Electronic Supplementary Information

Upcycling Rust and Plastic Waste into Fe-MOF for Effective Energy Storage Application: Transformation of Trash to Treasure

Rakesh Deka^a, Diptangshu Datta Mal^a and Shaikh M. Mobin^{a,b,c*}

^aDepartment of Chemistry, ^bDepartment of Biosciences and Bio-Medical Engineering, ^cCenter of Advanced Electronics (CAE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.

Corresponding Author: E-mail: xray@iiti.ac.in Tel: +91 731 6603 336

Physical measurements

All the reagents and solvents were purchased commercially and used without further purification. Thermogravimetric analysis (TGA) was recorded with a METTLER TOLEDO (TGA/DSC1) system through STARe software by a heating rate of 10 °C/min in an N₂ atmosphere up to 800 °C. For the Powder X-ray diffraction (PXRD) analysis, Cu Ka (0.154 nm) monochromatic radiation was used with a Bruker, D2-Phaser X-ray diffractometer. The morphologies were investigated by scanning electron microscope (FESEM, JEOL JSM-6500 F). a field emission Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) distribution determinations were conducted on an Autosorb iQ (Quantachrome Instruments, version 1.11). FT-IR experiment was performed by using Perkin Elmer-Spectrum Two with ATR mode. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker 400 MHz FT-NMR spectrometer at room temperature. ¹H NMR chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak (DMSO-d₆, 2.5 ppm). ¹³C NMR chemical shifts are reported relative to the solvent residual peak (DMSO-d₆, 39.52 ppm).

Experimental section

Materials

All the chemicals were taken from commercially available sources and further used without purification. The FeCl₃.6H₂O, Terephthalic acid, N, N-dimethylformamide (DMF), ethanol, Polyvinyl alcohol (PVA), and KOH were purchased from Finar and Merck chemicals. Moreover, the aqueous KOH solutions were prepared by using de-ionized water.

Synthesis of Fe-BDC(W)

For the synthesis of **Fe-BDC(W)**, we have taken a laboratory-used rusted iron container to produce metal salt precursor and a disposable polyethylene terephthalate (PET) bottle as a source of benzene dicarboxylic acid (linker). At first, the laboratory-used rusted iron container was scratched to get the iron rust powder. Later on, it was completely dissolved in 50% diluted HCl to get a mixture of iron chloride salts. The obtained mixture was treated with excess H₂O₂ to further oxidize to FeCl₃. The resulting solution was kept at room temperature to obtain the crystals of FeCl₃. 6H₂O. On the other hand, the plastic bottles were cut into small pieces and washed with ethanol several times to wash away any impurities. It was further treated with 4N NaOH for 24h at 180 °C in hydrothermal conditions. The obtained solution is neutralized with concentrated HCl to get a white powder of benzene dicarboxylic acid. After that, we followed a reported pathway¹ with slight modification to produce **Fe-BDC(W)**. In a general reaction, FeCl₃.6H₂O (5 mmol, 1.35 gm) and benzene dicarboxylic acid (2.47 mmol, 0.412 gm) was completely dissolved in 30 mL DMF and transferred to a Teflon-lined autoclave (40 mL) for 22h and heated at 110 °C. The obtained orange-colored powder was then washed several times with DMF, followed by deionized water and ethanol, and dried at room temperature to get pure **Fe-BDC(W)**.

Synthesis of Fe-BDC(C)

For comparison purposes, we have prepared another Fe-BDC(C) material with commercially available FeCl₃.6H₂O and benzene dicarboxylic acid. The reaction procedure is the same as the **Fe-BDC(W)**.

Electrochemical study

Preparation of electrodes

For the electrochemical measurements, potentiostatic cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) are used to evaluate the efficiency of **Fe-BDC(W)** and Fe-BDC(C). The electrochemical setup for all the measurements includes three conventional electrode systems. A platinum wire as a counter electrode, Ag/AgCl as the reference electrode, and carbon cloth (CC) as the working electrode. However, for the electrochemical measurements, the working electrode was prepared by drop casting of ethanolic dispersion of the active material on CC (200 μ g of mass loading) and air dried at room temperature for further electrochemical study.

Efficiency evaluation

The specific capacitance (F g⁻¹) of the symmetric device was measured by using the following equation:²

$$\frac{I \times \Delta t}{C_{\rm s} = \overline{m \times \Delta V}} \tag{S1}$$

here I/m signifies current density, Δt , and ΔV convey the discharge time and potential window of the GCD profile.

Furthermore, for the asymmetric device, the energy density (E) and power density (P) were calculated by using the following equations:³

$$E = \frac{Cs}{2 \times 3.6} \times \Delta V^2$$
(S2)
$$P = \frac{E}{\Delta t} \times 3600$$
(S3)

here, C_s , ΔV and Δt signify the specific capacitance, potential window, and discharge time of the GCD profile, respectively.

Fig. S1 ¹H NMR of PET-derived benzene dicarboxylic acid.

Fig. S2 ¹³C NMR of PET-derived benzene dicarboxylic acid.

Fig. S3 (a-c) Elemental mapping of Fe-BDC(W), (d-f) Elemental mapping of Fe-BDC(C).

Fig. S4 (a) Elemental composition of Fe-BDC(C), (b) Elemental composition of Fe-BDC(W).

Fig. S5 FT-IR spectrum of Fe-BDC(W) and Fe-BDC(C).

Fig. S6 Thermogravimetric analysis of Fe-BDC(C) and Fe-BDC(W).

Fig. S7 (a) Nitrogen adsorption and desorption isotherms and (b) the corresponding pore size analysis of Fe-BDC(W).

Fig. S8 Specific capacitance vs. Current density curve for Fe-BDC(W).

Fig. S9 (a) Cyclic Voltammetry at various scan rates, (b) GCD at different current densities, (c) Specific capacitance vs. Current density curve, and (d) Nyquist plot of Fe-BDC(C).

Fig. S10 PXRD pattern of Fe-BDC(W) before and after 5200 GCD cycles.

Fig. S11 (a) Specific capacitance vs. Current density, (b) Nyquist plot, and (c) Ragone plot of Fe-BDC(W) device.

Sr.	Material	Electrolyt	Current	Specific	Cyclic	Device	Device	Ref.
No		e	Density	Capacitance	stability	Energy	Power	
•			(A g ⁻¹)	(F g ⁻¹)		Density	Density	
1	N. MOL		1.4	000	06.50/ 0	(Wh Kg ⁻¹)	(W Kg ⁻¹)	4
	N1-MOF	3M KOH	1.4	988	96.5% after	4.18 mW	231.2	4
	NI: here d	ANKOU	0.5	1127	5000 cycles	n cm ⁻⁵	mw cm ⁻³	5
	MOE		0.5	1127	90% alter	-	-	5
					cycles			
3	Fe-	6М КОН	1	628 5	$\sim 82\%$ after	16.24	897 5	6
	MOF@A			020.0	10000	10.21	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	C				cycles			
4	Ni/Co-	2M KOH	1	758	75% after	20.9	800	7
	MOF				5000 cycles			
5	ZIF-PPy	1M	0.5	597.6	90.7% after	0.0113	0.12 mW	8
		Na_2SO_4			10,000	mW h	cm ⁻²	
					cycles	cm ⁻²		
6	N1-	2M KOH	1	552	~98% after	-	-	9
	DMOF-				16,000			
7	ADC CuEoPTC	1M	0.5	1164.3	Ligh evolie	50.2	26072 12	10
'	/S-GNS	Na SO	0.5	1104.5	stability	50.2	20975.15	-
	/5 0115	1102504			after 10000			
					cycles			
8	MIL-88-	$1 M H_2 SO_4$	20	353	74.4% after	36	588	11
	Fe/GA				10000			
					cycles			
9	Cd-MOF	1M KOH	4	647	78% after	11.25	500	2
					10000			
					cycles			2
10	N1-CP	7М КОН	3	802	95% after	15	1137	3
11	NC 800	ANKOU	1	715	S000 cycles			12
	NC-800	OMKOH		/15	INO degradation	-	-	12
					after 2500			
					cycles			
12	Co-MOF	1M LiOH	1	206.76	98.5% after	-	-	13
			-		1000 cycles			
13	[Co(bpdc)	0.5M	10 mV s ⁻	179.2	No	-	-	14
	$(H_2O)_2]H_2$	LiOH	1		degradation			
	0				after 1000			
					cycles			
14	Fe-	3 M KOH	4	752	83% after	14	1100	This
	BDC(W)				5200 cycles			Work

 Table S1 Comparison table of MOF-based material for supercapacitor application.

Elements	Fe-BDC(C)	Fe-BDC(W)
$\mathbf{R}_{\mathrm{S}}\left(\Omega ight)$	12.4	13.9
$R_{ct}(\Omega)$	15.2	15.7
C _{dl} (nF)	13.9	9.29
C _p (μF)	104	123
W (m Mho*s∧(1/2))	4.21	6.06

Table S2 Circuit fitting parameter for Fe-BDC(W) and Fe-BDC(C) for three electrode studies.

Table S3 Circuit fitting parameter for asymmetric solid-state supercapacitor of Fe-BDC(W).

Elements	Fe-BDC(W)
$R_{S}(\Omega)$	22.1
$R_{ct}(\Omega)$	1.43
CPE 1 (uMho*s∧N)	54.3 (N=0.787)
CPE 2 (mMho*s^N)	2.40 (N = 0.898)

References

- 1 Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen and H. Guo, *Sci Rep*, 2017, 7, 3316.
- 2 R. Deka, R. Rajak, V. Kumar and S. M. Mobin, *Inorg Chem*, 2023, **62**, 3084–3094.
- 3 R. Deka, V. Kumar, R. Rajak and S. M. Mobin, *Sustain Energy Fuels*, 2022, 6, 3014–3024.
- 4 Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang and H. Xue, *J Mater Chem A Mater*, 2016, 4, 19078–19085.
- 5 J. Yang, P. Xiong, C. Zheng, H. Qiu and M. Wei, J. Mater. Chem. A, 2014, 2, 16640–16644.
- 6 B. Ramasubramanian, C. Chinglenthoiba, X. Huiqing, N. Xiping, H. K. Hui, S. Valiyaveettil, S. Ramakrishna and V. Chellappan, *Surfaces and Interfaces*, 2022, **34**, 102397.
- 7 S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren and Y. He, *J Colloid Interface Sci*, 2018, 531, 83–90.
- X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, Md. S. A. Hossain, L. Pan and Y. Yamauchi, *ACS Appl Mater Interfaces*, 2017, **9**, 38737–38744.
- 9 C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K. S. Walton and M. Liu, *Nano Energy*, 2016, 26, 66–73.
- A. S. Rajpurohit, N. S. Punde and A. K. Srivastava, *J Colloid Interface Sci*, 2019, 553, 328–340.
- 11 L. Liu, Y. Yan, Z. Cai, S. Lin and X. Hu, Adv Mater Interfaces, 2018, 5, 1701548.
- 12 C. Young, J. Kim, Y. V. Kaneti and Y. Yamauchi, *ACS Appl Energy Mater*, 2018, **1**, 2007–2015.
- 13 D. Y. Lee, S. J. Yoon, N. K. Shrestha, S.-H. Lee, H. Ahn and S.-H. Han, *Microporous and Mesoporous Materials*, 2012, **153**, 163–165.
- 14 D. Y. Lee, D. v. Shinde, E.-K. Kim, W. Lee, I.-W. Oh, N. K. Shrestha, J. K. Lee and S.-H. Han, *Microporous and Mesoporous Materials*, 2013, **171**, 53–57.