Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Information

Synthesis, Structures and Magnetic studies of Hexanuclear Lanthanide Complexes: SMM behavior in Dy^{III} analogue and MCE properties in Gd^{III} analogue

Pawan Kumar,^{a,d} Pankaj Kalita,^b María A. Palacios,^c Vierandra Kumar,^a Joydev Acharya,^a

Enrique Colacio*c and Vadapalli Chandrasekhar*a,d

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

^bDepartment of Chemistry, Nowgong Girls College, Nagaon, Assam-782002, India

^cDepartment of Inorganic Chemistry, University of Granada, 18071-Granada, Spain

^dTata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India

Sl. No.	Volume/ Formula	Electron Count/ Formula	Contents/Formula
	Unit	Unit	Unit
	(Å ³)		
1	180	36	2 CH ₃ OH
(AJ1860)			
2	302	80	2 CH ₃ OH, 4 H ₂ O
(AJ1863)			
3	252	40	4 H ₂ O
(AJ1920)			
4	238	70	4 CH ₃ OH
(AJ1851)			

Table S1. Details of solvent mask

Figure S1. Experimental powder XRD patterns of 1(in violet), 2(in green), 3(in red), 4(in black) with the simulated powder XRD from single crystal data for 3(in blue).

Figure S2. Molecular structure of **2** (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N = blue; O = red; C = grey; Tb= yellow; H = black, and F = pink). Selected bond lengths (Å) for **2**: for Tb1; Tb1–O1, Tb1–O2, Tb1–O5, Tb1–O5*, Tb1–O6, Tb1–O13, Tb1–N1, Tb1–N5, are 2.304(4), 2.332(4), 2.380(4), 2.368(3), 2.351(4), 2.417(5), 2.519(4), 2.538(4), respectively, for Tb2; Tb2–O3, Tb2–O4, Tb2–O8, Tb2–O9, Tb2–O10, Tb2–N2, Tb2–N3, Tb2–N4, are 2.410(4), 2.305(4), 2.291(4), 2.359(4), 2.382(4), 2.525(4), 2.526(5), 2.615(5), respectively, for Tb3; . Tb3–O4, Tb3–O7, Tb3–O8, Tb3–O12, Tb3–N6, Tb3–N7, Tb3–N8, are 2.307(4), 2.435(4), 2.288(4), 2.398(4), 2.342(4), 2.536(4), 2.523(5), 2.600(4), respectively, and selected bond angles (°) for **2**: Tb1–O5–Tb1*, Tb3–O8–Tb2, Tb3–O4–Tb2, 108.37(14)°, 110.81(14)°, 109.62(15)°, respectively.

Figure S3. Molecular structure of **3** (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N = blue; O = red; C = grey; Dy = cyan, H = black; and F = pink). Selected bond lengths (Å) for **3**: for Dy1; Dy1–O1, Dy1–O2, Dy1–O5, Dy1–O5*, Dy1–O6, Dy1–O13, Dy1–N1, Dy1–N5, are 2.278(5), 2.311(4), 2.345(4), 2.362(4), 2.331(4), 2.412(5), 2.507(5), 2.512(5), respectively, for Dy2; Dy2–O3, Dy2–O4, Dy2–O8, Dy2–O9, Dy2–O10, Dy2–N2, Dy2–N3, Dy2–N4, are 2.413(4), 2.474(4), 2.283(4), 2.334(4), 2.366(5), 2.503(5), 2.513(5), 2.605(5), respectively, for Dy3; . Dy3–O4, Dy3–O7, Dy3–O8, Dy3–O11, Dy3–O12, Dy3–N6, Dy3–N7, Dy3–N8, are 2.303(4), 2.422(4), 2.267(4), 2.369(4), 2.314(5), 2.504(5), 2.509(5), 2.597(5), respectively, and selected bond angles (°) for **3**: Dy1–O5– Dy1*, Dy3–O4– Dy2, Dy3–O8– Dy2, 108.93(15) °, 110.01(16)°, 110.97(16)°, respectively.

Figure S4. Molecular structure of **4** (selected hydrogen atoms and the solvent molecules have been omitted for clarity). Thermal ellipsoids at 30% probability level are shown. Color codes: N = blue; O = red; C = grey; Er = orange; H = black; and F = pink) Selected bond lengths (Å) for 4: for Er1; Er1–O1, Er1–O2, Er1–O5, Er1–O5*, Er1–O6, Er1–O13, Er1–N1, Er1–N5, are 2.293(7), 2.294(7), 2.342(7), 2.337(6), 2.303(7), 2.375(7), 2.496(8), 2.491(7), respectively, for Er2; Er2–O3, Er2–O4, Er2–O8, Er2–O9, Er2–O10, Er2–N2, Er2–N3, Er2–N4, are 2.382(7), 2.274(6), 2.269(6), 2.317(7), 2.370(7), 2.489(7), 2.498(8), 2.594(8), respectively, for Er3; Er3–O4, Er3–O7, Er3–O8, Er3–O11, Er3–O12, Er3–N6, Er3–N7, Er3–N8, are 2.270(6), 2.392(7), 2.260(6), 2.365(7), 2.313(6), 2.489(7), 2.503(8), 2.576(8), respectively, and selected bond angles for 4: Er1–O5–Er1*, Er3–O4–Er2, Er3–O8–Er2, 108.5(3) °, 110.2(2)°, 110.7(3)°, respectively.

Figure S5. 2D supramolecular structure of complex 1 (selected carbon, hydrogen is omitted for clarity). Color codes: N = blue; O = red; C = grey; Gd = dark green; and F = pink)

Table S2. Continuous Shape Measures (CShM) calculations for 1.

Complex_Metal Centre	Structure [†]			
	SAPR-8	TDD-8	JBTPR-8	BTPR-8
1_Gd1 CShM	1.351	2.079	2.608	3.716
1_Gd2 CShM	1.810	1.680	2.031	2.594
1_Gd3 CShM	2.069	1.516	2.330	2.826

† SAPR-8 = Square antiprism (D_{4d}); TDD-8 = Triangular dodecahedron (D_{2d}); JBTPR-8 = Biaugmented trigonal prism J50 (C_{2v}); BTPR-8 = Biaugmented trigonal prism (C_{2v})

Figure S6. Temperature dependence of out-of-phase signals $(\chi"_M)$ for 3 at zero field and at the indicated frequencies.

Figure S7. Frequency dependence of the of out-of-phase signals $(\chi^{"}_{M})$ for **3** at the indicated fields (*left*). Field dependence of the inverse of the relaxation times (*right*). Solid red line is a guide for the eye.

Temperature dependence of out-of-phase signals (χ "_M) for **3** at H_{dc} = 0.2 T and at the indicated frequencies.

Figure S9. Field dependence of out-of-phase signals (χ "_M) for **4** at the indicated frequencies and at a temperature of 2.5 K.