z. J. Si and H. G. Wang, *Int J Hydrogen Energ*, 2020, 45, 16540-16549.
- L. Hu, Y. W. Hu, R. Liu, Y. C. Mao, M. S. Balogun and Y. X. Tong, *Int J Hydrogen Energ*, 2019, 44, 11402-11410.
- L. Y. Chen, Y. Y. Zhang, H. F. Wang, Y. X. Wang, D. Z. Li and C. Y. Duan, *Nanoscale*, 2018, 10, 21019-21024.
- X. Y. Wang, C. H. Liu, C. Wu, X. M. Tian, K. Wang, W. L. Pei and Q. Wang, *Electrochim.* Acta, 2020, 330, 135191.
- M. J. Song, Y. He, M. M. Zhang, X. R. Zheng, Y. Wang, J. F. Zhang, X. P. Han, C. Zhong, W. B. Hu and Y. D. Deng, *J. Power Sources*, 2018, **402**, 345-352.
- 11. D. Das and K. K. Nanda, Nano Energy, 2016, 30, 303-311.
- Y. Lin, K. A. Sun, X. M. Chen, C. Chen, Y. Pan, X. Y. Li and J. Zhang, *J Energy Chem*, 2021, 55, 92-101.