Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Figure S1. Crystal structure of $(Cp_{2}^{*}Cr^{+})\{[Mn(CO)_{5}]^{-}[In^{III}(Pc^{\bullet_{3}^{-}})]\}\cdot 2C_{6}H_{4}Cl_{2}(2)$

Components	InClPc	[Co(CO) ₄] ₂	$ \{ [Co(CO)_4]^- \\ [In^{III}(Pc^{2-})] \} \\ (1) $	[Mn(CO) ₅] ₂	Cp* ₂ Cr	$\begin{array}{c} (Cp*_{2}Cr^{+}) \\ \{[Mn(CO)_{5}]^{-} \\ [In^{III}(Pc^{\bullet3-})]\} \\ 2C_{6}H_{4}Cl_{2} \ (2) \end{array}$
InClPc	437w 497w 570m 634w 663w 724s 749m 771m 780m 802w 836w 885m 959w 1003w 1059s 1083s 1118s 1160m 1284s 1332s 1408m 1473s 1608w 1645w 3047w		430w* - 570w - 724s 749m 773m - 887m - 1063m 1081s 1117s 1162w 1285w 1332s 1409w 1476m 1597w - -		-	438w 489w 569w* - 667m* 714w 746m* 762w - - 827w 886w - - 1061w* 1089m 1112s* 1165m 1284w 1331w - 1459s* -
Transition metal fragment	-	416s 477s 503s 524s 543s CO 1843s 1896s 2003s	430w* - - 519w 551m CO 1975s 2010s 2080s	449m 467m 547w 577w 591w 639s 665m CO 1997s 2020s	-	- - 569w* - - 667m* CO 1974s - 2077s
Cp*2Cr	-	-	-	-	587w 800w 1019m 1067w 1262w 1375m 1417w 1446w 2851w 2955w	- - 1061w* - - 1421m - -
Solvent	-	-	-	-	-	$\begin{array}{c} C_{6}H_{4}Cl_{2} \\ 667m^{*} \\ 747m^{*} \\ 1036w \\ 1112s^{*} \\ 1459s^{*} \end{array}$

Table S1. IR spectra of starting compounds and complexes $1 \mbox{ and } 2$

* - bands are coincided; w – weak, m –middle and s – strong intensity

Figure S2. IR spectra of starting neutral InClPc and salts 1 and 2 in KBr pellets prepared in anaerobic condition.

Figure S3. IR spectra of starting transition metal $[Co(CO)_4]_2$, anionic metal carbonyl cluster in $\{DB-18\text{-}crown-6(Na^+)\}_2[Co_6(CO)_{15}]^{2-}\cdot 2C_6H_4Cl_2$ [1] and complex **1** in 1700 – 2200 cm⁻¹ range in KBr pellets prepared in anaerobic conditions

Figure S4. IR spectra of starting transition metal $[Mn(CO)_5]_2$ carbonyl, anionic metal carbonyl in $(Cp*_2Cr^+)[Mn(CO)_5]^-$ [1] and complex **2** in 1700 – 2200 cm⁻¹ range in KBr pellets prepared in anaerobic conditions.

Magnetic data for 2.

Figure S5. Temperature dependence of an effective magnetic moment of polycrystalline 2 measured in anaerobic conditions

Figure S6. Temperature dependence of the reciprocal molar magnetic susceptibility of polycrystalline **2** measured in anaerobic conditions. Approximation of data by the Curie-Weiss law is shown by red line.

Figure S7. EPR spectrum of the polycrystalline sample of **2** at 4.2 K measured in an anaerobic conditions. Frequency 9.05870 GHz, microwave power 1 mW, amplitude 320, modulation width 0.2 mT.

Figure S8. Temperature dependence of molar magnetic susceptibility of polycrystalline **2** measured in anaerobic conditions.

References

1. Konarev DV, Kuzmin AV, Galkin RS, Khasanov SS, Kurbanov RF, Otsuka A, et al. Salts of Anionic Metal Carbonyl Clusters with Cryptand[2.2.2](Na $^+$), DB-18-crown-6(Na $^+$), and Paramagnetic Cp* $_2$ Cr $^+$ Cations Obtained by Reduction: Salts of Anionic Metal Carbonyl Clusters with Cryptand[2.2.2](Na $^+$), DB-18-crown-6(Na $^+$), and Paramagnetic Cp* $_2$ Cr $^+$ Cations Obtained by Reduction. Z Anorg Allg Chem 2019; 645:472–83. https://doi.org/10.1002/zaac.201800463