Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Electroinc Supporting Information

Reactivity regulation for olefin metathesis-catalyzing ruthenium complexes with sulfur atoms at the terminal of 2-alkoxybenzylidene ligands

Tsubasa Kinugawa and Takashi Matsuo*

Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.

CONTENTS

Syntheses of liga	nd and ruthenium complexes	S3	
Table S1	Profile of ligand exchange reaction between 1 and ligand 14_{-S}	S6	
Table S2	Profile of ligand exchange reaction between 1 and ligand 14_{-0}	S7	
Table S3	Parameters of X-ray crystallographic analysis	S8	
Fig. S1	¹ H-NMR spectra of complex 11 -s	S9	
Fig. S2	¹ H-NMR spectra of complex 11 -0	S10	
Fig. S3	$^1\text{H-NMR}$ spectral change during ligand exchange between 1 and ligand 14-s	S11	
Fig. S4	$^1\text{H-NMR}$ spectral change during ligand exchange between 1 and ligand 14-0	S12	
Fig. S5	¹ H-NMR spectral change during the RCM of 16		
	with complex 11-s (0.1 mol%)	S13	
Fig. S6	Time-courses and NMR spectral change in the RCM of 17	S14	
Fig. S7	Time-courses and NMR spectral change in the CM of 18 with 19	S15	
Fig. S8	¹ H-NMR spectra measured at the end of RCM of		
	16 with 1 mol% catalyst load	S16	
Fig. S9	HPLC chromatogram for the evaluation of MeOH effect		
	on catalytic activities	S17	
Fig. S10	Time-courses in RCM of 16 with and without MeOH	S18	
Fig. S11	UV-vis spectral changes of complexes in the presence of MeOH	S19	
NMR spectra of synthetic intermediate compounds S2			

Syntheses of ligands and ruthenium complexes

1-Bromo-2-(methylthio)ethane (12._s).¹ In a 100-mL two-neck flask equipped with a dropping funnel, 2-(methylthio)ethanol (2.0 mL (d=1.06 g/mL), 23 mmol) was dissolved in anhydrous CH₂Cl₂ (30 mL), and stirred for 20 min in an ice bath. PBr₃ (2.4 g (d = 2.85 g/mL), 8.9 mmol) diluted with anhydrous CH₂Cl₂ (15 mL) was slowly added from a dropping funnel to the solution. After stirring for 1.5 h at room temperature, the reaction was quenched by adding 50 mL of water. The organic phase was separated and sat. NaHCO₃ aq. was added to adjust pH = 10. After washed with sat. Na₂S₂O₃ (50 mL), the solution was dried over Na₂SO₄. The solvent was evaporated to obtain **12.**_s as colorless oil (3.03 g, yield: 85%).¹H-NMR (400 MHz, CDCl₃, ppm): δ 3.53–3.49 (m, 2H, -SCH₂C<u>H</u>₂Br), 2.94–2.90 (m, 2H, -SC<u>H</u>₂CH₂Br), 2.17 (s, 3H, C<u>H</u>₃S-). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ 36.1, 30.0, 15.4.

2-(2-Methylthioethoxy)benzaldehyde (13.s). In a 100-mL two-neck flask, compound **12**.s (2.5 g, 16 mmol) and salicylaldehyde (1.86 mL (d = 1.17 g/mL), 18 mmol) were dissolved in anhydrous DMF (35 mL), and

K₂CO₃ (2.2 g, 16 mmol) was added to the solution. The reaction mixture was stirred at 70 °C. After 17 h, the mixture was cooled to room temperature, and poured into water (100 mL). Organic substances were extracted with hexane/ethyl acetate = 1/1 (3 × 100 mL). After the organic phase was sequentially washed with water (2 × 100 mL) and brine (100 mL), the solution was dried over Na₂SO₄. After the solvent was evaporated, the residue was purified by silica gel chromatography (eluent: hexane/ethyl acetate = 6/1 (R_f = 0.31)) to obtain compound **13**.s as light green transparent oil (2.20 g, yield: 70%). ¹H-NMR (400 MHz, CDCl₃, ppm): δ 10.51 (s, 1H, -CHO), 7.85 (dd, J = 7.6, 1.6 Hz, 1H, arom), 7.55 (ddd, J = 8.4, 7.6, 1.6 Hz, 1H, arom), 7.05 (t, J = 7.2 Hz, 1H, arom), 6.99 (d, 8.4 Hz, 1H, arom), 4.28 (t, J = 6.4 Hz, 2H, -SCH₂CH₂O-), 2.96 (t, J = 6.4 Hz, 2H, -SCH₂CH₂O-), 2.23 (s, 3H, CH₃S-). ¹³C-NMR (100 Hz, CDCl₃, ppm): δ 189.7, 160.8, 135.9, 128.5, 125.0, 121.1, 112.5, 67.9, 33.0, 16.3. MS (CI): Calcd. 197.0636 (C₁₀H₁₃O₂S for [M+H]⁺), found 197.0632.

2-(2-Methylthioethoxy)styrene (14-s). In a flame-dried 100-mL two-neck flask, CH_3PPh_3Br (0.761 g, 2.13 mmol) was suspended in anhydrous THF (10 mL) under an N₂ atmosphere and cooled to -78 °C. ⁿBuLi solution in hexane (1.6 M, 1.9 mL, 3.04 mmol) was slowly dropwise added to the

CHO

solution using a syringe, and the suspension was stirred for 1 h in an ice salt bath. The mixture turned to be orange in color. To the reaction mixture was added a solution of compound **13**-s (0.322 g, 1.63 mmol) in anhydrous THF (5 mL) using a syringe. The reaction mixture was stirred for 2 h in an ice water bath. Afterward, the reaction mixture was transferred into a beaker, and treated with sat. NH₄Cl

aq. (5 mL), hexane/ethyl acetate = 3/1 (60 mL) and water (100 mL) in an ice bath. After the mixture was stirred for 10 min, the organic phase was separated and sequentially washed with water (100 mL) and brine (100 mL). The solution was and dried over Na₂SO₄ and the solvent was evaporated. The residue was purified by silica gel chromatography (eluent: hexane/ethyl acetate = 6/1 (R_f = 0.28)) to obtain compound **14**.s as pale-yellow oil (263 mg, yield: 83%). ¹H-NMR (400 MHz, CDCl₃, ppm): δ 7.49 (dd, J = 7.8, 1.6 Hz, 1H, arom), 7.22 (ddd, J = 8.2, 7.8, 1.6 Hz, 1H, arom), 7.07 (dd, J = 17.8, 11.2 Hz, 1H, -C<u>H</u>=CH₂), 6.95 (t, J = 7.8 Hz, 1H, arom), 6.87 (d, J = 8.2 Hz, 1H, arom), 5.75 (dd, J = 17.8, 1.5 Hz, 1H, -CH=C<u>H₂a), 5.26 (dd, J = 11.2, 1.5 Hz, 1H, -CH=C<u>H₂b), 4.18 (t, J = 6.8 Hz, 2H, -SC<u>H₂CH₂O-), 2.22 (s, 3H, C<u>H₃S-)</u>. ¹³C-NMR (100 Hz, CDCl₃, ppm): δ 155.8, 131.7, 129.0, 127.1, 126.7, 114.7, 112.2, 68.0, 33.3, 16.4. MS (EI): Calcd. 194.0756 (C₁₁H₁₄OS for [M]⁺), found 194.0762.</u></u></u>

2-Methoxyethyl 4-methylbenzenesulfonate (12-0).² In a 50-mL roundbottom flask equipped with a dropping funnel, 2-methoxyethanol (0.79 mL (d = OTs

0.965 g/mL) 10 mmol) and tosyl chloride (2.12 g, 11 mmol) were dissolved in ethyl acetate (10 mL) and stirred for 10 min in an ice bath. Triethylamine diluted with ethyl acetate (5 mL) was slowly dropwise added from the dropping funnel to the abovementioned solution. After stirring for 16 h at room temperature, water (20 mL) was dropwise added from a dropping funnel to the solution in an ice bath and the mixture was stirred for 5 min. Organic substances were extracted with ethyl acetate (3 × 20 mL). The organic phase was washed with brine (30 mL) and dried over Na₂SO₄. After the solvent was evaporated, the residue was subjected to flash column chromatography on silica gel (eluent: hexane/ethyl acetate = 6/1 (R_f = 0.47)) to obtain **12**.0 as pale yellow oil (1.49 g, yield: 65%). ¹H-NMR (400 MHz, CDCl₃, ppm): δ 7.81 (d, *J* = 8.2 Hz, 2H, arom), 7.35 (d, *J* = 8.2 Hz, 2H, arom), 4.16 (t, *J* = 4.7 Hz, 2H, -CH₂C<u>H</u>₂-OTs), 3.58 (t = 4.7 Hz, 2H, -C<u>H</u>₂CH₂-OTs), 3.31 (s, 3H, C<u>H</u>₃OCH₂CH₂-), 2.45 (s, 3H, -OSO₂Phe-C<u>H</u>₃). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ 144.8, 132.9, 129.8, 127.98, 69.9, 69.1, 59.0, 22.7.

2-(2-Methoxyethoxy)benzaldehyde (13₋₀). In a 100-mL two-neck flask, compound **11**₋₀ (1.16 g, 5.0 mmol), salicylaldehyde (0.58 mL (d = 1.17 g/mL), 5.5 mmol), and K₂CO₃ (0.766 g, 5.5 mmol) was added to the

solution. The reaction mixture was stirred at 70 °C. After 12 h, the reaction mixture was cooled to room temperature, and poured into water (100 mL). Organic substances were extracted with hexane/ethyl acetate = 2/1 (3 × 60 mL). The organic phase was sequentially washed with water (2 × 50 mL) and brine (100 mL). The solution was dried over Na₂SO₄. After the solvent was evaporated, the residue was subjected to flash column chromatography on silica gel (eluent: hexane/ethyl acetate = 6/1 ($R_f = 0.09$)) to obtain **13**.0 as brown oil (0.790 g, yield: 88%). ¹H-NMR (400 MHz, CDCl₃,

ppm) : δ 10.54 (s, 1H, -CHO), 7.84 (dd, J = 7.6, 1.8 Hz, 1H, arom), 7.54 (ddd, J = 8.4, 7.6, 1.8 Hz, 1H, arom), 7.04 (t, J = 7.6 Hz, 1H, arom), 7.00 (d, 8.4 Hz, 1H, arom), 4.24 (t, J = 4.7 Hz, 2H, - OCH₂C<u>H₂O-), 3.82 (t, J = 4.7 Hz, 2H, SC<u>H₂CH₂O-), 3.47 (s, 3H, C<u>H</u>₃O-). ¹³C-NMR (100 Hz, CDCl₃, ppm): δ 189.6, 161.2, 135.9, 128.3, 125.1, 121.0, 112.7, 70.8, 68.2, 59.4. MS (EI): Calcd. 180.0786 (C₁₀H₁₂O₃ for [M]⁺), found 180.0784.</u></u>

2-(2-Methoxythoxy)styrene (14-0). Compound **14**-0 was synthesized in the same manner as the synthesis of compound **14**-s from compound **13**-s. Crude product was purified by silica gel chromatography (eluent: hexane/ethyl acetate = 6/1 ($R_f = 0.39$)) to obtain as pale yellow oil (yield: 61%). ¹H-NMR

(400 MHz, CDCl₃, ppm): δ 7.48 (dd, J = 7.3, 1.7 Hz, 1H, arom), 7.19 (ddd, J = 8.3, 7.3, 1.7 Hz, 1H, arom), 7.08 (dd, J = 17.8, 11.2 Hz, 1H, -C<u>H</u>=CH₂), 6.94 (t, J = 7.3 Hz, 1H, arom), 6.87 (d, J = 8.3 Hz, 1H, arom), 5.76 (dd, J = 17.8, 1.5 Hz, 1H, -CH=C<u>H₂a</u>), 5.26 (dd, J = 11.2, 1.5 Hz, 1H, -CH=C<u>H₂b</u>), 4.14 (t, J = 4.8 Hz, 2H CH₃OCH₂C<u>H₂O</u>-), 3.78 (t, J = 4.8 Hz, 2H, CH₃OC<u>H₂CH₂O</u>-), 3.46 (s, 3H, C<u>H₃O</u>-). ¹³C-NMR (100 Hz, CDCl₃, ppm): δ 156.0, 131.6, 128.8, 127.1, 126.5, 121.0, 114.4, 112.3, 71.1, 67.9, 59.3. MS (EI): Calcd. 178.0996 (C₁₁H₁₄O₃ for [M]⁺), found 178.0994.

Complex 11-s. In a 100-mL two-neck flask with a condenser, Grubbs second generation complex (Grubbs-II, 54.5 mg, 0.064 mmol), compound **14**-s (12.2 mg, 0.063 mmol) and CuCl (8.5 mg, 0.086 mmol) were dissolved in anhydrous CH_2Cl_2 (10 mL) under an N₂ atmosphere. The mixture was refluxed for 1 h under N₂. The reaction mixture was

concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent: ethyl acetate), and a green band was collected. Afterward, the solvent was evaporated followed by recrystallization (vapor diffusion of hexane into CH₂Cl₂ solution) at 5 °C to obtain complex **11**-s as dark green solids (23.4 mg, yield: 56%). ¹H-NMR (400 MHz, CD₂Cl₂, ppm): δ 16.250 (s, 1H, benzylidene proton), 7.553 (dd, J = 7.6 Hz, 2.0 Hz, 1H, aromatic proton in ligand), 7.074 (s, 4H, aromatic proton in mesityl group), 6.967 (dd, J = 7.6 Hz, 7.6 Hz, 1H, aromatic proton in ligand), 6.903 (dd, J = 7.6 Hz, 20 Hz, 1H, aromatic proton in ligand), 6.903 (dd, J = 7.6 Hz, 20 Hz, 1H, aromatic proton in ligand), 6.903 (dd, J = 7.6 Hz, 20 Hz, 1H, aromatic proton in ligand), 6.903 (dd, J = 7.6 Hz, 20 Hz, 1H, aromatic proton in ligand), 6.903 (dd, J = 7.6 Hz, 20 Hz, 1H, aromatic proton in ligand), 4.141 (t, J = 7.6 Hz, 2H, -SCH₂C<u>H</u>₂O-), 3.987 (s, 4H, NHC protons), 2.679 (t, J = 7.6 Hz, 2H, -SC<u>H</u>₂CH₂O-), 2.442 (s, 12H, *o*-methyl group in mesityl group), 2.424 (s, 6H, *p*-methyl protons in mesityl group), 1.591 (s, 3H, C<u>H</u>₃SCH₂-). ¹³C-NMR (100 MHz, CD₂Cl₂, ppm): δ 304.71, 210.42, 153.50, 148.49, 139.40, 138.78, 138.55, 130.00, 129.19, 123.82, 122.48, 112.01, 62.27, 52.47, 36.67, 21.24, 19.21, 15.03. MS (ESI, positive): Calcd. 623.1434 (C₃₁H₃₈ClN₂ORuS for [M–Cl]⁺), found 623.1414.

Complex 11._O. The synthesis was conducted in the same manner as the synthesis of complex **11.**_S. The product was recrystallized (vapor diffusion of hexane into CH₂Cl₂ solution) at 5 °C to obtain complex **11.**_O dark green solid (yield: 56%). δ 16.495 (s, 1H, benzylidene proton), 7.563 (dd, J = 7.6 Hz, 2.8 Hz, 1H, aromatic proton in ligand), 7.084 (s, 4H, aromatic proton

in mesityl group), 6.945 (m, 3H, aromatic proton in ligand), 4.238 (t, *J* = 7.6 Hz, 2H, -MeOCH₂C<u>H</u>₂O-), 4.133 (s, 4H, NHC protons), 3.501 (t, *J* = 7.6 Hz, 2H, MeOC<u>H</u>₂CH₂O-), 3.113 (s, 3H, <u>Me</u>OCH₂CH₂O-), 2.443 (s, 12H, *o*-methyl group in mesityl group), 2.407 (s, 6H, *p*-methyl protons in mesityl group). ¹³C-NMR (150 MHz, CD₂Cl₂, ppm): δ 293.38, 210.19, 153.42, 144.95, 139.20, 136.71 129.94 129.83 129.61, 123.83, 122.24 113.07, 69.51, 68.51, 58.91, 52.08, 21.28, 19.45.

MS (ESI, positive): Calcd. 571.1907 (C₃₁H₃₇N₂O₂Ru for [M–Cl₂–H]⁺), found 571.1852.

References

- 1. G. Ye, S. Li, Y. Feng, and C. Wang, China Patent, CN201811591908, 2018.
- Y. Matsui, K. Soranaka, and Y. Sakamoto, World Intellectual Property Organization, WO2011152066A1, 2011.

rutheni	um complexes				
time (h)	comp (starting t	lex 1 material)	compl (proc	ex 11 .s duct)	complex 1 + complex 11.s
	relative intensity ^b (ⁱ Pr-methine proton) 4.87 ppm	concentration (mM)	relative intensity ^b (-SCH ₂ C <u>H</u> ₂ O-) 2.67 ppm	concentration (mM)	concentration (mM)
0.5	0.5224	47.0	0.0657	2.96	50.0
1	0.4378	39.4	0.2404	10.8	50.2
2	0.368	33.1	0.3612	16.3	49.4
3	0.3129	28.2	0.4990	22.5	50.6
6	0.2183	19.6	0.6540	29.4	49.1
12	0.1474	13.3	0.8461	38.1	51.3
24	0.0944	8.50	0.9659	43.5	52.0
48	0.0820	7.38	0.9717	43.7	51.1
ligands					
time (h)	ligand (starting 1	l 14 .s material)	ligar (proc	nd 15 duct)	ligand 14 .s
	relative intensity ^b (-SCH ₂ CH ₂ O-) 2.90 ppm	Concentration (mM)	relative intensity ^b (ⁱ Pr-methine proton) 4.55 ppm	Concentration (mM)	Concentration (mM)
0.5	1.046	47.1	0.0300	2.70	49.8
1	0.8524	38.4	0.1085	9.77	48.1
2	0.7109	32.0	0.1717	15.5	47.4
3	0.6166	27.7	0.2205	19.8	47.6
6	0.4634	20.9	0.3137	28.2	49.1
12	0.2717	12.2	0.3967	35.7	47.9
24	0.1706	7.68	0.4581	41.2	48.9

Table S1. Quantification of components contained in the reaction mixture of the ligand exchange between complex 1 and ligand $14.s.^{a}$

^{*a*}Reacion conditions: [HG-II (1)] = [14_{-s}] = 50 mM in CD₂Cl₂ at 25 °C. The reaction was conducted in an NMR tube with a J-young cap. Hexamethyl disiloxane (HMDSO; 5 mM) was added as an internal standard. ^{*b*}Relative intensity with reference to the signal of HMDSO (δ_{H} : 0.066 ppm).

0.5030

45.3

50.7

5.40

48

0.1200

rutheni	um complexes				
time (h)	compl (starting n	ex 1 naterial)	comple (prod	x 11 .0 uct)	complex 1 + complex 11.0
	relative intensity ^b (ⁱ Pr-methine proton) 4.87 ppm	concentration (mM)	relative intensity ^b (MeOC <u>H</u> ₂ CH ₂ -) 3.50 ppm	concentration (mM)	concentration (mM)
0.5	0.5246	47.2	0.0588	2.65	49.9
2	0.3958	35.6	0.2850	12.8	48.4
3	0.3649	32.8	0.3285	14.8	47.6
6	0.3625	32.6	0.3541	15.9	48.6
12	0.3520	31.7	0.3686	16.6	48.3
24	0.3548	31.9	0.3511	15.8	47.7
ligands					
time (h)	ligand (starting n	14 ₋₀ naterial)	ligano (prod	d 15 uct)	ligand 14 ₋₀ + ligand 15
	relative intensity ^b (MeOC <u>H</u> ₂ CH ₂ -) 3.75 ppm	Concentration (mM)	relative intensity ^b (ⁱ Pr-methine proton) 4.55 ppm	Concentration (mM)	Concentration (mM)
0.5	1.0487	47.2	0.0270	2.43	49.6
2	0.8080	36.4	0.1497	13.5	49.8
3	0.7834	35.3	0.1497	13.5	48.7
6	0.6968	31.4	0.1654	14.9	46.2
12	0.6545	29.5	0.1535	13.8	43.3
24	0.5904	26.6	0.1667	15.0	41.6

Table S2. Quantification of components contained in the reaction mixture of the ligand exchange between complex 1 and ligand $14_{\cdot 0}$.^{*a*}

^{*a*}Reacion conditions: [HG-II (1)] = [14.0] = 50 mM in CD₂Cl₂ at 25 °C. The reaction was conducted in an NMR tube with a J-young cap. Hexamethyl disiloxane (HMDSO; 5 mM) was added as an internal standard. ^{*b*}Relative intensity with reference to the signal of HMDSO ($\delta_{\rm H}$: 0.066 ppm).

Compound		11-s	11.0	
CCDC deposition number		2262936	2262938	
Molecular formula		$C_{31}H_{38}Cl_2N_2OruS$	$C_{31}H_{38}Cl_2N_2O_2Ru$	
Formula wight / g mol ⁻	1	658.66	642.60	
Crystal system		monoclinic	monoclinic	
Space group		$P2_1/n$	$P2_1/n$	
Cell metric	<i>a</i> / Å	13.1608 (2)	13.2694 (2)	
	<i>b</i> / Å	10.8969 (2)	10.71431 (19)	
	<i>c</i> / Å	21.8863 (4)	21.4432 (4)	
	b / deg	103.350 (7)	101.277 (7)	
Cell volume / Å ³		3053.95 (13)	2989.77 (12)	
Ζ		4	4	
Electrons per cell F_{000}		1360.0	1328.0	
Calcd. Density / g cm ⁻³		1.433	1.428	
$m(Mo-K\alpha) / cm^{-1}$		7.831	7.331	
Crystal shape and color	.	prism, green	prism, green	
Crystal size / mm		0.24~ imes~0.22~ imes~0.12	$0.19~\times~0.06\times~0.05$	
Radiation		Mo $K\alpha$ ($\lambda = 0.71075$)	Mo $K\alpha$ ($\lambda = 0.71075$)	
Temperature / K		103.15	103.15	
w oscillation Range		$130.0-190.0^\circ$	$130.0-190.0^\circ$	
(c = 45.0, f = 0.0)		(80 sec /degree)	(130 sec /degree)	
w oscillation Range		$0.0-160.0^\circ$	$0.0-160.0^\circ$	
(c = 45.0, f = 180.0)		(80 sec /degree)	(80 sec /degree)	
w oscillation Range		$0.0-160.0^\circ$	$0.0-160.0^\circ$	
(c = 45.0, f = 90.0)		(80 sec /degree)	(80 sec /degree)	
No. of Reflections Mea	sured	Total: 49969	Total: 48620	
		Unique: 3991	Unique: 6848	
		$(R_{\rm int} = 0.0182)$	$(R_{\rm int} = 0.0273)$	
Residuals: $R_1 (I > 2\sigma(I))$))	0.0327	0.0316	
Residuals: R ₁		0.0225	0.0256	
(All reflections)		0.0535	0.0356	
Residuals: wR ₂		0.0876	0.07/1	
(All reflections)		0.08/0	0.0701	
Goodness of Fit Indicator		2.632	2.288	

Table S3. Crystal data, diffraction collection details, and structure refinement.

¹H-NMR (400 MHz, CD₂Cl₂)

¹³C-NMR (100 MHz, CD₂Cl₂)

Fig. S1 NMR spectra of ruthenium complex 11-s.

¹H-NMR (400 MHz, CD₂Cl₂)

¹³C-NMR (150 MHz, CD₂Cl₂)

Fig. S2 NMR spectra of ruthenium complex 11.o.

Fig. S3 ¹H-NMR spectral change during the ligand exchange between 1 and ligand 14.₈ in CD₂Cl₂ at 25 °C; (a) NMR spectral change; (b) The quantification of reaction components at 24 h using hexamethyldisiloxane (HMDSO) as an internal standard. The measurements were carried out with presaturation technique for the undeuterated protons in solvent (peak with asterisk(*)). The peaks with a dot (•) are due to spinning side band. Chemical shifts were referenced to the peak of HMDSO ($\delta_{\rm H}$: 0.066 ppm).

Fig. S4 ¹H-NMR spectral change during the ligand exchange between 1 and ligand 14.0 in CD₂Cl₂ at 25 °C; (a) NMR spectral change; (b) The quantification of reaction components was conducted using hexamethyldisiloxane (HMDSO) as an internal standard. The measurements were carried out with presaturation technique for the undeuterated protons in solvent (peak with asterisk(*)). The peaks with a dot (•) are due to spinning side band. Chemical shifts were referenced to the peak of HMDSO ($\delta_{\rm H}$: 0.066 ppm).

Fig. S5 ¹H-NMR spectral change in the **11**_{-s}-catalyzed RCM reaction of TDA (**16**) in CH₂Cl₂ at 25 °C in the presence of HMDSO (internal standard). At defined time, a sampled solution (100 μ L) was diluted with CDCl₃ for an NMR measurement (see the details in Experimental section). The quantification of reaction components was carried out using hexamethyldisiloxane (HMDSO) as an internal standard. The NMR measurements were carried out with presaturation technique for the undeuterated protons of solvent. [**16**] = 42 mM, [Ru complex] = 0.042 mM (0.1 mol% catalyst load).

Fig. S6 Time-courses and ¹H-NMR spectral change of RCM reactions of diallyl malonate ester (**17**) in CH₂Cl₂ at 25 °C in the presence of HMDSO (internal standard); (a) time-courses of RCM product **21**; (b) ¹H-NMR spectral change during the **11**_{.s}-catalyzed reaction. At defined time, a sampled solution (100 μ L) was diluted with CDCl₃ for an NMR measurement (see the details in Experimental section). The quantification of reaction components was carried out using hexamethyldisiloxane (HMDSO) as an internal standard. The NMR measurements were carried out with presaturation technique for the undeuterated protons of solvent. The RCM produc was quantified with reference to the peak intensity of HMDSO (δ_{H} : 0.066 ppm). [**17**] = 42 mM, [Ru complex] = 0.042 mM (0.1 mol% catalyst load).

Fig. S7 Time-courses and ¹H-NMR spectral change of metathesis reactions of compounds 18 and methyl acrylate (19) in CH₂Cl₂ at 25 °C in the presence of HMDSO (internal standard); (a) time-courses of cross metathesis product 22; (b) time-courses of self metathesis product 23; (c) ¹H-NMR spectral change during the 11_{-S}-catalyzed reaction. At defined time, a sampled solution (100 μ L) was diluted with CDCl₃ for an NMR measurement (see the details in Experimental section). The quantification of reaction components was carried out using hexamethyldisiloxane (HMDSO) as an internal standard. The NMR measurements were carried out with presaturation technique for the undeuterated protons in solvent. The RCM product was quantified with reference to the peak intensity of HMDSO (δ_{H} : 0.066 ppm). [18] = 42 mM, [19] = 84 mM, [Ru complex] = 0.042 mM (0.1 mol% catalyst load).

Fig. S8 ¹H-NMR spectra measured at the end of the RCM reaction of TDA (**16**) in CH₂Cl₂ at 25 °C in the presence of 1 mol% catalyst and HMDSO (internal standard). A sampled solution (100 μ L) was diluted with CDCl₃ for an NMR measurement (see the details in Experimental section). The quantification of reaction components was carried out using hexamethyldisiloxane (HMDSO) as an internal standard. The measurements were carried out with presaturation technique for the undeuterated protons in solvent (peak with asterisk(*)). The peaks with a dot (•) are due to spinning side band. [**16**] = 42 mM, [Ru complex] = 0.42 mM (1 mol% catalyst load).

Fig. S9 HPLC chromatogram of a solution sampled from the reaction mixture (40 min) of the **10**_{-s}-catalyzed RCM reaction of TDA (**15**) in 1,2-dichloroethane (1,2-DCE) that contains methanol (1%(v/v)) at 40 °C. 2-Phenylethanol was used as an internal standard.

Fig. S10 Effect of MeOH on the RCM reactions of TDA (**16**) in 1,2-dichloroethane (1,2-DCE) at 40 °C; (a) without MeOH; (b) with MeOH (1%(v/v)); (c) with MeOH (10%(v/v)). [TDA (**16**)]) = 42 mM; [Ru complex] = 0.042 mM (0.1 mol%). 2-Phenylethanol was used as an internal standard.

Fig. S11 UV-vis spectral changes of ruthenim complexes without an olefinic substrate and in the presence of MeOH (10%(v/v)) in 1,2-dichloroethane (1,2-DCE) at 40 °C; (a) complex **11**-s; (b) with complex **11**-o; (c) complex **1**; (d) time-courses of absorbances at maximum wavelength of MLCT band. [complex] = 50 μ M.

NMR spectra of compound 12-s:

¹H-NMR (400 MHz, CDCl₃)

NMR spectra of compound 13-s:

¹H-NMR (400 MHz, CDCl₃)

NMR spectra of compound 14-s:

¹³C-NMR (100 MHz, CDCl₃)

NMR spectra of compound 12-0:

¹³C-NMR (100 MHz, CDCl₃)

NMR spectra of compound 13-0:

¹³C-NMR (100 MHz, CDCl₃)

NMR spectra of compound 14_0:

¹³C-NMR (100 MHz, CDCl₃)

