Electronic Supporting Information

Synthesis, Structures and Magnetic studies of Hexanuclear Lanthanide Complexes: SMM
behavior in Dy ${ }^{\text {III }}$ analogue and MCE properties in Gd ${ }^{\text {III }}$ analogue
Pawan Kumar,, ${ }^{a, d}$ Pankaj Kalita, ${ }^{b}$ María A. Palacios, ${ }^{c}$ Vierandra Kumar, ${ }^{\text {a }}$ Joydev Acharya, ${ }^{a}$
Enrique Colacio*c and Vadapalli Chandrasekhar*a,d
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
${ }^{\text {b }}$ Department of Chemistry, Nowgong Girls College, Nagaon, Assam-782002, India
${ }^{\text {c }}$ Department of Inorganic Chemistry, University of Granada, 18071-Granada, Spain
${ }^{d}$ Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India

Table S1. Details of solvent mask

Sl. No.	Volume/ Formula Unit $\left(\mathbf{\AA}^{\mathbf{3}}\right)$	Electron Count/ Formula Unit	Contents/Formula Unit
$\mathbf{1}$ (AJ1860)	180	36	$2 \mathrm{CH}_{3} \mathrm{OH}$
$\mathbf{2}$ (AJ1863)	302	80	$2 \mathrm{CH}_{3} \mathrm{OH}, 4 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{3}$ $(\mathrm{AJ} 1920)$	252	40	$4 \mathrm{H}_{2} \mathrm{O}$
$\mathbf{4}$ $(\mathrm{AJ} 1851)$	238	70	$4 \mathrm{CH}_{3} \mathrm{OH}$

Figure S1. Experimental powder XRD patterns of $\mathbf{1}$ (in violet), $\mathbf{2}$ (in green), $\mathbf{3}$ (in red), $\mathbf{4}$ (in black) with the simulated powder XRD from single crystal data for $\mathbf{3}$ (in blue).

Figure S2. Molecular structure of $\mathbf{2}$ (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N $=$ blue; $\mathrm{O}=$ red; $\mathrm{C}=$ grey; $\mathrm{Tb}=$ yellow; $\mathrm{H}=$ black, and $\mathrm{F}=$ pink $)$. Selected bond lengths (\AA) for 2: for $\mathrm{Tb} 1 ; \mathrm{Tb} 1-\mathrm{O} 1, \mathrm{~Tb} 1-\mathrm{O} 2, \mathrm{~Tb} 1-\mathrm{O} 5, \mathrm{~Tb} 1-\mathrm{O} 5 *, \mathrm{~Tb} 1-\mathrm{O} 6, \mathrm{~Tb} 1-\mathrm{O} 13, \mathrm{~Tb} 1-\mathrm{N} 1, \mathrm{~Tb} 1-\mathrm{N} 5$, are 2.304(4), 2.332(4), 2.380(4), 2.368(3), 2.351(4), 2.417(5), 2.519(4), 2.538(4), respectively, for Tb2; Tb2-O3, Tb2-O4, Tb2-O8, Tb2-O9, Tb2-O10, Tb2-N2, Tb2-N3, Tb2-N4, are 2.410(4), 2.305(4), 2.291(4), 2.359(4), 2.382(4), 2.525(4), 2.526(5), 2.615(5), respectively, for Tb3; . Tb3$\mathrm{O} 4, \mathrm{~Tb} 3-\mathrm{O} 7, \mathrm{~Tb} 3-\mathrm{O} 8, \mathrm{~Tb} 3-\mathrm{O} 11, \mathrm{~Tb} 3-\mathrm{O} 12, \mathrm{~Tb} 3-\mathrm{N} 6, \mathrm{~Tb} 3-\mathrm{N} 7, \mathrm{~Tb} 3-\mathrm{N} 8$, are $2.307(4), 2.435(4)$, 2.288(4), $2.398(4), 2.342(4), 2.536(4), 2.523(5), 2.600(4)$, respectively, and selected bond angles $\left(^{\circ}\right)$ for 2: $\mathrm{Tb} 1-\mathrm{O} 5-\mathrm{Tb} 1^{*}, \mathrm{~Tb} 3-\mathrm{O} 8-\mathrm{Tb} 2, \mathrm{~Tb} 3-\mathrm{O} 4-\mathrm{Tb} 2,108.37(14)^{\circ}, 110.81(14)^{\circ}, 109.62(15)^{\circ}$, respectively.

Figure S3. Molecular structure of $\mathbf{3}$ (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N $=$ blue; $\mathrm{O}=$ red; $\mathrm{C}=$ grey; $\mathrm{Dy}=$ cyan, $\mathrm{H}=$ black; and $\mathrm{F}=$ pink $)$. Selected bond lengths (\AA) for 3: for Dy1; Dy1-O1, Dy1-O2, Dy1-O5, Dy1-O5*, Dy1-O6, Dy1-O13, Dy1-N1, Dy1-N5, are 2.278(5), $2.311(4), 2.345(4), 2.362(4), 2.331(4), 2.412(5), 2.507(5), 2.512(5)$, respectively, for Dy2; Dy2-O3, Dy2-O4, Dy2-O8, Dy2-O9, Dy2-O10, Dy2-N2, Dy2-N3, Dy2-N4, are 2.413(4), 2.474(4), 2.283(4), 2.334(4), 2.366(5), 2.503(5), 2.513(5), 2.605(5), respectively, for Dy3; . Dy3-O4, Dy3-O7, Dy3-O8, Dy3-O11, Dy3-O12, Dy3-N6, Dy3-N7, Dy3-N8, are $2.303(4), 2.422(4), 2.267(4), 2.369(4), 2.314(5), 2.504(5), 2.509(5), 2.597(5)$, respectively, and selected bond angles $\left(^{\circ}\right.$) for 3: Dy1-O5-Dy1*, Dy3-O4- Dy2, Dy3-O8- Dy2, 108.93(15) ${ }^{\circ}$, $110.01(16)^{\circ}, 110.97(16)^{\circ}$, respectively.

Figure S4. Molecular structure of 4 (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N $=$ blue; $\mathrm{O}=$ red; $\mathrm{C}=$ grey; $\mathrm{Er}=$ orange; $\mathrm{H}=$ black; and $\mathrm{F}=$ pink $)$ Selected bond lengths (\AA) for 4 : for Er1; Er1-O1, Er1-O2, Er1-O5, Er1-O5*, Er1-O6, Er1-O13, Er1-N1, Er1-N5, are 2.293(7), 2.294(7), 2.342(7), 2.337(6), 2.303(7), 2.375(7), 2.496(8), 2.491(7), respectively, for Er2; Er2O3, Er2-O4, Er2-O8, Er2-O9, Er2-O10, Er2-N2, Er2-N3, Er2-N4, are 2.382(7), 2.274(6), 2.269(6), $2.317(7), 2.370(7), 2.489(7), 2.498(8), 2.594(8)$, respectively, for Er3; Er3-O4, Er3O7, Er3-O8, Er3-O11, Er3-O12, Er3-N6, Er3-N7, Er3-N8, are 2.270(6), 2.392(7), 2.260(6), 2.365(7), 2.313(6), 2.489(7), 2.503(8), 2.576(8), respectively, and selected bond angles for 4: Er1-O5-Er1*, Er3-O4-Er2, Er3-O8-Er2, 108.5(3) ${ }^{\circ}$, 110.2(2) ${ }^{\circ}$, 110.7(3) ${ }^{\circ}$, respectively.

Figure S5. 2D supramolecular structure of complex 1 (selected carbon, hydrogen is omitted for clarity). Color codes: $\mathrm{N}=$ blue; $\mathrm{O}=$ red; $\mathrm{C}=$ grey; $\mathrm{Gd}=$ dark green; and $\mathrm{F}=$ pink)

Table S2. Continuous Shape Measures (CShM) calculations for $\mathbf{1}$.

Complex_Metal Centre	Structure ${ }^{\dagger}$			
	SAPR-8	TDD-8	JBTPR-8	BTPR-8
1_Gd1 CShM	1.351	2.079	2.608	3.716
1_Gd2 CShM	1.810	1.680	2.031	2.594
1_Gd3 CShM	2.069	1.516	2.330	2.826

\dagger SAPR-8 = Square antiprism $\left(D_{4 d}\right) ; T D D-8=$ Triangular dodecahedron $\left(D_{2 d}\right) ; \operatorname{JBTPR}-8=$ Biaugmented trigonal prism J50 ($C_{2 v}$); BTPR-8 = Biaugmented trigonal prism ($C_{2 v}$)

Figure S6. Temperature dependence of out-of-phase signals (χ " ${ }_{\text {M }}$) for $\mathbf{3}$ at zero field and at the indicated frequencies.

Figure S7. Frequency dependence of the of out-of-phase signals (χ " ${ }_{M}$) for $\mathbf{3}$ at the indicated fields (left). Field dependence of the inverse of the relaxation times (right). Solid red line is a guide for the eye.

Temperature dependence of out-of-phase signals $\left(\chi\right.$ " ${ }_{\mathrm{M}}$) for $\mathbf{3}$ at $\mathrm{H}_{\mathrm{dc}}=0.2 \mathrm{~T}$ and at the indicated frequencies.

Figure S9. Field dependence of out-of-phase signals (χ " ${ }_{\mathrm{M}}$) for $\mathbf{4}$ at the indicated frequencies and at a temperature of 2.5 K .

