Supporting Information

Amorphous Vanadium Doped Cobalt Oxyborate as Efficient

Electrocatalyst for Urea-Assisted H2 Production from Urine Sewage

Tanbir Ahmed ^{a,b}, Sukanya Bhattacharjee ^a and Poulomi Roy * ^{a,b}

^aMaterials Processing & Microsystems Laboratory, CSIR – Central Mechanical Engineering Research Institute

(CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.

*Email: poulomiroy@yahoo.com, p.roy@cmeri.res.in

Fig. S1 Comparative XRD pattern of CBO, CBVO-2 and annealed CBVO-2 (at 700 °C for 2 hours).

Fig. S2 FESEM images of (a) CBO, (b) CVBO-1, (c) CVBO-2 and (d) CVBO-3.

Fig. S3 Crystal structure of cobalt oxyborate

Fig. S4 LSV plots of CBVO-2 comparing electrochemical activities with and without calcination.

Fig. S5 Cyclic voltammograms (CV) obtained for (a) CBO, (b) CBVO-1, (c) CBVO-2 (d)CBVO-3 and (e) NF electrode at different scan rate of 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220 mV sec⁻¹ in non-faradaic region for OER process in 1 M KOH electrolyte. (f) Plot of current density differences between anodic and cathodic to determine the double layer (C_{dl}) capacitance values of OER.

Fig. S6 (a) Electrochemical active surface area (ECSA) plots of CBO, CBVO-1, CBVO-2 and CBVO-3 electrode in 1 M KOH electrolyte solution for OER process. (b) Calculated TOF values of developed electrocatalysts for OER at different potentials.

Fig. S7 Cyclic voltammograms (CV) obtained for (a) CBO, (b) CBVO-1, (c) CBVO-2 (d)CBVO-3 and (e) NF electrode at different scan rate of 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220 mV sec⁻¹ in non-faradaic region for UOR process in 1 M KOH+0.33 M Urea electrolyte, with a potential window from 1.02 to 1.2 V .(f) Plot of current density differences between anodic and cathodic to determine the double layer (C_{dl}) capacitance values of UOR.(g) Electrochemical active surface area (ECSA) plots of CBO, CBVO-1, CBVO-2 and CBVO-3 electrode in 1M KOH+0.33 M UREA electrolyte solution for UOR process.

Fig. S8 LSV plots of CBVO-2 for HER mechanism in different electrolytes.

Fig. S9 XPS fine spectral analysis of (a) Co 2p, (b) V 2p, (c) B 1s and (d) O 1s for CBVO-2 electrode after continuous chronoamperometry (CA) test in Cow urine+1 M KOH electrolyte solution.

Fig. S10 (a) XRD pattern of CBVO-2 before and after stability test. (b) SEM image of used CBVO-2 after stability test.

Sample code	Reaction condition	Co-precursor	V-precursor	NaBH ₄
СВО		0.2 M	0.000 M	
CBVO-1	Chemical reduction	0.197 M	0.003 M	0.8 M
CBVO-2		0.195 M	0.005 M	
CBVO-3		0.193 M	0.007 M	

Table S1. Reaction parameters for the synthesis of undoped and doped cobalt oxyborates.

Table S2. Comparative table for electrocatalytic OER activity of developed electrodes in 1 M KOH electrolyte medium in a three-electrode system.

Sample	<i>η</i> @20 mA cm ⁻²	<i>η</i> @100 mA cm ⁻²	Tafel slope	C _{dl}	ECSA	TOF (S ⁻¹) @
	(mV)	(mV)	(mV dec ⁻¹)	(mFcm ⁻²)	(cm²)	1.62V vs. RHE
СВО	349	414	98.8	2.3	57.5	0.016
CBVO-1	339	403	97.0	2.12	53.125	0.018
CBVO-2	338	393	77.5	2.96	74.125	0.022
CBVO-3	331	397	96.4	2.87	71.75	0.019
NF	414	432	91.8	1.92	48	0.003

Table S3. Comparative Table of oxidation potential of CBVO-2 achieved at different current densities in presence and absence of urea in alkaline water in three electrode system.

Current density	iR compensated cell voltage (V)			
	1М КОН	1M KOH + 0.33M Urea		
20	1.568	1.37		
50	1.60	1.388		
100	1.624	1.410		
150	1.638	1.428		
200	1.645	1.44		

Table S4. Values of R_s and R_{ct} for developed electrode in case of both OER and UOR.

	OER		UOR	
Materials	R _s (Ohm)	R _{ct} (Ohm)	R _s (Ohm)	R _{ct} (Ohm)
СВО	1.95	2.11	1.95	1.42
CBVO-1	1.69	1.74	1.70	1.17
CBVO-2	1.17	1.39	1.43	0.95
CBVO-3	1.69	1.53	2.09	1.26
NF	2.49	6.07	2.42	7.4
RuO ₂	1.95	3.01	2.35	2.87

Table S5. Comparative table of performances of various Borate-based electrocatalysts towardsOER.

Materials	Electrolyte	Overpotential	Tafel slope	Stability	Ref.
		η@ mA cm⁻²	mV dec ⁻¹		
V-doped Co₃BO₅	1 М КОН	338@20	77.54	40 h	This Work
Co ₂ B-500	1 М КОН	380@10	45	60 h	1
Co-B/C	1 M KOH	320@10	75	20h	2
Co-B@CoO/Ti	1 M KOH	286@10	78	-	3
Co@Co-Bi/Ti	1 М КОН	327@10	46	-	4
Co-Bi/Mxene	1 M KOH	250@10	53	-	5
Co-Bi/G	1 M KOH	290@10	53	1000 CV cycles	6
Co2-Fe-B	1 M KOH	298@10	62.6	-	7
Co-Ni-B/Ni	1 M KOH	313@10	120	-	8
Co-10Ni-B	1 M KOH	330@10	66	-	9
Со-ЗМо-В	1 M KOH	320@10	155	-	10
Fe–Co–2.3Ni–B	1 M KOH	274@10	38	-	11
CoFeBO	1 M KOH	263@10	39	-	12
NiCo ₂ O ₄ @NiCoB/CC	1 M KOH	270@10	62	-	13
Со-В-О	0.1 M KOH	470@14.3	-	-	14
Co-Fe-Bi/NF	1 M KOH	307@10	68.6	40 h	15
Co–Ni–B@NF	1 M KOH	313@10	131	12 h	16
Co-Bi/Ti ₃ C ₂ Tx	1 M KOH	250@250	53	20 h	17
Co-B-O@Co ₃ O ₄	1 M KOH	342	40.3	12 h	18

Table S6. Comparative table of electrocatalytic UOR performance of various UOR active catalysts.

Catalyst	Electrolyte	Potential(V)	Ref.
V-doped Co ₃ BO ₅	1.0 M KOH + 0.33 M urea	1.37@20	This work
Ni ₂ P/Fe ₂ P	1.0 M KOH + 0.5 M urea	1.344@10	19
MnO ₂ /MnCo ₂ O ₄ /Ni	1.0 M KOH + 0.5 M urea	1.33@10	20
Ni-WO ₂ @C/NF	1.0 M KOH + 0.33 M urea	1.31@10	21
V ₂ O ₃ /Ni/NF	1 M KOH + 0.5 M urea	1.40 @100	22
Ni-Bi	1.0 M KOH + 0.33 M urea	1.35@10	23
CoN NF/NF	1 M KOH + 0.5 M urea	1.342@10	24
NiCo ₂ S ₄ /NF	1.0 M KOH + 0.33 M urea	1.49@10	25
Ni-Fe LDH	1.0 M KOH + 0.33 M urea	1.362@10	26
CoS ₂ -MoS ₂	1.0 M KOH + 0.33 M urea	1.29@10	27
CoMn/CoMn ₂ O ₄	1.0 M KOH + 0.5 M urea	1.36@10	28
V/Ni ₃ N	1 M KOH + 0.5M urea	1.416@10	29
Ni ₃ N/VN _{0.56} O _{0.26} /Mn ₃ N ₂	1.0 M KOH + 0.33 M urea	1.48@10	30

References

- 1 J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun and W. Schuhmann, Adv. *Energy Mater.*, 2016, 6, 1502313
- 2 Y. Li, H. Xu, H. Huang, L. Gao, Y. Zhao and T. Ma, Electrochem. Commun., 2018, 86, 140-144.
- 3 W. Lu, T. Liu, L. Xie, C. Tang, D. Liu, S. Hao and X. Sun, *Small*, 2017, **13**, 1700805.
- 4 C. Xie, Y. Wang, D. Yan, L. Tao and S. Wang, *Nanoscale*, 2017, **9**, 16059-16065.
- 5 J. Liu, T. Chen, P. Juan, W. Peng, Y. Li, F. Zhang and X. Fan, *ChemSusChem*, 2018, **11**, 3758-3765.
- 6 P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng and Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 2488-2492.
- 7 H. Chen, S. Ouyang, M. Zhao, Y. Li and J. Ye, ACS Appl. Mater. Interfaces., 2017, 9, 40333-40343.
- 8 N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai and P. Wang, J. Mater. Chem. A., 2017, 5, 12379-12384.
- 9 J. Zhang, X. Li, Y. Liu, Z. Zeng, X. Cheng, Y. Wang and M. Pan, *Nanoscale*, 2018, 10, 11997-12002.
- 10 R. Fernandes, A. Chunduri, S. Gupta, R. Kadrekar, A. Arya, A. Miotello and N. Patel, *Electrochim. Acta*, 2020, **354**, 136738.
- 11 J. M.V. Nsanzimana, Y. Peng, Y.Y. Xu, L. Thia, C. Wang, B.Y. Xiawan and X. Wang, *Adv. Eng. Mater.*, 2018, **8**, 1701475.
- 12 G. Liu, D. He, R. Yao, Y. Zhao, M. Wang, N. Li and J. Li, Int. J. Hydrogen Energy., 2018, 43 6138-6149.
- 13 X. Ji, X. Ren, S. Hao, F. Xie, F. Qu, G. Du and X. Sun, *Inorg. Chem. Front.*, 2017, 4, 1546-1550.
- 14 X. Leng, K.H. Wu, B.J. Su, L.Y. Jang, I.R. Gentle and D.W. Wang, Chinese J. Catal., 2017, 38, 1021-1027.
- 15 U.P. Suryawanshi, M.P. Suryawanshi, U.V. Ghorpade, S.W. Shin, J. Kim and J.H. Kim, *Appl. Surf. Sci.*, 2019, **495**, 143462.
- 16 N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai and P. Wang, J. Mater. Chem. A., 2017, 5, 12379-12384.
- 17 J. Liu, T.Chen, P. Juan, W. Peng, Y. Li, F. Zhang and X. Fan, *ChemSusChem*, 2018, **11**, 3758-3765.
- 18 D. Kim, D. Kim, Y. Jeon, Y. Li, J. Lee, J. Kang and Y. Piao, *Electrochim. Acta.*, 2019, 299, 213-221.
- 19 H. Xu, K. Ye, K. Zhu, Y. Gao, J. Yin, J. Yan and D. Cao, ACS Sustain. Chem. Eng., 2020, 8, 16037-16045.
- 20 C. Xiao, S. Li, X. Zhang and D.R. MacFarlane, J. Mater. Chem. A., 2017, 5, 7825-7832.
- 21 F. Shen, W. Jiang, G. Qian, W. Chen, H. Zhang, L. Luo and S. Yin, J. Power Sources., 2020, 458, 228014.
- 22 Q. Zhang, B. Liu, L. Li, Y. Ji, C. Wang, L. Zhang and Z. Su, Small, 2021, 17, 2005769.
- 23 J. Ge, Y. Lai, M. Guan, Y. Xiao, J. Kuang and C. Yang, Environ. Sci.: Nano., 2021, 8, 1326-1335.
- 24 Y. Chen, P. Sun and W. Xing, J. Chem. Sci., 2019, 131, 1-8.

- 25 W. Zhu, M. Ren, N. Hu, W. Zhang, Z. Luo, R. Wang and J. Wang, ACS Sustain. Chem. Eng., 2018, 6, 5011-5020.
- 26 J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao and B. Tang, J. Mater. Chem. A., 2018, 6, 16121-16129.
- 27 C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo and T. Zhai, *Adv. Eng. Mater.*, 2018, **8**, 1801775.
- 28 C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen and X. Wang, *Adv. Funct. Mater.*, 2020, **30**, 2000556.
- 29 R.Q. Li, Q. Liu, Y. Zhou, M. Lu, J. Hou, K. Qu and O. Fontaine, J. Mater. Chem. A., 2021, 9, 4159-4166.
- 30 N. Sinha and P. Roy, Inorg. Chem., 2023, 62, 3349–3357